Academic literature on the topic '3D printing technologies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D printing technologies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3D printing technologies"
Lisich, Mihail, R. Belinchenko, and A. Shkilniy. "Technologies 3D printing." Актуальные направления научных исследований XXI века: теория и практика 2, no. 4 (November 4, 2014): 215–19. http://dx.doi.org/10.12737/6147.
Full textMody, BharatM. "Disruptive Technologies: 3D Printing." Journal of Indian Academy of Oral Medicine and Radiology 33, no. 4 (2021): 350. http://dx.doi.org/10.4103/jiaomr.jiaomr_326_21.
Full textChoi, Jae-Won, and Ho-Chan Kim. "3D Printing Technologies - A Review." Journal of the Korean Society of Manufacturing Process Engineers 14, no. 3 (June 30, 2015): 1–8. http://dx.doi.org/10.14775/ksmpe.2015.14.3.001.
Full textKolitsky, Michael A. "Reshaping teaching and learning with 3D printing technologies." e-mentor 2014, no. 56 (4) (October 24, 2014): 84–94. http://dx.doi.org/10.15219/em56.1130.
Full textDizon, John Ryan Cortez, Arnaldo D. Valino, Lucio R. Souza, Alejandro H. Espera, Qiyi Chen, and Rigoberto C. Advincula. "3D Printed Injection Molds Using Various 3D Printing Technologies." Materials Science Forum 1005 (August 2020): 150–56. http://dx.doi.org/10.4028/www.scientific.net/msf.1005.150.
Full textMondal, Kunal, and Prabhat Kumar Tripathy. "Preparation of Smart Materials by Additive Manufacturing Technologies: A Review." Materials 14, no. 21 (October 27, 2021): 6442. http://dx.doi.org/10.3390/ma14216442.
Full textS, Hussain. "Overview of 3D Printing Technology." Bioequivalence & Bioavailability International Journal 5, no. 1 (2021): 1–3. http://dx.doi.org/10.23880/beba-16000149.
Full textAmbrosi, Adriano, and Martin Pumera. "3D-printing technologies for electrochemical applications." Chemical Society Reviews 45, no. 10 (2016): 2740–55. http://dx.doi.org/10.1039/c5cs00714c.
Full textKoizumi, Yuichiro, Akihiko Chiba, Naoyuki Nomura, and Takayoshi Nakano. "Fundamentals of Metal 3D Printing Technologies." Materia Japan 56, no. 12 (2017): 686–90. http://dx.doi.org/10.2320/materia.56.686.
Full textKim, Meeri. "Biomedical applications of 3D printing technologies." Scilight 2018, no. 51 (December 17, 2018): 510003. http://dx.doi.org/10.1063/1.5085639.
Full textDissertations / Theses on the topic "3D printing technologies"
Blakeway, Adam M. "Experiments with 3D printing technologies in masonry construction." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/103493.
Full textCataloged from PDF version of thesis. "June 2014."
Includes bibliographical references (page 34).
Modern masonry construction finds itself in a cyclical pattern of "more of the same," insisting on standardized, basic designs consisting of little more than uniform stones laid in regular courses, which do little to add to the variability of the modem world. While these forms attain a surety in structural stability, they offer little in the form of variable aesthetics. 3D-printing, consistently hailed as one of the most promising developments of the 21 " century, allowing individuals from every walk of life to create and produce in real time, has, contrarily, failed to grasp our greater aspirations in the field of Architecture. Most attempts at the incorporation of 3D-printing technology in Architecture have simply been to scale the technologies to print larger and larger objects, eventually working up to entire buildings. While these efforts are beneficial in some ways, they consist of numerous drawbacks which make these types of strategies ultimately implausible, at least for the moment. Modern construction, once thought to be secure in its standards of structure and implementation, is now being challenged to develop designs far more elaborate than their "glass tower" counterparts by pushing the boundaries of what architectural moves are possible. The long held beliefs that stone must be orthogonal and uniform to be utilized in large-scale construction projects are being revamped in the wake of the 3D printing boom. This thesis seeks to find a synthesis between these two methods of modern construction, unifying the versatility and variability of 3D-printing and the stability and natural aesthetic of masonry, to create viable and aesthetically appealing architectural forms for the 2 1st century.
by Adam M. Blakeway.
S.B.
