Academic literature on the topic '3D-Scanner'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D-Scanner.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "3D-Scanner"

1

Wu, Zhouyi, Chao Han, Changhuei Yang, and Jiangtao Huangfu. "3D imaging scanner." Applied Optics 57, no. 19 (June 28, 2018): 5399. http://dx.doi.org/10.1364/ao.57.005399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Toranzo, V., L. Zini, and A. Busso. "Desarrollo de un scanner 3D." Extensionismo, Innovación y Transferencia Tecnológica 3 (March 2, 2016): 129. http://dx.doi.org/10.30972/eitt.303001.

Full text
Abstract:
<p>En el presente trabajo se muestra un primer prototipo de un escáner 3D detallando su construcción mecánica, los circuitos electrónicos que lo componen y la programación asociada a su funcionamiento. Para el mismo se utilizaron componentes de fácil adquisición y programas de desarrolló del tipo libre. Como resultado se llegó a un modelo tridimensional numérico de objetos físicos pudiéndose recomponer este objeto mediante una impresora 3D, mostrando de esta forma su utilidad y precisión alcanzada.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

YOKOTA, KAZUO. "Whole Body 3D Digitizer (Scanner)." Sen'i Gakkaishi 54, no. 6 (1998): P223—P226. http://dx.doi.org/10.2115/fiber.54.6_p223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karbowski, Krzysztof, Marek Szczybura, and Witold Sujka. "3D scanner for medical applications." Mechanik, no. 12 (December 2016): 1904–5. http://dx.doi.org/10.17814/mechanik.2016.12.545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Capineri, L., L. Masotti, and S. Rocchi. "A 3D airborne ultrasound scanner." Measurement Science and Technology 9, no. 6 (June 1, 1998): 967–75. http://dx.doi.org/10.1088/0957-0233/9/6/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bubaker-Isheil, Halima, François Hennebelle, and Jean-François Fontaine. "Simple Large Scale 3D scanner." Procedia CIRP 88 (2020): 539–42. http://dx.doi.org/10.1016/j.procir.2020.05.093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baksa, Sarajko, Ines Baksa, and Budimir Mijović. "3D scanner application in the function of digital foot antropometry (FootSABA 3D Foot Scanner)." Koža & obuća 68, no. 2 (2019): 25–29. http://dx.doi.org/10.34187/ko.68.2.5.

Full text
Abstract:
The personalization of footwear in terms of dimension and shape is of the utmost importance and is nowadays considered vitally important by interdisciplinary professions (medical, footwear, ergonomics ...), since inadequately manufactured footwear inevitably results in unwanted pathological conditions of the feet.The aim of this study is to scientifically determine the application of automated 3D digitization of spatial anthropometric foot measurement in relation to the frequency of incorrectly selected footwear based on traditional methods of measurement and selection.Among the examined individuals, both male and female, it was found that more than two thirds of people wear footwear that ergonomically does not fit the basic anthropometric footwear measurements, both in width and length of their feet.There is medical evidence that wearing inappropriate footwear is closely related to pain and wounds on the feet, and that prolonged wearing leads to pathological changes of the feet, such as foot and toe deformation.In the scope of taking measures, traditional methods of determining foot morphology are not sufficient to accurately define the shape and size, in contrast to the modern approach of using 3D scanners and digital methods of measuring virtual 3D models, which enable a very accurate and quick personalization of a large amount of anthropometric data concerning foot morphology.
APA, Harvard, Vancouver, ISO, and other styles
8

Rudy, Rudy, Agustinus Purna Irawan, and Didi Widya Utama. "RANCANG BANGUN ALAT BANTU 3D SCANNER." POROS 14, no. 1 (September 8, 2017): 1. http://dx.doi.org/10.24912/poros.v14i1.826.

Full text
Abstract:
Abstrak: 3D scanner adalah alat Pemindai yang digunakan untuk mengscan benda kerja. 3D scanner pada umumnya digunakan dengan tangan manusia tanpa ada alat bantu. Dalam perancang akan membuat atau merancang Alat Bantu 3D scanner. Alat bantu ini berfungsi untuk mengurangi getaran dan jarak yang selalu konsisten untuk mendapatkan hasil gambar yang maksimal. Dalam perancangan ini bertujuan untuk menghasilkan desain dan gambar kerja konstruksi alat bantu yang kuat, kokoh, aman, dan efisien. Mendapatkan hasil uji 3D scanner. Mendapatkan hasil kerja dari alat yang dibuat apakah berfungsi secara optimun atau tidak. Tiga rumusan masalah diajukan dan berhubungan dengan ketiga tujuan perancangan. Proses perancangan alat bantu 3D scanner dilakukan dengan tahapan yaitu perencanaan dan penjelasan tugas/fungsi, perencanaan konsep produk(gambar kerja). Analisis teknik hanya pada kontruksi rangka. Perancangan alat bantu 3D scanner menghasilkan gambar hasil yang optimum, dengan spesifikasi ukuran panjang 600-1500, lebar 500 dan tinggi 1800 mm. Kapasitas benda yang digunakan hanya bisa pada ukuran terbesar 800x800x800 mm. Kontruksi rangka terbuat dari Baja dengan bahan SS41 dan plat Baja dengan tebal 6mm dan 4 mm.
APA, Harvard, Vancouver, ISO, and other styles
9

Mendricky, Radomir, and Jiri Sobotka. "Accuracy Comparison of the Optical 3D Scanner and CT Scanner." Manufacturing Technology 20, no. 6 (December 23, 2020): 791–801. http://dx.doi.org/10.21062/mft.2020.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Armansyah, Arif, Syarif Hidayatulloh, and Asti Herliana. "Perancangan dan Pembuatan Alat Scanner 3D Menggunakan Sensor Kinect Xbox 360." Jurnal Informatika 5, no. 1 (April 19, 2018): 128–36. http://dx.doi.org/10.31311/ji.v5i1.2443.

