Journal articles on the topic '3D microfluidic chip'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '3D microfluidic chip.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gyimah, Nafisat, Ott Scheler, Toomas Rang, and Tamas Pardy. "Can 3D Printing Bring Droplet Microfluidics to Every Lab?—A Systematic Review." Micromachines 12, no. 3 (2021): 339. http://dx.doi.org/10.3390/mi12030339.
Full textLi, Xiangke, Meng Wang, Thomas P. Davis, Liwen Zhang, and Ruirui Qiao. "Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices." Biosensors 14, no. 6 (2024): 301. http://dx.doi.org/10.3390/bios14060301.
Full textLepowsky, Eric, Reza Amin, and Savas Tasoglu. "Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing." Micromachines 9, no. 10 (2018): 520. http://dx.doi.org/10.3390/mi9100520.
Full textLin, Jiaqi, Lijuan Cui, Xiaokun Shi, and Shuping Wu. "Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications." Journal of Functional Biomaterials 16, no. 5 (2025): 166. https://doi.org/10.3390/jfb16050166.
Full textAmoyav, Benzion, Yoel Goldstein, Eliana Steinberg, and Ofra Benny. "3D Printed Microfluidic Devices for Drug Release Assays." Pharmaceutics 13, no. 1 (2020): 13. http://dx.doi.org/10.3390/pharmaceutics13010013.
Full textNiioka, Takuma, and Yasutaka Hanada. "Surface Microfabrication of Conventional Glass Using Femtosecond Laser for Microfluidic Applications." International Journal of Automation Technology 11, no. 6 (2017): 878–82. http://dx.doi.org/10.20965/ijat.2017.p0878.
Full textAdamopoulos, Christos, Asmaysinh Gharia, Ali Niknejad, Vladimir Stojanović, and Mekhail Anwar. "Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding." Biosensors 10, no. 11 (2020): 177. http://dx.doi.org/10.3390/bios10110177.
Full textWang, Shaoxi, Yue Yin, and Xiaoya Fan. "The Chip Cooling Model and Route Optimization with Digital Microfluidics." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 37, no. 1 (2019): 107–13. http://dx.doi.org/10.1051/jnwpu/20193710107.
Full textKim, Jeong Hwa, Ju Young Park, Songwan Jin, Sik Yoon, Jong-Young Kwak, and Young Hun Jeong. "A Microfluidic Chip Embracing a Nanofiber Scaffold for 3D Cell Culture and Real-Time Monitoring." Nanomaterials 9, no. 4 (2019): 588. http://dx.doi.org/10.3390/nano9040588.
Full textSekhwama, Masindi, Kelvin Mpofu, and Patience Mthunzi-Kufa. "Using 3D printing to fabricate microfluidic chips for biosensing applications." MATEC Web of Conferences 388 (2023): 05001. http://dx.doi.org/10.1051/matecconf/202338805001.
Full textDuan, Kai, Mohamad Orabi, Alexus Warchock, et al. "Monolithically 3D-Printed Microfluidics with Embedded µTesla Pump." Micromachines 14, no. 2 (2023): 237. http://dx.doi.org/10.3390/mi14020237.
Full textMoussus, Michel, and Matthias Meier. "A 3D-printed Arabidopsis thaliana root imaging platform." Lab on a Chip 21, no. 13 (2021): 2557–64. http://dx.doi.org/10.1039/d1lc00149c.
Full textAhmed, Isteaque, Katherine Sullivan, and Aashish Priye. "Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components." Biosensors 12, no. 8 (2022): 652. http://dx.doi.org/10.3390/bios12080652.
Full textLi, Lei, Kurtulus Gokduman, Aslihan Gokaltun, Martin L. Yarmush, and Osman Berk Usta. "A microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles." Nanomedicine 14, no. 16 (2019): 2209–26. http://dx.doi.org/10.2217/nnm-2019-0086.
Full textZhao, Qianbin, Tim Cole, Yuxin Zhang, and Shi-Yang Tang. "Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review." Micromachines 12, no. 7 (2021): 765. http://dx.doi.org/10.3390/mi12070765.
Full textTrujillo-de Santiago, Grissel, Brenda Giselle Flores-Garza, Jorge Alfonso Tavares-Negrete, et al. "The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors." Materials 12, no. 18 (2019): 2945. http://dx.doi.org/10.3390/ma12182945.
Full textSu, Ruitao, Jiaxuan Wen, Qun Su, et al. "3D printed self-supporting elastomeric structures for multifunctional microfluidics." Science Advances 6, no. 41 (2020): eabc9846. http://dx.doi.org/10.1126/sciadv.abc9846.
Full textQiu, Jingjiang, Junfu Li, Zhongwei Guo, et al. "3D Printing of Individualized Microfluidic Chips with DLP-Based Printer." Materials 16, no. 21 (2023): 6984. http://dx.doi.org/10.3390/ma16216984.