Zítka, Lukáš. "Inovace 3D tiskárny typu Rep Rap." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319860.
Full textOvchar, Mark. "Modern technologies in building." Thesis, Дніпропетровський національний університет залізничного транспорту ім. академіка В. Лазаряна, 2017. https://er.knutd.edu.ua/handle/123456789/9332.
Full textСтаття є аналізом розвитку технологій, що використовуються в будівництві. Це короткий ретроспективний огляд досягнень в цій області: від великої піраміди Гізи до використання 3D-принтерів для створення будівельних матеріалів.
Статья представляет собой анализ развития технологий, используемых в строительстве. Это короткий ретроспективный обзор достижений в этой области: от великой пирамиды Гизы до использования 3D-принтеров для создания строительных материалов.
Dimitrov, D., Beer N. De, and T. Centner. "Product and process innovations by means of rapid technologies." Journal for New Generation Sciences, Vol 4, Issue 1: Central University of Technology, Free State, Bloemfontein, 2006. http://hdl.handle.net/11462/487.
Full textOver the past few years, methods of layered manufacturing (LM) have advanced substantially to the point where they now provide vital strategic benefits to various organisations. One area of application where LM technologies have begun to reach a critical mass is in the development and production of high-performance tooling in different forming processes. With these tooling capabilities now available, the next challenge becomes the development of optimal process chains to minimise lead times and production costs, while still ensuring high quality of castings. The relevant issues that influence where a break-even point will be between different process chains and thereby also the point of selection between such optimal process chains according to different situations include among others:
- the size of production runs,
- part size and complexity, and
- the cast materials involved.
This paper reflects some of the experiences gained from an investigation towards developing a set of generic rules (guidelines) for the design of optimal process chains for sand casting prototypes of automotive components using LM methods, and more specifically the 3D Printing process.
Смирнов, Василь Анатолійович, Василий Анатольевич Смирнов, Vasyl Anatoliiovych Smyrnov, D. O. Varukha, Іван Володимирович Павленко, Иван Владимирович Павленко, Ivan Volodymyrovych Pavlenko, Олександр Олександрович Ляпощенко, Александр Александрович Ляпощенко, and Oleksandr Oleksandrovych Liaposhchenko. "Implementation of additive technologies for the complex development of buildings and structures by means of 3D printing." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/66719.
Full textGuerra, Sánchez Antonio. "Contribution to bioabsorbable stent manufacture with additive manufacturing technologies." Doctoral thesis, Universitat de Girona, 2019. http://hdl.handle.net/10803/667867.
Full textLa principal motivació d'aquest treball va ser analitzar la viabilitat del procés de fabricació de stent actual per produir els nous stents bioabsorbibles (SBA), així com estudiar noves maneres de fabricar-los. El tall làser de fibra (TLF) ha estat seleccionat perquè és el procés de fabricació actual per stents i L´impressió 3D (I3D) perquè té la capacitat de processar diferents tipus de materials per a aplicacions mèdiques i els seus aspectes econòmics. Stents ha estat seleccionat per ser un dels dispositius mèdics més implantats del món. La tesi es centra en la millora dels processos de fabricació de stent, establint relacions entre els paràmetres del procés i els aspectes clau de stent, precisió, propietats mecàniques i propietats mèdiques i reduir els costos derivats d'aquest procés de fabricació
McAllister, Walter Elliot. "A Critical Review of Multi-Phase Materials and Optimization Strategies for Additive Printing Technologies." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76789.
Full textMaster of Science
De, Beer Neal. "An investigation towards developing capability profiles of rapid prototyping technologies with a focus on 3D-printing." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53724.