Full text
Abstract:
Abstrak Scanner 3D adalah teknologi yang digunakan untuk memindai objek nyata untuk mendapatkan bentuk, ukuran dan fitur lainnya agar menghasilkan gambar yang sangat akurat. Dalam perancangan alat scanner 3D sebelumnya, yaitu scanner 3D menggunakan sensor ultrasonik, infra merah, dan line laser. Maka dapat disimpulkan terdapat beberapa kekurangan yaitu masih terbatasnya objek yang di scan serta hasil scan yang belum akurat karena hanya menghasilkan garis-garis yang membentuk objek. Pada penelitian ini, penulis membuat scanner 3D dengan hasil akurasi yang tinggi. Scanner 3D yang dibuat adalah menggunakan sensor Kinect xbox 360. Cara kerja dari kinect yaitu dengan menggabungkan antara beberapa kamera, Color Cimos (VNA38209015) kamera ini berfungsi membantu dalam pengenalan objek dan fitur deteksi lainnya, serta kamera IR CMOS (VCA379C7130), dan IR Projector (OG12) yaitu sebagai depth sensor atau sensor kedalaman yang merupakan sebuah proyektor infrared dan sebuah sensor monochrome CMOS yang bekerja secara bersama-sama untuk melihat ruangan atau area dalam bentuk 3D tanpa memperdulikan kondisi cahaya. Untuk mengolah serta menampilkan hasil dari objek yang sudah di scan menggunakan aplikasi KScan3D. Kemudian untuk koneksi antara PC dengan media penggerak menggunakan Bluetooth HC-06. Setelah dilakukan pengujian didapatkan model gambar 3D dengan dengan hasil akurasi yang cukup tinggi. Kata Kunci: Bluetooth HC-06, Infra Merah, Line Laser, Kinect, KScan3D, Scanner 3D, Ultrasonik Abstract Scanner 3D is the technology used to scan real objects to get the form, size and other features in order to produce pictures that are very accurate. In the design of the appliance scanner 3D previously, namely scanner 3D using the ultrasonic sensor, infrared and laser line. It can be concluded there are some disadvantages that is still limited objects in the scan and the scans are not accurate because only produces lines that formed the object. In this research, author make scanner 3D with high accuracy results. Scanner 3D is made using the XBOX 360 Kinect sensor. How to work from kinect namely with combining between some camera, Color Cimos (VNA38209015) this camera work help in the introduction of objects and other detection feature and IR camera CMOS (VCA379C7130), and IR Projector (OG12) as depth censorship or the depth sensor is a projector infrared and a monochrome sensor CMOS working together to see the room or area in the form of 3D without neglecting the light conditions. To process and display the results from the object that is already in the scan using KScan3D application Then to the connection between the PC with media drives using Bluetooth HC-06. After the test is done obtained the model picture 3D with the results of the accuracy high enough. Key Word: Bluetooth HC-06, Infra Merah , Line Laser, Kinect, KScan3D, Scanner 3D, Ultrasonik
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "3D-Scanner"

1

Ramsay, Robert. "A Hardware Based 3D Room Scanner." Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1240.

Full text
Abstract:
This thesis describes a project to create a hardware based 3D interior scanner. This was based on a previous project that created a scanner optimised for interior conditions, using structured light triangulation. The original project referred to as the Mark-I scanner, performed its control and processing on a PC and the primary goal of this project was to re-implement this system using hardware, making the scanner more portable and simpler to use. The Mark-I system required a specialised camera which had an unusually high noise associated with it, so a secondary goal was to investigate whether this camera could be replaced with a superior model or this noise corrected. A Mark-II scanner system was created using FPGA processing and control implemented in the VHDL language. This read from a CMOS camera, controlled the system's motor and laser, generated 3D points and communicated with users. A suitable camera was not found and the Mark-I scanners camera was found to have been damaged and become unusable, so a simulation environment was constructed that simulated the operation of the scanner, created 3D images for it to process, and tested its results. Chapter 1 of this thesis outlines the goals of this pro ject and describes the Mark-I system. Chapter 2 describes the theory and properties of the Mark-I system, and chapter 3 describes the work undertaken to replace the scanner's sensor. Chapter 4 describes the system created to interface to CMOS sensors, and chapter 5 outlines the theory involved in calculating 3D points using structured light triangulation. The final hardware scanner, and the simulation system used to test it, are then described in chapter 6.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Junjie. "3D laser scanner development and analysis." Thesis, Aberystwyth University, 2013. http://hdl.handle.net/2160/b3a1beca-3d92-48bc-945e-2e50b3e7755a.

