Academic literature on the topic '3D Navigation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D Navigation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3D Navigation"
Karetnikov, V. V., A. A. Prokhorenkov, and Yu G. Andreev. "Limiting navigational and hydrographic factors when using 3D electronic navigation charts for ship handling during locks passage." Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16, no. 6 (January 16, 2025): 825–36. https://doi.org/10.21821/2309-5180-2024-16-6-825-836.
Full textSanftmann, Harald, and D. Weiskopf. "3D Scatterplot Navigation." IEEE Transactions on Visualization and Computer Graphics 18, no. 11 (November 2012): 1969–78. http://dx.doi.org/10.1109/tvcg.2012.35.
Full textVosinakis, Spyros, and Anna Gardeli. "On the Use of Mobile Devices as Controllers for First-Person Navigation in Public Installations." Information 10, no. 7 (July 11, 2019): 238. http://dx.doi.org/10.3390/info10070238.
Full textMayalu, Alfred, Kevin Kochersberger, Barry Jenkins, and François Malassenet. "Lidar Data Reduction for Unmanned Systems Navigation in Urban Canyon." Remote Sensing 12, no. 11 (May 27, 2020): 1724. http://dx.doi.org/10.3390/rs12111724.
Full textKim, Youngwon Ryan, Hyeonah Choi, Minwook Chang, and Gerard J. Kim. "Applying Touchscreen Based Navigation Techniques to Mobile Virtual Reality with Open Clip-On Lenses." Electronics 9, no. 9 (September 5, 2020): 1448. http://dx.doi.org/10.3390/electronics9091448.
Full textNolte, L. P. "3D imaging, planning, navigation." Minimally Invasive Therapy & Allied Technologies 12, no. 1-2 (January 2003): 3–4. http://dx.doi.org/10.1080/13645700310013187.
Full textVasin, Yu G., M. P. Osipov, A. A. Egorov, and Yu V. Yasakov. "Autonomous indoor 3D navigation." Pattern Recognition and Image Analysis 25, no. 3 (July 2015): 373–77. http://dx.doi.org/10.1134/s1054661815030256.
Full textHaigron, P., G. Le Berre, and J. L. Coatrieux. "3D navigation in medicine." IEEE Engineering in Medicine and Biology Magazine 15, no. 2 (1996): 70–78. http://dx.doi.org/10.1109/51.486721.
Full textBansal, Vijay Kumar. "A Road-Based 3D Navigation System in GIS: A Case Study of an Institute Campus." International Journal of Applied Geospatial Research 14, no. 1 (January 27, 2023): 1–20. http://dx.doi.org/10.4018/ijagr.316887.
Full textStateczny, Andrzej, Wioleta Błaszczak-Bąk, Anna Sobieraj-Żłobińska, Weronika Motyl, and Marta Wisniewska. "Methodology for Processing of 3D Multibeam Sonar Big Data for Comparative Navigation." Remote Sensing 11, no. 19 (September 26, 2019): 2245. http://dx.doi.org/10.3390/rs11192245.
Full textDissertations / Theses on the topic "3D Navigation"
TRINDADE, DANIEL RIBEIRO. "3D NAVIGATION TECHNIQUES USING THE CUBE MAP." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16322@1.
Full textA utilização de visualizadores 3D é algo cada vez mais comum em diversos ramos de atividades. O surgimento de novas tecnologias, com o resultante aumento do poder de processamento dos computadores atuais, tornou possível a criação de ambientes virtuais 3D maiores e mais ricos em detalhes. No entanto, a navegação em ambientes 3D, especialmente os ambientes multiescala, ainda é um problema para muitos usuários. O objetivo deste trabalho é propor soluções para alguns problemas de navegação 3D, a fim de melhorar a experiência de uso nesse tipo de aplicação. Nesse sentido, são apresentadas técnicas que permitem ajustar automaticamente a velocidade de navegação, os planos de corte e o ponto de centro de rotação. É proposta também uma solução para a detecção e tratamento de colisão entre a câmera e os modelos da cena, além de uma técnica que visa impedir que os usuários fiquem perdidos quando nenhum objeto da cena é visualizado. Essas soluções são baseadas na construção e manutenção de uma estrutura chamada de cubo de distâncias (cube map, no original em inglês), que fornece informações sobre a localização espacial dos pontos da cena em relação à câmera. Atualmente em desenvolvimento no Tecgraf/PUC-Rio, o SiVIEP (Sistema de Visualização Integrado de Exploração e Produção) é um visualizador voltado para profissionais da área de exploração e produção de petróleo, que serviu para a detecção e entendimento dos problemas mencionados e para a validação das soluções implementadas.