Full textENGLISH ABSTRACT: Rapid prototyping (RP) technologies have expanded vastly over recent years. With the advent of new materials along with new processes, each technology has been contributing to the diversities in different fields of application for the growing technologies. In the course of improvement, it is however critical to understand exactly what the capability of each individual technology is in order to compare future improvements, or even to compare current processes and technologies. The objective of this research has been to develop capability profiles of prominent RP technologies: 3D-Printing (3DP), Selective Laser Sintering (SLS), and Laminated Object Manufacturing (LOM) - in which different characteristics of each technology are measured and quantified. A capability profile may be regarded as a set of building blocks that give a representation of the RP technology's ability and is defined by quantifying the following characteristics: Accuracy (both dimensional- and geometrical accuracy) Surface finish measures Strength and elongation Build time, and Cost The significance behind developing capability profiles lies in the need to more accurately describe and compare each of the different processes - especially Z Corporation's 3DP, since although this process is regarded as very capable in many areas, little has been published to substantiate this opinion. When users of these technologies are pushing the limits of their machines, it becomes critical to know exactly what these boundaries are in order to know with some measure of certainty that they will be able to fulfil a certain customer demand or expectation. For South Africa in particular, the industry's growing interest in rapid prototyping is triggering inevitable questions as to whether a certain RP technology can produce the desired solutions to their problems. The South African industry's growing awareness about rapid prototyping is opening new doors for better solutions to new and existing problems - but ultimately, before investing money, customers want to know if RP is going to meet the standards needed to solve their solutions. On a more general level, this study can also be seen to bear significance in contributing to research in what has become known as rapid manufacturing (RM). This term is defined as the manufacture of end-use products using additive manufacturing techniques. RM must guarantee long-term consistent component use for the entire product life cycle or for a defined minimal period for wearing parts [1]. However, before it is possible to guarantee long-term consistency of components, one must first ensure consistency of the process. Once a process is consistent, the next question becomes: What is it capable of doing consistently? This study aims to answer this question for the three processes (3DP, SLS and LOM) mentioned earlier. In doing so, this study and its development of capability profiles, seeks to contribute and be of value in both academic circles as well as for industry partners and system manufacturers.
AFRIKAANSE OPSOMMING: Snelle Prototipering (SP) tegnologieë het die afgelope jare ongelooflike groei ondervind. Met die ontwikkeling van nuwe materiale tesame met nuwe prosesse, het elke tegnologie bygedra tot 'n diversiteit in moontlike toepassings vir 'n verskeidenheid van velde. Met 'n mikpunt van aaneenlopende verbetering, is dit egter krities om te verstaan presies wat elke individuele tegnologie se vermoëns is. Dit maak dit dan moontlik om toekomstige verbeteringe te vergelyk, of om selfs huidige prosesse met mekaar te vergelyk. Die doel van hierdie navorsing was om vermoënsprofiele van prominente SP tegnologieë te ontwikkel: 3D-Printing (3DP), Selective Laser Sintering (SLS) en Laminated Object Manufacturing (LOM) - waarin verskillende karaktereienskappe van elke tegnologie gemeet en gekwantifiseer word. 'n Vermoënsprofiel mag beskou word as 'n stel boustene wat 'n weerspieëling gee van die SP tegnologie se vermoë en word gedefinieer deur die kwantifisering van die volgende karaktereienskappe: Akkuraatheid (beide dimensionele- en geometriese akkuraatheid) Oppervlakgehalte metings Treksterktes en verlengings Bou- of vervaardigingstye, en Kostes Die rede waarom dit belangrik is om vermoënsprofiele te ontwikkel berus by die behoefte om die verskillende prosesse met meer akkuraatheid te beskryf en te vergelyk - veral Z Corporation se 3DP. Alhoewel hierdie proses algemeen beskou word as baie bevoeg in vele areas, is min informasie al gepubliseer om hierdie opinie te ondersteun. Wanneer gebruikers van hierdie tegnologieë hul masjiene tot die limiete druk, begin dit krities raak om presies te weet wat daardie grense is, sodat hulle met 'n sekere mate van sekerheid sal kan sê of hulle sal kan voldoen aan kliënte se behoeftes of verwagtinge. Die Suid-Afrikaanse industrie se belangstelling in SP tegnologieë begin al hoe meer groei, en daarmee saam, begin vrae ontstaan tot watter mate snelle prototipering wel werkbare oplossings kan produseer vir hul probleme. Hierdie groeiende bewustheid van die Suid-Afrikaanse industrie begin dus ook nou nuwe paaie openbaar vir beide nuwe en ou probleme - maar uiteindelik, voordat kliënte egter bereid sal wees om geld te belê, sal hulle wil weet of snelle prototipering die standaarde gaan behaal wat nodig sal wees om juis hierdie oplossings te verwesenlik. Op 'n meer breë vlak, beoog hierdie studie om ook 'n bydrae te maak in die groeiende navorsingsveld van snelle vervaardiging (SV). Hierdie is 'n term wat gedefinieer word as die vervaardiging van endgebruiker produkte, met die benutting van byvoegings-vervaardigings tegnieke. SV moet versekering bied vir komponente se werkverrigting op die lange duur vir die hele produk se lewenssiklus, of ten minste vir 'n gedefinieerde minimale tydperk in die geval van slytasie-parte [1]. Maar voordat dit moontlik sal wees om hierdie versekering te bied, moet mens eers die versekering kan bied van 'n proses se werkverrigting. Wanneer die prosesse betroubaar en deurlopende resultate lewer, word die volgende logiese vraag gestel: Wat presies, is hierdie proses in staat om betroubaar te lewer? Hierdie studie beoog om juis hierdie vraag te beantwoord vir die drie prosesse (3DP, SLS en LOM) wat vroeër genoem is. Dienooreenkomstig, met die ontwikkeling van vermoënsprofiele van hierdie prosesse, behoort hierdie studie van waarde te wees vir beide akademici, sowel as industrie-lede en vervaardigers van SP tegnologieë.