Full text
Abstract:
This PhD project is a collaboration between Smart Light Devices, Ltd. in Aberdeen and Aberystwyth University on the development of such 3D laser scanners with an ultimate aim to inspect the underwater oil and gas pipes or structure. At the end of this project, a workable and full functional 3D laser scanner is to be developed. This PhD project puts a particular emphasis on the engineering and implementation of the scanner according to real applications’ requirements. Our 3D laser scanner is based on the principle of triangulation and its high accuracy over a short range scanning. Accurate 3D data can be obtained from a triangle between the scanner, camera lens, laser source, and the object being scanned. Once the distance between the scanner camera lens and laser source (stereo baseline) is known and the laser projection angle can be measured by the goniometer, all the X, Y,Z coordinates of the object surface can be obtained through trigonometry. This 3D laser scanner development involves a lot of issues and tasks including image noise removal, laser peak detection, corner detection, camera calibration and 3D reconstruction. These issues and tasks have been addressed, analysed and improved during the PhD period. Firstly, the Sparse Code Shrinkage (SCS) image de-noise is implemented, since it is one of the most suitable de-noising methods for our laser images with dark background and white laser stripe. Secondly, there are already plenty of methods for corner and laser peak detection, it is necessary to compare and evaluate which is the most suitable for our 3D laser scanner. Thus, comparative studies are carried out and their results are presented in this thesis. Thirdly, our scanner is based on laser triangulation, in this case, laser projection angle α and baseline distance D from the centre of the camera lens to laser source plays a crucial role in 3D reconstruction. However, these two parameters are hard to measure directly, and there are no particular tools designed for this purpose. Thus, a new approach is proposed in this thesis to estimate them which combines camera calibration results with the precise linear stage. Fourthly, it is very expensive to customize an accurate positional pattern for camera calibration, due to budget limit, this pattern is printed by a printer or even painted on a paper or white board which is inaccurate and contains errors in absolute distance and location. An iterative camera calibration method is proposed. It can compensate up to 10% error and the calibration parameters remain stable. Finally, in the underwater applications, the light travel angle is changed from water to air which makes the normal calibration method less accurate. Hence, a new approach is proposed to compensate between the estimate and real distance in 3D reconstruction with normal calibration parameters. Experimental results show the proposed methods reduce the distance error in 3D down to ±0.2mm underwater. Overall, the developed scanning systems have been successfully applied in several real scanning and 3D modelling projects such as mooring chain, underwater pipeline surface and reducer. Positive feedback has been received from these projects, the scanning results satisfy the resolution and accuracy requirements.
APA, Harvard, Vancouver, ISO, and other styles
3

Cocon, Matteo. "Scanner 3D con proiettore e videocamera." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3145/.

Full text
Abstract:
In questa dissertazione viene descritto un sistema sviluppato per ottenere una rappresentazione a tre dimensioni in real time di una superficie. Il sistema si avvale di alcune tecniche di ottimizza- zione e di trattamento dell’immagine e sfrutta dispositivi comuni e di facile reperibilita`: una videocamera e un proiettore.
APA, Harvard, Vancouver, ISO, and other styles
4

Matabosch, Geronès Carles. "Hand-held 3D-scanner for large surface registration." Doctoral thesis, Universitat de Girona, 2007. http://hdl.handle.net/10803/7742.

Full text
Abstract:
L'objectiu d'aquesta tesi és l'estudi de les diferents tècniques per alinear vistes tridimensionals. Aquest estudi ens ha permès detectar els principals problemes de les tècniques existents, aprotant una solució novedosa i contribuint resolent algunes de les mancances detectades especialment en l'alineament de vistes a temps real. Per tal d'adquirir les esmentades vistes, s'ha dissenyat un sensor 3D manual que ens permet fer adquisicions tridimensionals amb total llibertat de moviments. Així mateix, s'han estudiat les tècniques de minimització global per tal de reduir els efectes de la propagació de l'error.
The goal of this thesis is to study the different techniques used to register 3D acquisitions. This study detects the main drawbacks of the existing techniques, presents a new classification and provides significant solutions of some perceived shortcomings, especially in 3D real time registration. A 3D hand-held sensor has been designed to acquire these views without any motion restriction and global minimization techniques have been studied to decrease the error propagation effects.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Xiang S. M. Massachusetts Institute of Technology. "Design of a single element 3D ultrasound scanner." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100306.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 90-92).
Over the past decade, substantial effort has been directed toward developing ultrasonic systems for medical imaging. With advances in computational power, previously theorized scanning methods such as ultrasound tomography can now be realized. This thesis presents the design, error analysis, and initial image reconstructions from a single element 3D ultrasound tomography system. The system enables volumetric pulse echo or transmission imaging of distal limbs, for applications including: improving prosthetic fittings, monitoring bone density, and characterizing muscle health. The system is designed as a flexible mechanical platform for iterative development of algorithms targeting imaging of soft tissue with bone. The mechanical system independently controls movement of two single element ultrasound transducers in a cylindrical water tank. Each transducer can independently circle about the center of the tank as well as move vertically in depth. High resolution positioning feedback (~1[mu]m) and control enables flexible positioning of the transmitter and the receiver around the cylindrical tank; exchangeable transducers enable algorithm testing with varying transducer frequencies and beam geometries. High speed data acquisition (DAQ) through a dedicated National Instrument PXI setup streams digitized data directly to the host PC. System positioning error has been quantified and is within limits for the desired imaging modality. Imaging of various objects including: calibration objects, phantoms, bone, animal tissue, and human forearm are presented accordingly.
by Xiang Zhang.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
6

Preuksakarn, Chakkrit. "Reconstructing plant architecture from 3D laser scanner data." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20116/document.