The use of 3D viewers is becoming common in several activities. The appearance of new technologies, with the resulting increase in processing power, made possible the creation of larger and richer 3D virtual environments. However, the navigation in 3D environments, especially the multiscale ones, is still a problem for many users. The goal of this work is to propose solutions to some 3D navigation problems in order to improve the user experience with this kind of application. In this sense, techniques to automatically adjust the navigation speed, the clipping planes and the rotation center are presented. It is also proposed a solution for the detection and treatment of collision between the camera and the scene, and a technique that aims to prevent users from getting lost when no scene object is visualized. These solutions are based on the construction and maintenance of a structure called cube map, which provides information about the spatial location of the scene points relative to the camera. Currently in development at Tecgraf/PUCRio, the SiVIEP (Integrated Visualization System for Exploration and Production) is a viewer aimed at professionals in the area of oil exploration and production that was used to detect and understand the mentioned problems, and also for validating the implemented solutions.
Diakov, Georgi. "Automated patient tracking for 3D-navigation with ultrasound." München AVM, 2010. http://d-nb.info/1000247910/04.
Full textSatanek, Brandon L. "The Effects of Multidimensional Navigational Aids and Individual Differences on WWW Hypertext Navigation." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36690.
Full textMaster of Science
Mütze, Maria. "Anwendungsbeobachtung computergestützter 3D-Navigation bei transiliosakraler Verschraubung hinterer Beckenringfrakturen." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-204727.
Full textThyagaraj, Suraj. "Dynamic System Analysis of 3D Ultrasonic Neuro-Navigation System." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1967797551&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textPersson, Andreas. "3D Scan-based Navigation using Multi-Level Surface Maps." Thesis, Örebro University, School of Science and Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-11211.
Full textThe field of research connected to mobile robot navigation is much broader than the scope of this thesis. Hence in this report, the navigation topic is narrowed down to primarily concerning mapping and scan matching techniques that were used to achieve the overall task of navigation nature. Where the work presented within this report is based on an existing robot platform with technique for providing 3D point-clouds, as result of 3D scanning, and functionality for planning for and following a path. In this thesis it is presented how a scan matching algorithm is used for securing the alignment between provided succession point-clouds. Since the computational time of nearest neighbour search is a commonly discussed aspect of scan matching, suggestions about techniques for decreasing the computational time are also presented within this report. With secured alignment, the challenge was within representing provided point-clouds by a map model. Provided point-clouds were of 3D character, thus a mapping technique is presented that provides rough 3D representations of the environment. A problem that arose with a 3D map representation was that given functionality for path planning required a 2D representation. This is addressed by translating the 3D map at a specific height level into a 2D map usable for path planning, where this report suggest a novel traversability analysis approach with the use of a tree structure.
Gorges, Sébastien. "Vers un système de navigation 3D en neuroradiologie interventionnelle." Phd thesis, Université Henri Poincaré - Nancy I, 2007. http://tel.archives-ouvertes.fr/tel-00165960.
Full textgeste thérapeutique. Cette machine permet l'acquisition d'une image 3D montrant les artères du patient (ou 3DXA). Cependant, le contrôle visuel du déploiement des
outils (guide, cathéter...) est effectué en 2D avec une image temps réel (ou fluoroscopie). Cette thèse a pour ambition de contribuer à l'amélioration des techniqu
es de guidage en proposant des outils permettant une utilisation de l?image 3D durant le traitement.
Les images étant acquises avec la même machine d'angiographie, nous avons consacré une partie de notre travail au développement de méthodes fiables de calibrage de
la chaîne image portée par l'arceau rotatif de la machine. Le but était de comprendre si l'arceau se déformait ou non sous l'influence de son poids.
Tirant parti du fait que les images sont acquises avec la même machine, nous avons ensuite proposé une méthode de recalage 3D2D entre l'image 3DXA et la fluorosc
opie. Cette méthode exploite les capteurs de position du système et incorpore les déformations subies par le système.
Suite à ces travaux, un système permettant la fusion de l'image 3DXA avec la fluoroscopie a été développé en collaboration avec GE Healthcare et évalué au CHU de Nanc
y pour le traitement des anévrismes cérébraux.
Enfin, un nouveau système doté de deux chaînes images (ou système bi-plan) a été installé à Nancy durant notre thèse. Après avoir développé une méthode de détection 2D du g
uide dans les images fluoroscopiques, nous avons initié une première étude de la reconstruction 3D du guide à partir des images bi-plan.