Radtke, Carsten [Verfasser], and J. [Akademischer Betreuer] Hubbuch. "Implementation of Novel Technologies in HTPD - (Bio-) 3D-Printing and Microfluidics / Carsten Philipp Radtke ; Betreuer: J. Hubbuch." Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1199352322/34.
Full textHeimonen, Johanna. "Synthesis of a polar conjugated polythiophene for 3D-printing of complex coacervates." Thesis, Linköpings universitet, Laboratoriet för organisk elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177396.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Books on the topic "3D printing technologies"
Kumar, L. Jyothish, Pulak M. Pandey, and David Ian Wimpenny, eds. 3D Printing and Additive Manufacturing Technologies. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0305-0.
Full textWimpenny, David Ian, Pulak M. Pandey, and L. Jyothish Kumar, eds. Advances in 3D Printing & Additive Manufacturing Technologies. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-0812-2.
Full textWimpenny, David Ian, L. Jyothish Kumar, and Pulak M. Pandey. 3D Printing and Additive Manufacturing Technologies. Springer, 2018.
Find full textWimpenny, David Ian, L. Jyothish Kumar, and Pulak M. Pandey. Advances in 3D Printing & Additive Manufacturing Technologies. Springer, 2016.
Find full textWimpenny, David Ian, L. Jyothish Kumar, and Pulak M. Pandey. Advances in 3D Printing & Additive Manufacturing Technologies. Springer, 2016.
Find full textWimpenny, David Ian, L. Jyothish Kumar, and Pulak M. Pandey. Advances in 3D Printing & Additive Manufacturing Technologies. Springer, 2018.
Find full textDasgupta, Nandita, Shivendu Ranjan, Vineeta Singh, Bhartendu Nath Mishra, and Venkatesh Dutta. 3D Printing in Biotechnology: Current Technologies and Applications. Elsevier, 2021.
Find full textSegal, David. Disruptive Technologies. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198804079.003.0009.
Full textBook chapters on the topic "3D printing technologies"
Mitsouras, Dimitrios, and Peter C. Liacouras. "3D Printing Technologies." In 3D Printing in Medicine, 5–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61924-8_2.
Full textHorvath, Joan, and Rich Cameron. "Selecting a Printer: Comparing Technologies." In Mastering 3D Printing, 93–121. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5842-2_4.
Full textPant, Rajesh, Pankaj Negi, Jasmeet Kalra, and Sandeep Tiwari. "3D Printing Procedures." In Emerging Technologies in Computing, 171–90. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003121466-9.
Full textAbbel, Robert, and Erwin R. Meinders. "Printing Technologies for Nanomaterials." In Nanomaterials for 2D and 3D Printing, 1–26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527685790.ch1.
Full textSingh, Harmanpreet, and Rasleen Kour. "Commercial Market of Food Printing Technologies." In Food Printing: 3D Printing in Food Industry, 155–72. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9_9.
Full textPerrot, Arnaud, and Sofiane Amziane. "3D Printing in Concrete: General Considerations and Technologies." In 3D Printing of Concrete, 1–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119610755.ch1.
Full textMadla, Christine M., Sarah J. Trenfield, Alvaro Goyanes, Simon Gaisford, and Abdul W. Basit. "3D Printing Technologies, Implementation and Regulation: An Overview." In 3D Printing of Pharmaceuticals, 21–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90755-0_2.