Full text
Abstract:
Les modèles virtuels de plantes sont visuellement de plus en plus réalistes dans les applications infographiques. Cependant, dans le contexte de la biologie et l'agronomie, l'acquisition de modèles précis de plantes réelles reste un problème majeur pour la construction de modèles quantitatifs du développement des plantes.Récemment, des scanners laser 3D permettent d'acquérir des images 3D avec pour chaque pixel une profondeur correspondant à la distance entre le scanner et la surface de l'objet visé. Cependant, une plante est généralement un ensemble important de petites surfaces sur lesquelles les méthodes classiques de reconstruction échouent. Dans cette thèse, nous présentons une méthode pour reconstruire des modèles virtuels de plantes à partir de scans laser. Mesurer des plantes avec un scanner laser produit des données avec différents niveaux de précision. Les scans sont généralement denses sur la surface des branches principales mais recouvrent avec peu de points les branches fines. Le cœur de notre méthode est de créer itérativement un squelette de la structure de la plante en fonction de la densité locale de points. Pour cela, une méthode localement adaptative a été développée qui combine une phase de contraction et un algorithme de suivi de points.Nous présentons également une procédure d'évaluation quantitative pour comparer nos reconstructions avec des structures reconstruites par des experts de plantes réelles. Pour cela, nous explorons d'abord l'utilisation d'une distance d'édition entre arborescence. Finalement, nous formalisons la comparaison sous forme d'un problème d'assignation pour trouver le meilleur appariement entre deux structures et quantifier leurs différences
In the last decade, very realistic rendering of plant architectures have been produced in computer graphics applications. However, in the context of biology and agronomy, acquisition of accurate models of real plants is still a tedious task and a major bottleneck for the construction of quantitative models of plant development. Recently, 3D laser scanners made it possible to acquire 3D images on which each pixel has an associate depth corresponding to the distance between the scanner and the pinpointed surface of the object. Standard geometrical reconstructions fail on plants structures as they usually contain a complex set of discontinuous or branching surfaces distributed in space with varying orientations. In this thesis, we present a method for reconstructing virtual models of plants from laser scanning of real-world vegetation. Measuring plants with laser scanners produces data with different levels of precision. Points set are usually dense on the surface of the main branches, but only sparsely cover thin branches. The core of our method is to iteratively create the skeletal structure of the plant according to local density of point set. This is achieved thanks to a method that locally adapts to the levels of precision of the data by combining a contraction phase and a local point tracking algorithm. In addition, we present a quantitative evaluation procedure to compare our reconstructions against expertised structures of real plants. For this, we first explore the use of an edit distance between tree graphs. Alternatively, we formalize the comparison as an assignment problem to find the best matching between the two structures and quantify their differences
APA, Harvard, Vancouver, ISO, and other styles
7

Moberg, Johan. "3d scanner : Accuracy, performance and challenges with a low cost 3d scanning platform." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226668.

Full text
Abstract:
3d scanning of objects and the surroundings have many practical uses. During the last decade reduced cost and increased performance has made them more accessible to larger consumer groups. The price point is still however high, where popular scanners are in the price range 30,000 USD-50,000 USD. The objective of this thesis is to investigate the accuracy and limitations of time-of-flight laser scanners and compare them to the results acquired with a low cost platform constructed with consumer grade parts. For validation purposes the constructed 3d scanner will be put through several tests to measure its accuracy and ability to create realistic representations of its environment.The constructed demonstrator produced significantly less accurate results and scanning time was much longer compared to a popular competitor. This was mainly due to the cheaper laser sensor and not the mechanical construction itself. There are however many applications where higher accuracy is not essential and with some modifications, a low cost solution could have many potential use cases, especially since it only costs 1% of the compared product.
3d skanning av föremål och omgivningen har många praktiska användningsområden. Under det senaste årtiondet har sjunkande priser och nya tekniker möjliggjort att större grupper fått tillgång till tekniken. Utrustningen är dock fortfarande relativt kostsam, populära skanners kostar mellan 300 000 - 500 000 kr. Syftet med denna uppsats är att utvärdera och granska noggranheten hos 3d skanning baserat på time-of-flight teknologi och jämföra resultatet med en billig platform baserad på konsumentprodukter. För att utvärdera processen konstrueras en 3d skanner som sedan genomgår flertalet tester i syfte att undersöka noggrannheten och förmågan att skapa en verklighetstrogen modell.Den konstruerade 3d skannern hade betydligt lägre noggrannhet och skanningen tog längre tid jämfört med en populär produkt på marknaden. Detta beror i huvudsak på den billigare lasersensorn och inte på den mekaniska konstruktionen. Däremot finns det många användningsområden där väldigt hög noggranhet inte är nödvändig. Med vissa förändringar skulle lågkostnadsplattformen kunna ha många användningsområden, i synnerhet då den bara kostar 1% av den jämförda produkten.
APA, Harvard, Vancouver, ISO, and other styles
8

Batista, Denise Silva. "Avaliação Comparativa dos Scanners 3D Artec MHT e Cyberware WBX para aplicações em Antropometria e Ergonomia." Universidade do Estado do Rio de Janeiro, 2014. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6923.