Jaillot, Vincent. "3D, temporal and documented cities : formalization, visualization and navigation." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE2026.
Full textThe study and understanding of cities evolution is an important societal issue, particularly for improving the quality of life in an increasingly dense city. Digital technology and in particular 3D city models can be part of the answer. Their manipulation is however sometimes complex due to their thematic, geometric, topological dimensions and hierarchical structure.In this thesis, we focus on the integration of the temporal dimension and in the enrichment with multimedia documents of these 3D models of the city, in an objective of visualization and navigation on the web. Moreover, we take a particular interest in interoperability (based on standards), reusability (with a shared software architecture and open source components) and reproducibility (to make our experiments durable).Our first contribution is a formalization of the temporal dimension of cities for interactive navigation and visualization on the web. For this, we propose a conceptual model of existing standards for the visualization of cities on the web, which we extend with a formalization of the temporal dimension. We also propose a logical model and a technical specification of these proposals.Our second contribution allows the integration of multimedia documents into city models for spatial, temporal and thematic visualization and navigation on the web. We propose a conceptual model for the integration of heterogeneous and multidimensional geospatial data. We then use it for the integration of multimedia documents and 3D city models.Finally, this thesis took place in a multidisciplinary context via the Fab-Pat project of the LabEx IMU, which focuses on cultural heritage sharing and shaping. In this framework, a contribution combining social sciences and computer science has allowed the design of DHAL, a methodology for the comparative analysis of devices for sharing heritage via digital technology. Dans cette thèse, nous nous intéressons à l'intégration de la dimension temporelle et à l'enrichissement avec des documents multimédia de ces modèles 3D de la ville, dans un objectif de visualisation et de navigation sur le web. Nous portons un intérêt particulier à l'intéropérabilité (en s'appuyant sur des standards), à la réutilisabilité (avec une architecture logicielle partagée et des composants open source) et à la reproductibilité (permettant de rendre nos expérimentations pérennes).Notre première contribution est une formalisation de la dimension temporelle des villes pour une navigation et visualisation interactive sur le web. Pour cela, nous proposons un modèle conceptuel des standards existants pour la visualisation de villes sur le web, que nous étendons avec une formalisation de la dimension temporelle. Nous proposons également un modèle logique et une spécification technique de ces propositions.Notre deuxième contribution permet d'intégrer des documents multimédias aux modèles de villes pour une visualisation et une navigation spatiale, temporelle et thématique sur le web. Nous proposons un modèle conceptuel pour l'intégration de données géospatiales hétérogènes et multidimensions. Nous l'utilisons ensuite pour l'intégration de documents multimédias et de modèles 3D de villes.Enfin, cette thèse s'est déroulée dans un contexte pluridisciplinaire via le projet Fab-Pat, du LabEx IMU, qui s'intéresse au partage de la fabrique du patrimoine. Dans ce cadre, une contribution mêlant sciences sociales et informatique a permis de concevoir DHAL, une méthodologie pour l’analyse comparative de dispositifs pour le partage du patrimoine via le numérique
Poppinga, Jann [Verfasser]. "Towards Autonomous Navigation for Robots with 3D Sensors / Jann Poppinga." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2010. http://d-nb.info/1035033577/34.
Full textCardoso, João Álvaro Couceiro. "3D manipulation and navigation methods with gestures for large displays." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/18575.
Full textO aumento da utilização de ecrãs públicos levou a necessidade de desenvolver novas formas de interação com este tipo de sistemas. A solução que foi considerada nesta dissertação recorreu a utilização de interfaces de utilizador baseadas em gestos, uma vez que não exigem que os utilizadores usem qualquer tipo de dispositivos para al em do seu próprio corpo. Esta dissertação continua o trabalho realizado anteriormente no âmbito do projecto DETI-Interact, que consiste num sistema interativo baseado num ecrã público instalado na entrada do Departamento de Eletrónica, Telecomunicações e Informática, para o qual foram desenvolvidas v arias aplicações que permitem interação com conte udos 2D e 3D através de um sensor Kinect. O principal objetivo deste trabalho foi o de melhorar esses métodos com os novos gestos disponíveis pela mais recente versão do Kinect SDK. Foram realizadas três experiencias com utilizadores para avaliar a usabilidade os métodos de interação propostos, proporcionando a oportunidade de melhorar os métodos existentes, levando a contribuição de um novo método para manipulação de objectos 3D.