Full textShacham-Diamand, Yosi, Yelena Sverdlov, Stav Friedberg, and Avi Yaverboim. "Electroless Plating and Printing Technologies." In Nanomaterials for 2D and 3D Printing, 51–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527685790.ch3.
Full textReza Rezaie, Hamid, Mohammadhossein Esnaashary, Abolfazl Aref arjmand, and Andreas Öchsner. "3D Printing Technologies for Drug Delivery." In A Review of Biomaterials and Their Applications in Drug Delivery, 53–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-0503-9_6.
Full textDurand, Yves, Martine Lutz, and Florence Montredon. "Advanced Manufacturing Technologies and 3D Printing." In Handbook of Satellite Applications, 1–18. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6423-5_105-1.
Full textConference papers on the topic "3D printing technologies"
Lin, Weibin, and Qingjin Peng. "3D Printing Technologies for Tissue Engineering." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34408.
Full textKamble, Pratik S., Suchitra A Khoje, and Jyoti A Lele. "Recent Developments in 3D Printing Technologies: Review." In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2018. http://dx.doi.org/10.1109/iccons.2018.8662981.
Full textAnastasiou, Athanasios, Charalambos Tsirmpas, Alexandros Rompas, Kostas Giokas, and Dimitris Koutsouris. "3D printing: Basic concepts mathematics and technologies." In 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2013. http://dx.doi.org/10.1109/bibe.2013.6701672.
Full textVlkova, Iva, and Jiří Hajnyš. "3D PRINTING AND ADDITIVE TECHNOLOGIES IN EDUCATION." In 13th International Technology, Education and Development Conference. IATED, 2019. http://dx.doi.org/10.21125/inted.2019.0299.
Full textNtousia, Margarita, and Ioannis Fudos. "3D Printing Technologies & Applications: An Overview." In CAD'19. CAD Solutions LLC, 2019. http://dx.doi.org/10.14733/cadconfp.2019.243-248.
Full textNematollahi, Behzad, Ming Xia, and Jay Sanjayan. "Current Progress of 3D Concrete Printing Technologies." In 34th International Symposium on Automation and Robotics in Construction. Tribun EU, s.r.o., Brno, 2017. http://dx.doi.org/10.22260/isarc2017/0035.
Full textGayler, Thomas David, Corina Sas, and Vaiva Kalnikaitē. "User Perceptions of 3D Food Printing Technologies." In CHI '18: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3170427.3188529.
Full textBiswash, Rahul, Mayank Sehdev, and Gurmeet Singh. "6 dimensional 3D printing." In 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). IEEE, 2017. http://dx.doi.org/10.1109/ic3tsn.2017.8284505.
Full textStefanovych, Oleh, Kateryna Kuznetsova, Yuriy Tarasenko, and Olexandr Polins'ky. "Steganography hiding of information using 3D-printing technologies." In 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). IEEE, 2018. http://dx.doi.org/10.1109/ukrmico43733.2018.9047559.
Full textPeng, Gang-Ding. "Silica Optical Fibres based on 3D Printing Technologies." In Optoelectronics and Communications Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oecc.2021.s3c.1.
Full textReports on the topic "3D printing technologies"
Chen, Maggie, and Christian Volpe Martincus. Digital Technologies and Globalization: A Survey of Research and Policy Applications. Inter-American Development Bank, March 2022. http://dx.doi.org/10.18235/0004117.
Full textSlattery, Kevin. Unsettled Aspects of Insourcing and Outsourcing Additive Manufacturing. SAE International, October 2021. http://dx.doi.org/10.4271/epr2021023.
Full textShort, Samuel, Bernhard Strauss, and Pantea Lotfian. Emerging technologies that will impact on the UK Food System. Food Standards Agency, June 2021. http://dx.doi.org/10.46756/sci.fsa.srf852.
Full textSlattery, Kevin, and Eliana Fu. Unsettled Issues in Additive Manufacturing and Improved Sustainability in the Mobility Industry. SAE International, July 2021. http://dx.doi.org/10.4271/epr2021015.
Full textSlattery, Kevin. Unsettled Topics on the Benefit of Additive Manufacturing for Production at the Point of Use in the Mobility Industry. SAE International, February 2021. http://dx.doi.org/10.4271/epr2021006.
Full text