Full text
Abstract:
A partir das dimensões dos indivíduos pode-se definir dimensionamentos adequados para os produtos e postos de trabalho, proporcionando segurança e conforto aos usuários. Com o avanço da tecnologia de digitalização de imagens (escaneamento) 3D, é possível tirar algumas medidas de maneira mais rápida e com a redução da presença do entrevistado durante o processo. No entanto, faltam estudos que avaliem estas tecnologias no Brasil, sendo necessária a realização de uma comparação das tecnologias e das respectivas precisões para que seu uso em pesquisas. Com o objetivo de oferecer métodos comparativos para escolha dos marcadores e equipamentos a serem utilizados em uma pesquisa antropométrica tridimensional da população brasileira, no presente estudo estão comparadas duas tecnologias de escaneamento: o sistema a laser WBX da empresa norte americana Cyberware e o sistema MHT da empresa russa Artec Group. O método para avaliação da precisão dimensional dos dados advindos desses equipamentos de digitalização de imagens 3D teve cinco etapas: Estudo dos processos de escaneamento; Escaneamento dos marcadores de pontos anatômicos; Escaneamento utilizando um corpo de prova cilíndrico; Escaneamento de um manequim; Escaneamento de um voluntário que teve seus pontos anatômicos marcados para a retirada de medidas. Foi feita uma comparação entre as medidas retiradas manualmente, por meio de antropômetro e virtualmente, com o auxílio do software de modelagem tridimensional Rhinoceros. Em relação aos resultados obtidos na avaliação do manequim e do voluntário, concluiu-se que a magnitude do erro absoluto é semelhante para ambos os scanners, e permanece constante independentemente das dimensões sob análise. As principais diferenças são em relação às funcionalidades dos equipamentos.
Only from the dimensions of individuals it is possible to define appropriate sizing for products and workplaces, providing security and comfort to users. With the evolution of 3D digital imaging technology (3D scanning), it is possible to take some measurements faster and reduce the need of the interviewee during the process. However, there are few studies that evaluate these technologies in Brazil. It is necessary to compare these equipments in order to know their precision so they can be used in researches. In order to choose anatomical markers and equipments, this study compares two different equipments: Cyberware WBX laser scanner and Artec Group MHT white light scanner. The method for assessing the dimensional accuracy of the data obtained from those scanning 3D imaging equipment had five steps: Study of the scanning processes; Scanning using a cylindrical object; Scanning a mannequin; Scanning a volunteer who had his anatomical points marked for taking measurements. The comparison was made between the measurements taken manually with an anthropometer and virtually using the 3D modeling software Rhinoceros. Based on results obtained in the evaluation of the mannequin and volunteer, it was concluded that the absolute error is similar for both scanners and remains constant regardless of the size under consideration. The main differences are the features of each equipment.
APA, Harvard, Vancouver, ISO, and other styles
9

Manikhi, Omid, and Behnam Adlkhast. "A 3D OBJECT SCANNER : An approach using Microsoft Kinect." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-24418.

Full text
Abstract:
In this thesis report, an approach to use Microsoft Kinect to scan an object and providea 3D model for further processing has been proposed. The additional requiredhardware to rotate the object and fully expose it to the sensor, the drivers and SDKsused and the implemented software are discussed. It is explained how the acquireddata is stored and an efficient storage and mapping method requiring no specialhardware and memory is introduced. The solution proposed circumvents the PointCloud registration task based on the fact that the transformation from one frame tothe next is known with extremely high precision. Next, a method to merge theacquired 3D data from all over the object into a single noise-free model is proposedusing Spherical Transformation and a few experiments and their results aredemonstrated and discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Azim, Asma. "3D Perception of Outdoor and Dynamic Environment using Laser Scanner." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM070/document.