The increasing usage public displays led to the necessity of new forms of interaction with this type of systems. The solution that was considered in this dissertation involved gesture-based interfaces, since they do not require users to carry or use any input device other than their own body. This dissertation continues and extends previous work on DETI-Interact, an interactive public display system located at the lobby of Department of Electronics, Telecommunications and Informatics, to which several applications have been developed allowing interactions with 2D and 3D contents using a Kinect sensor. The main objective of this work was to improve those methods and develop new ones using the new gestures provided by the latest version of the Kinect SDK. Three user studies were conducted to evaluate the usability of our proposed navigation and manipulation methods, leading to this dissertation main contribution of a novel method for the 3D object manipulation.
Books on the topic "3D Navigation"
Garg, Sumeet, and Christopher J. Kleck, eds. Navigation, Robotics and 3D Printing in Spine Surgery. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68678-8.
Full textIndonesia. Direktorat Jenderal Perhubungan Laut., ed. Implementation programme for procurement of special vessels for aids to navigation (F-ST-3d). [Jakarta]: Directorate General of Sea Communication, Ministry of Communications, 1989.
Find full textYan, Jinjin, and Sisi Zlatanova. Seamless 3D Navigation in Indoor and Outdoor Spaces. Taylor & Francis Group, 2022.
Find full textYan, Jinjin, and Sisi Zlatanova. Seamless 3D Navigation in Indoor and Outdoor Spaces. CRC Press LLC, 2022.
Find full textYan, Jinjin, and Sisi Zlatanova. Seamless 3D Navigation in Indoor and Outdoor Spaces. Taylor & Francis Group, 2022.
Find full textYan, Jinjin, and Sisi Zlatanova. Seamless 3D Navigation in Indoor and Outdoor Spaces. Taylor & Francis Group, 2022.
Find full textLagerungstechniken im Operationsbereich: Thorax- und Herzchirurgie - Gefäßchirurgie - Viszeral- und Transplantationschirurgie - Urologie - Wirbelsäulen- ... - Kinderchirurgie - Navigation/ISO-C 3D. Springer, 2004.
Find full textAschemann, Dirk, and Christian Krettek. Lagerungstechniken Im Operationsbereich: Thorax- und Herzchirurgie - Gefäßchirurgie - Viszeral- und Transplantationschirurgie - Urologie - Wirbelsäulen- und Extremitätenchirurgie - Arthroskopie - Kinderchirurgie - Navigation/ISO-C 3D. Springer London, Limited, 2005.
Find full textBook chapters on the topic "3D Navigation"
Thaden, Jeremy J., and Joseph F. Maalouf. "Echo-Navigation." In Practical 3D Echocardiography, 445–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72941-7_35.
Full textGavaghan, Kate A., and Matteo Fusaglia. "3D Projection-Based Navigation." In Computer-Assisted Musculoskeletal Surgery, 303–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12943-3_21.
Full textBlackman, Sue. "Navigation and Functionality." In Beginning 3D Game Development with Unity, 181–250. Berkeley, CA: Apress, 2011. http://dx.doi.org/10.1007/978-1-4302-3423-4_5.
Full textBlackman, Sue. "Navigation and Functionality." In Beginning 3D Game Development with Unity 4:, 139–88. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-4900-9_5.
Full textAdams, Ludwig, Joachim M. Gilsbach, Werner Krybus, Dietrich Meyer-Ebrecht, Ralph Mösges, and Georg Schlöndorff. "CAS — a Navigation Support for Surgery." In 3D Imaging in Medicine, 411–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84211-5_26.
Full textGaray, Mariano, and Mark A. Erickson. "Robotic Navigation: Planning." In Navigation, Robotics and 3D Printing in Spine Surgery, 113–22. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68678-8_9.
Full textPazionis, Theresa J. C., James Suk, and Jeffrey L. Gum. "Robotic Navigation: Instrumentation." In Navigation, Robotics and 3D Printing in Spine Surgery, 123–44. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68678-8_10.
Full textBayro-Corrochano, Eduardo. "3D Maps, Navigation, and Relocalization." In Geometric Computing, 533–55. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-929-9_21.
Full textYan, Jinjin, and Sisi Zlatanova. "Reconstruction of 3D Navigation Spaces." In Seamless 3D Navigation in Indoor and Outdoor Spaces, 87–114. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003281146-6.