Full textWu, Chuang, Jiju Sun, and Binfeng Yin. "Research on Integrated 3D Printing of Microfluidic Chips." Micromachines 14, no. 7 (2023): 1302. http://dx.doi.org/10.3390/mi14071302.
Full textBissardon, Caroline, Xavier Mermet, Sophie Morales, et al. "Light sheet fluorescence microscope for microfluidic chip." EPJ Web of Conferences 238 (2020): 04005. http://dx.doi.org/10.1051/epjconf/202023804005.
Full textNam, Sung-Wook, Dong-Gyu Jeon, Young-Ran Yoon, Gang Ho Lee, Yongmin Chang, and Dong Il Won. "Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips." Biosensors 13, no. 7 (2023): 733. http://dx.doi.org/10.3390/bios13070733.
Full textBallacchino, Giulia, Edward Weaver, Essyrose Mathew, et al. "Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations." International Journal of Molecular Sciences 22, no. 15 (2021): 8064. http://dx.doi.org/10.3390/ijms22158064.
Full textSUN, HAO, ZHANDONG LI, and JIANGUO TAO. "INTEGRATED 3D MULTI-PHYSICAL SIMULATION OF A MICROFLUIDIC SYSTEM USING FINITE ELEMENT ANALYSIS." Journal of Mechanics in Medicine and Biology 15, no. 06 (2015): 1540043. http://dx.doi.org/10.1142/s0219519415400436.
Full textBaczyński, Szymon, Piotr Sobotka, Kasper Marchlewicz, Artur Dybko, and Katarzyna Rutkowska. "Low-cost, widespread and reproducible mold fabrication technique for PDMS-based microfluidic photonic systems." Photonics Letters of Poland 12, no. 1 (2020): 22. http://dx.doi.org/10.4302/plp.v12i1.981.
Full textCasali, Veronica, Ingrid Clerc Guithon, Boudewijn van der Sanden, et al. "Is a real-time quantifiable liquid biopsy achievable using a microfluidic lab-on-chip ?" EuroBiotech Journal 7, no. 4 (2023): 189–95. http://dx.doi.org/10.2478/ebtj-2023-0014.
Full textJung, Woojun, Seonghyeon Lee, and Yongha Hwang. "Truly 3D microfluidic heating system with iterative structure of coil heaters and fluidic channels." Smart Materials and Structures 31, no. 3 (2022): 035016. http://dx.doi.org/10.1088/1361-665x/ac4e50.
Full textSalmon, Idris, Sergei Grebenyuk, Abdel Rahman Abdel Fattah, et al. "Engineering neurovascular organoids with 3D printed microfluidic chips." Lab on a Chip 22, no. 8 (2022): 1615–29. http://dx.doi.org/10.1039/d1lc00535a.
Full textZhang, Siyuan, and Lin Fu. "Research Progress of 3D Printing Microfluidic Chip." Journal of Physics: Conference Series 1549 (June 2020): 052055. http://dx.doi.org/10.1088/1742-6596/1549/5/052055.
Full textGong, Hua, Adam T. Woolley, and Gregory P. Nordin. "3D printed high density, reversible, chip-to-chip microfluidic interconnects." Lab on a Chip 18, no. 4 (2018): 639–47. http://dx.doi.org/10.1039/c7lc01113j.
Full textXu, Jingjing, Michael Harasek, and Margit Gföhler. "From Soft Lithography to 3D Printing: Current Status and Future of Microfluidic Device Fabrication." Polymers 17, no. 4 (2025): 455. https://doi.org/10.3390/polym17040455.
Full textZhang, Aodong, Jian Xu, Yucen Li, et al. "Three-Dimensional Large-Scale Fused Silica Microfluidic Chips Enabled by Hybrid Laser Microfabrication for Continuous-Flow UV Photochemical Synthesis." Micromachines 13, no. 4 (2022): 543. http://dx.doi.org/10.3390/mi13040543.
Full textGuo, Mingyi, Yan Deng, Junqiu Huang, Yanping Huang, Jing Deng, and Huachang Wu. "Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells." Polymers 15, no. 15 (2023): 3183. http://dx.doi.org/10.3390/polym15153183.
Full textKhorsandi, Danial, Mehrab Nodehi, Tayyab Waqar, et al. "Manufacturing of Microfluidic Sensors Utilizing 3D Printing Technologies: A Production System." Journal of Nanomaterials 2021 (August 11, 2021): 1–16. http://dx.doi.org/10.1155/2021/5537074.
Full textLee, Bo-Eun, Do-Kyung Kim, Hyunil Lee, et al. "Recapitulation of First Pass Metabolism Using 3D Printed Microfluidic Chip and Organoid." Cells 10, no. 12 (2021): 3301. http://dx.doi.org/10.3390/cells10123301.