Full text
Abstract:
Depuis des décennies, les chercheurs essaient de développer des systèmes intelligents pour les véhicules modernes, afin de rendre la conduite plus sûre et plus confortable. Ces systèmes peuvent conduire automatiquement le véhicule ou assister un conducteur en le prévenant et en l'assistant en cas de situations dangereuses. Contrairement aux conducteurs, ces systèmes n'ont pas de contraintes physiques ou psychologiques et font preuve d'une grande robustesse dans des conditions extrêmes. Un composant clé de ces systèmes est la fiabilité de la perception de l'environnement. Pour cela, les capteurs lasers sont très populaires et largement utilisés. Les capteurs laser 2D classiques ont des limites qui sont souvent compensées par l'ajout d'autres capteurs complémentaires comme des caméras ou des radars. Les avancées récentes dans le domaine des capteurs, telles que les capteurs laser 3D qui perçoivent l'environnement avec une grande résolution spatiale, ont montré qu'ils étaient une solution intéressante afin d'éviter l'utilisation de plusieurs capteurs. Bien qu'il y ait des méthodes bien connues pour la perception avec des capteurs laser 2D, les approches qui utilisent des capteurs lasers 3D sont relativement rares dans la littérature. De plus, la plupart d'entre elles utilisent plusieurs capteurs et réduisent le problème de la 3ème dimension en projetant les données 3D sur un plan et utilisent les méthodes classiques de perception 2D. Au contraire de ces approches, ce travail résout le problème en utilisant uniquement un capteur laser 3D et en utilisant les informations spatiales fournies par ce capteur. Notre première contribution est une extension des méthodes génériques de cartographie 3D fondée sur des grilles d'occupations optimisées pour résoudre le problème de cartographie et de localisation simultanée (SLAM en anglais). En utilisant des grilles d'occupations 3D, nous définissons une carte d'élévation pour la segmentation des données laser correspondant au sol. Pour corriger les erreurs de positionnement, nous utilisons une méthode incrémentale d'alignement des données laser. Le résultat forme la base pour le reste de notre travail qui constitue nos contributions les plus significatives. Dans la deuxième partie, nous nous focalisons sur la détection et le suivi des objets mobiles (DATMO en anglais). La deuxième contribution de ce travail est une méthode pour distinguer les objets dynamiques des objets statiques. L'approche proposée utilise une détection fondée sur le mouvement et sur des techniques de regroupement pour identifier les objets mobiles à partir de la grille d'occupations 3D. La méthode n'utilise pas de modèles spécifiques d'objets et permet donc la détection de tout type d'objets mobiles. Enfin, la troisième contribution est une méthode nouvelle pour classer les objets mobiles fondée sur une technique d'apprentissage supervisée. La contribution finale est une méthode pour suivre les objets mobiles en utilisant l'algorithme de Viterbi pour associer les nouvelles observations avec les objets présents dans l'environnement, Dans la troisième partie, l'approche propose est testée sur des jeux de données acquis à partir d'un capteur laser 3D monté sur le toit d'un véhicule qui se déplace dans différents types d'environnement incluant des environnements urbains, des autoroutes et des zones piétonnes. Les résultats obtenus montrent l'intérêt du système intelligent proposé pour la cartographie et la localisation simultanée ainsi que la détection et le suivi d'objets mobiles en environnement extérieur et dynamique en utilisant un capteur laser 3D
With an anticipation to make driving experience safer and more convenient, over the decades, researchers have tried to develop intelligent systems for modern vehicles. The intended systems can either drive automatically or monitor a human driver and assist him in navigation by warning in case of a developing dangerous situation. Contrary to the human drivers, these systems are not constrained by many physical and psychological limitations and therefore prove more robust in extreme conditions. A key component of an intelligent vehicle system is the reliable perception of the environment. Laser range finders have been popular sensors which are widely used in this context. The classical 2D laser scanners have some limitations which are often compensated by the addition of other complementary sensors including cameras and radars. The recent advent of new sensors, such as 3D laser scanners which perceive the environment at a high spatial resolution, has proven to be an interesting addition to the arena. Although there are well-known methods for perception using 2D laser scanners, approaches using a 3D range scanner are relatively rare in literature. Most of those which exist either address the problem partially or augment the system with many other sensors. Surprisingly, many of those rely on reducing the dimensionality of the problem by projecting 3D data to 2D and using the well-established methods for 2D perception. In contrast to these approaches, this work addresses the problem of vehicle perception using a single 3D laser scanner. First contribution of this research is made by the extension of a generic 3D mapping framework based on an optimized occupancy grid representation to solve the problem of simultaneous localization and mapping (SLAM). Using the 3D occupancy grid, we introduce a variance-based elevation map for the segmentation of range measurements corresponding to the ground. To correct the vehicle location from odometry, we use a grid-based incremental scan matching method. The resulting SLAM framework forms a basis for rest of the contributions which constitute the major achievement of this work. After obtaining a good vehicle localization and a reliable map with ground segmentation, we focus on the detection and tracking of moving objects (DATMO). The second contribution of this thesis is the method for discriminating between the dynamic objects and the static environment. The presented approach uses motion-based detection and density-based clustering for segmenting the moving objects from 3D occupancy grid. It does not use object specific models but enables detecting arbitrary traffic participants. Third contribution is an innovative method for layered classification of the detected objects based on supervised learning technique which makes it easier to estimate their position with time. Final contribution is a method for tracking the detected objects by using Viterbi algorithm to associate the new observations with the existing objects in the environment. The proposed framework is verified with the datasets acquired from a laser scanner mounted on top of a vehicle moving in different environments including urban, highway and pedestrian-zone scenarios. The promising results thus obtained show the applicability of the proposed system for simultaneous localization and mapping with detection, classification and tracking of moving objects in dynamic outdoor environments using a single 3D laser scanner
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "3D-Scanner"

1

Elberink, Sander Oude. Acquisition of 3D topography: Automated 3D road and building reconstruction using airborne laser scanner data and topographic maps. Delft: NCG, Netherlands Geodetic Commission, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Knopp, Tobias. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guyer, J. Introduction to Terrestrial 3D Laser Scanner Topographic Survey Procedures. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buzug, Thorsten M., and Tobias Knopp. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buzug, Thorsten M., and Tobias Knopp. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "3D-Scanner"

1

Khan, Mohammad Zainullah, Muhammad Hasan, Abdullah Haroon, Mohammad Shahrukh, and Wasim Ahmed Khan. "3D Scanner." In Functional Reverse Engineering of Strategic and Non-Strategic Machine Tools, 3–16. First edition. | Boca Raton : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9780367808235-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Héno, Raphaële, and Laure Chandelier. "3D Digitization by Laser Scanner." In 3D Modeling of Buildings, 85–124. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118648889.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eren, Gonen, Olivier Aubreton, Fabrice Meriaudeau, L. A. Sanchez Secades, David Fofi, A. Teoman Naskali, Frederic Truchetet, and Aytul Ercil. "A 3D Scanner for Transparent Glass." In Image Analysis and Processing – ICIAP 2009, 519–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04146-4_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Müller, A., M. Schubert, and L. Verges. "Laser-3D-Scanner für die Endoskopie." In Laser in der Medizin Laser in Medicine, 607. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-60306-8_124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buonamici, Francesco, Monica Carfagni, Luca Puggelli, Michaela Servi, and Yary Volpe. "A Fast and Reliable Optical 3D Scanning System for Human Arm." In Lecture Notes in Mechanical Engineering, 268–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_43.