Full textLiu, Jixian, and Xinyu Luan. "RS8a Segmentectomy by 3D Navigation." In Segmentectomy for Early-Stage Lung Cancer, 101–6. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0143-2_14.
Full textConference papers on the topic "3D Navigation"
Chen, Ming-Yi, I.-Cheng Chang, Jin-Wei Chen, Bing-Hua Yang, and Cun-Fang Wun. "An Immersive 3D Navigation System Using 3D Gaussian Splatting." In 2024 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 735–36. IEEE, 2024. http://dx.doi.org/10.1109/icce-taiwan62264.2024.10674556.
Full textMcCrae, James, Igor Mordatch, Michael Glueck, and Azam Khan. "Multiscale 3D navigation." In the 2009 symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1507149.1507151.
Full textTan, Desney S., George G. Robertson, and Mary Czerwinski. "Exploring 3D navigation." In the SIGCHI conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/365024.365307.
Full textFitzmaurice, George, Justin Matejka, Igor Mordatch, Azam Khan, and Gordon Kurtenbach. "Safe 3D navigation." In the 2008 symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1342250.1342252.
Full textSingh, Shawn, Mubbasir Kapadia, Glenn Reinman, and Petros Faloutsos. "Footstep navigation for dynamic crowds." In Symposium on Interactive 3D Graphics and Games. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1944745.1944783.
Full textLi, Yanbo, Haihong Yun, Jing Zhang, Hailing Wang, and Jun Ni. "3D Virtual Bronchoscopy Navigation System." In 2013 Seventh International Conference on Internet Computing for Engineering and Science (ICICSE). IEEE, 2013. http://dx.doi.org/10.1109/icicse.2013.26.
Full textMcClymont, Joshua, Dmitri Shuralyov, and Wolfgang Stuerzlinger. "Comparison of 3D navigation interfaces." In 2011 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems (VECIMS). IEEE, 2011. http://dx.doi.org/10.1109/vecims.2011.6053842.
Full textGalvan, Alain, Francisco Ortega, and Naphtali Rishe. "Procedural celestial rendering for 3D navigation." In 2017 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 2017. http://dx.doi.org/10.1109/3dui.2017.7893346.
Full textArgelaguet, Ferran. "Adaptive navigation for virtual environments." In 2014 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 2014. http://dx.doi.org/10.1109/3dui.2014.7027325.
Full textSasiadek, Jerzy, Ignacy Duleba, Jerzy Sasiadek, and Ignacy Duleba. "3D local trajectory planner." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3555.
Full textReports on the topic "3D Navigation"
Mekonnen, Bisrat, Benjamin Christie, Michael Paquette, and Garry Glaspell. 3D mapping and navigation using MOVEit. Engineer Research and Development Center (U.S.), June 2023. http://dx.doi.org/10.21079/11681/47179.
Full textKelly, Alonzo. A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous Vehicles. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada282853.
Full textEnnasr, Osama, Michael Paquette, and Garry Glaspell. UGV SLAM payload for low-visibility environments. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47589.
Full textEnnasr, Osama, Brandon Dodd, Michael Paquette, Charles Ellison, and Garry Glaspell. Low size, weight, power, and cost (SWaP-C) payload for autonomous navigation and mapping on an unmanned ground vehicle. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47683.
Full textEnnasr, Osama, Charles Ellison, Anton Netchaev, Ahmet Soylemezoglu, and Garry Glaspell. Unmanned ground vehicle (UGV) path planning in 2.5D and 3D. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47459.
Full textBallentine, Mark, Alan Kennedy, Nicholas Melby, Andrew McQueen, Christopher Griggs, and Ashley Kimble. Approach for on-site, on-demand contaminant-removal devices enabled by low-cost 3D printing. Engineer Research and Development Center (U.S.), March 2024. http://dx.doi.org/10.21079/11681/48353.
Full textShukla, Indu, Rajeev Agrawal, Kelly Ervin, and Jonathan Boone. AI on digital twin of facility captured by reality scans. Engineer Research and Development Center (U.S.), November 2023. http://dx.doi.org/10.21079/11681/47850.
Full textSemerikov, Serhiy O., Mykhailo M. Mintii, and Iryna S. Mintii. Review of the course "Development of Virtual and Augmented Reality Software" for STEM teachers: implementation results and improvement potentials. [б. в.], 2021. http://dx.doi.org/10.31812/123456789/4591.
Full textBurks, Thomas F., Victor Alchanatis, and Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, October 2009. http://dx.doi.org/10.32747/2009.7591739.bard.
Full textCoastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.
Full text