Full textSekhwama, Masindi, Kelvin Mpofu, Phumulani Mcoyi, Sudesh Sivarasu, and Patience Mthunzi-Kufa. "3D printed microfluidic chip design for diagnostic studies." MATEC Web of Conferences 406 (2024): 08004. https://doi.org/10.1051/matecconf/202440608004.
Full textJiao, Zhiqiang, Lei Zhao, Chu Tang, Hongyan Shi, Fu Wang, and Bo Hu. "Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection." Analytical Methods 11, no. 26 (2019): 3286–93. http://dx.doi.org/10.1039/c9ay01108k.
Full textDuzagac, Fahriye, Gloria Saorin, Lorenzo Memeo, Vincenzo Canzonieri, and Flavio Rizzolio. "Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research." Cancers 13, no. 4 (2021): 737. http://dx.doi.org/10.3390/cancers13040737.
Full textWei, Chunyang, Chengzhuang Yu, Shanshan Li, Tiejun Li, Jiyu Meng, and Junwei Li. "Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture." Biosensors 12, no. 5 (2022): 350. http://dx.doi.org/10.3390/bios12050350.
Full textGlinkowska Mares, Adrianna, Natalia Feiner-Gracia, Yolanda Muela, et al. "Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy." Applied Nano 2, no. 4 (2021): 289–302. http://dx.doi.org/10.3390/applnano2040021.
Full textMi, Shengli, Zhichang Du, Yuanyuan Xu, and Wei Sun. "The crossing and integration between microfluidic technology and 3D printing for organ-on-chips." Journal of Materials Chemistry B 6, no. 39 (2018): 6191–206. http://dx.doi.org/10.1039/c8tb01661e.
Full textWan Yahya, Wan Nurlina, Fatimah Ibrahim, Aung Thiha, Nurul Fauzani Jamaluddin, and Marc Madou. "Fabrication of a 3D carbon electrode for potential dielectrophoresis-based hepatic cell patterning application using carbon micro-electrical-mechanical system (CMEMS)." Journal of Micromechanics and Microengineering 32, no. 5 (2022): 055005. http://dx.doi.org/10.1088/1361-6439/ac60a8.
Full textHu, Wei, Bingxing Wu, Soumya K. Srivastava, and Suat Utku Ay. "Comparative Study and Simulation of Capacitive Sensors in Microfluidic Channels for Sensitive Red Blood Cell Detection." Micromachines 13, no. 10 (2022): 1654. http://dx.doi.org/10.3390/mi13101654.
Full textPalacio-Castañeda, Valentina, Rik Oude Egberink, Arbaaz Sait, et al. "Mimicking the Biology of Engineered Protein and mRNA Nanoparticle Delivery Using a Versatile Microfluidic Platform." Pharmaceutics 13, no. 11 (2021): 1944. http://dx.doi.org/10.3390/pharmaceutics13111944.
Full textTang, Jiukai, Guangyu Qiu, Xiaobao Cao, et al. "Self-aligned 3D microlenses in a chip fabricated with two-photon stereolithography for highly sensitive absorbance measurement." Lab on a Chip 20, no. 13 (2020): 2334–42. http://dx.doi.org/10.1039/d0lc00235f.
Full textAlexandre-Franco, María F., Rahmani Kouider, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa, and Awf Al-Kassir. "Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview." Micromachines 15, no. 9 (2024): 1137. http://dx.doi.org/10.3390/mi15091137.
Full textLee, Somin, Jungeun Lim, James Yu, Jungho Ahn, Younggyun Lee, and Noo Li Jeon. "Engineering tumor vasculature on an injection-molded plastic array 3D culture (IMPACT) platform." Lab on a Chip 19, no. 12 (2019): 2071–80. http://dx.doi.org/10.1039/c9lc00148d.
Full textMarcos, Luis F., Samantha L. Wilson, and Paul Roach. "Tissue engineering of the retina: from organoids to microfluidic chips." Journal of Tissue Engineering 12 (January 2021): 204173142110598. http://dx.doi.org/10.1177/20417314211059876.
Full textChang, Ning, Jingyan Zhai, Bing Liu, Jiping Zhou, Zhaoyu Zeng, and Xiangwei Zhao. "Low cost 3D microfluidic chips for multiplex protein detection based on photonic crystal beads." Lab on a Chip 18, no. 23 (2018): 3638–44. http://dx.doi.org/10.1039/c8lc00784e.
Full textGupta, Sharda, Lavish Patel, Kunal Mitra, and Arindam Bit. "Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress." Micromachines 13, no. 2 (2022): 305. http://dx.doi.org/10.3390/mi13020305.
Full textChen, Li, Xing Liu, Xiaolin Zheng, et al. "Dielectrophoretic Separation of Particles Using Microfluidic Chip with Composite Three-Dimensional Electrode." Micromachines 11, no. 7 (2020): 700. http://dx.doi.org/10.3390/mi11070700.
Full text