Full text
Abstract:
AbstractThe article discusses the design of an acquisition system for the 3D surface of human arms. The system is composed by a 3D optical scanner implementing stereoscopic depth sensors and by an acquisition software responsible for the processing of the raw data. The 3D data acquired by the scanner is used as starting point for the manufacturing of custom-made 3D printed casts. Specifically, the article discusses the choices made in the development of an improved version of an existing system presented in [1] and presents the results achieved by the devised system.
APA, Harvard, Vancouver, ISO, and other styles
6

Daud, Siti Asmah, Nasuha Mohd Shaber, Nasrul Humaimi Mahmood, and Muhammad Hanif Ramlee. "Polygon 3D Surface Reconstruction Using IR Scanner." In Communications in Computer and Information Science, 235–44. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6463-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pribanić, Tomislav, Tomislav Petković, Matea Đonlić, Vincent Angladon, and Simone Gasparini. "3D Structured Light Scanner on the Smartphone." In Lecture Notes in Computer Science, 443–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41501-7_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skala, Vaclav, Rongjiang Pan, and Ondrej Nedved. "Making 3D Replicas Using a Flatbed Scanner and a 3D Printer." In Computational Science and Its Applications – ICCSA 2014, 76–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09153-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dyshkant, Natalia. "Comparison of Point Clouds Acquired by 3D Scanner." In Discrete Geometry for Computer Imagery, 47–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37067-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Llamazares, Á., E. J. Molinos, M. Ocaña, L. M. Bergasa, N. Hernández, and F. Herranz. "3D Map Building Using a 2D Laser Scanner." In Computer Aided Systems Theory – EUROCAST 2011, 412–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27579-1_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "3D-Scanner"

1

Kühmstedt, Peter, Christian Bräuer-Burchardt, Christoph Munkelt, Matthias Heinze, Martin Palme, Ingo Schmidt, Josef Hintersehr, and Gunther Notni. "Intraoral 3D scanner." In Optics East 2007, edited by Peisen S. Huang. SPIE, 2007. http://dx.doi.org/10.1117/12.735700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mahjoubfar, A., K. Goda, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, et al. "3D ultrafast laser scanner." In SPIE LASE, edited by Alexander Heisterkamp, Peter R. Herman, Michel Meunier, and Stefan Nolte. SPIE, 2013. http://dx.doi.org/10.1117/12.2003135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maurer, Markus. "VITUS 3D Body Scanner." In 2nd International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 25-26 October 2011. Ascona, Switzerland: Hometrica Consulting - Dr. Nicola D'Apuzzo, 2011. http://dx.doi.org/10.15221/11.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maurer, Markus. "VITUS 3D Body Scanner." In 3rd International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 16-17 October 2012. Ascona, Switzerland: Hometrica Consulting - Dr. Nicola D'Apuzzo, 2012. http://dx.doi.org/10.15221/12.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maurer, Markus. "VITUS 3D Body Scanner." In 4th International Conference on 3D Body Scanning Technologies, Long Beach CA, USA, 19-20 November 2013. Ascona, Switzerland: Hometrica Consulting - Dr. Nicola D'Apuzzo, 2013. http://dx.doi.org/10.15221/13.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maurer, Markus. "VITUS 3D Body Scanner." In 1st Asian Workshop on 3D Body Scanning Technologies, Tokyo, Japan, 17-18 April 2012. Ascona, Switzerland: Hometrica Consulting - Dr. Nicola D'Apuzzo, 2012. http://dx.doi.org/10.15221/a12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bettaswamy Gowda, Hitesh Gowda, Tobias Gräf, and Ulrike Wallrabe. "A 3D scanner: low footprint piezoelectric tunable optical scanner." In MOEMS and Miniaturized Systems XXI, edited by Wibool Piyawattanametha, Yong-Hwa Park, and Hans Zappe. SPIE, 2022. http://dx.doi.org/10.1117/12.2605917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lanman, Douglas, and Gabriel Taubin. "Build your own 3D scanner." In ACM SIGGRAPH 2009 Courses. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1667239.1667247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lanman, Douglas, and Gabriel Taubin. "Build your own 3D scanner." In ACM SIGGRAPH ASIA 2009 Courses. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665817.1665819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thanusutiyabhorn, Pimrapat, Pizzanu Kanongchaiyos, and Waleed S. Mohammed. "Image-based 3D laser scanner." In 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2011). IEEE, 2011. http://dx.doi.org/10.1109/ecticon.2011.5948005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "3D-Scanner"

1

Sohn, MyungHee. Application of 3D scanner and 3D CAD in Apparel Design Education: Development of Custom Dress Form. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Augustoni, Arnold L. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/920773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perrin, Richard A., Robert E. Bona, Bennis A. Brekhus, and Carol E. Fraser. ARN Integrated Retail Module (IRM) & 3D Whole Body Scanner System at Fort Carson, Colorado. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada474423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jackson, Sam S., and Michael J. Bishop. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperate Region. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada438210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jackson, Sam S., and Michael J. Bishop. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada443802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Desa, Hazry, Muhammad Azizi Azizan, Nur Zakirah Rabiha Md. Rejab, and Mohd Shafiq Ismail. CONSERVATION WORKS ON HERITAGE BUILDING: GENERATING AS BUILT DRAWING BY UAV APPLICATION AND 3D LASER SCANNER FOR FACILITIES MAINTENANCE. Penerbit Universiti Malaysia Perlis, 2023. http://dx.doi.org/10.58915/techrpt2023.002.

Full text
Abstract:
This technical report presents the outcomes of a research project entitled "Conservation Works on Heritage Building: Generating As Built Drawing by UAV Application and 3D Laser Scanner for Facilities Maintenance". The project was initiated and funded by IP Fokus Sdn. Bhd. and was conducted by the Centre of Excellence for Unmanned Aerial Systems (COE-UAS), UniMAP. The aim of this project was to explore the use of unmanned aerial vehicles (UAVs) and 3D laser scanners in generating as-built drawings for the maintenance of heritage buildings. The project sought to address the challenge of accurately documenting and maintaining heritage buildings, which are often complex structures with intricate designs and historical significance. The research project commenced on 1st February 2018 and was initially scheduled to end on 31st August 2019. However, due to unforeseen circumstances, the project was extended to 15th October 2019. Throughout the duration of the project, the research team worked diligently to achieve the objectives of the project. This technical report provides a comprehensive overview of the project, including the background and rationale, methodology, data collection, and analysis, and the key findings and recommendations. It also includes a detailed description of the UAV and 3D laser scanning technologies used in the project, as well as the software used for data processing and analysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Krishnamurthy and Gao. PR-328-073511-R01 Detection and Discrimination of Mechanical Damage using Improved ILI Tools. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2013. http://dx.doi.org/10.55274/r0010809.

Full text
Abstract:
The primary objectives of this study are to improve understanding of the capabilities to detect and discriminate mechanical damage for current ILI technologies. Specifically: Identify a consistent in-ditch protocol for dent assessment using the best available technology, and Evaluate the accuracy of ILI dent and dent with metal loss characterization using data from the identified actual in-ditch evaluation.. The in-ditch mechanical damage characterization was performed following the protocol developed during the project. The advanced portable 3D laser scanner was successfully leveraged and utilized for dent in-ditch measurements and profiling. The provided data included dent dimension, details of associated anomalies and laser scan 3D dent profiles. The dents were profiled with axial resolution of 5mm and circumferential resolution of 10.6mm (2deg).
APA, Harvard, Vancouver, ISO, and other styles
8

Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.

Full text
Abstract:
The Coastal Observation and Analysis Branch (COAB) located at the Field Research Facility (FRF) conducts quarterly surveys and post-storm surveys along up to 60 kilometers of coastline within the vicinity of the FRF to assess, evaluate, and provide updated observations of the morphology of the foreshore and dune system. The surveys are conducted using a mobile terrestrial LiDAR scanner coupled with an Inertial Navigation System (INS). Traditionally the surveys coincide with a low tide, exposing the widest swath of visible sediment to the scanner as well as enough wind-sea swell or texture to induce wave breaking upon the interior sandbars. The wave field is measured with X-Band radar which records a spatial time series of wave direction and speed. Data for the survey region was collected using the VZ-2000's mobile, 3D scanning mode where the scanner continuously rotates the line scan 360 degrees as the vehicle progresses forward. Elevation measurements are acquired on all sides of the vehicle except for the topography directly underneath the vehicle. As the vehicle moves forward, the next rotation will capture the previous position's occluded data area. Laser data is acquired in mobile 3D radar mode with a pulse repetition rate of 300kHz, theta resolution of 0.19 degrees and phi resolution of 0.625 degrees. Horizontal Datum NAD83(2011), Projection North Carolina State Plane (3200) meters; Vertical Datum NAVD88, meters with geoid09 applied.
APA, Harvard, Vancouver, ISO, and other styles
9

Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.

Full text
Abstract:
The Coastal Observation and Analysis Branch (COAB) located at the Field Research Facility (FRF) conducts quarterly surveys and post-storm surveys along up to 60 kilometers of coastline within the vicinity of the FRF to assess, evaluate, and provide updated observations of the morphology of the foreshore and dune system. The surveys are conducted using a mobile terrestrial LiDAR scanner coupled with an Inertial Navigation System (INS). Traditionally the surveys coincide with a low tide, exposing the widest swath of visible sediment to the scanner as well as enough wind-sea swell or texture to induce wave breaking upon the interior sandbars. The wave field is measured with X-Band radar which records a spatial time series of wave direction and speed. Data for the survey region was collected using the VZ-2000's mobile, 3D scanning mode where the scanner continuously rotates the line scan 360 degrees as the vehicle progresses forward. Elevation measurements are acquired on all sides of the vehicle except for the topography directly underneath the vehicle. As the vehicle moves forward, the next rotation will capture the previous position's occluded data area. Laser data is acquired in mobile 3D radar mode with a pulse repetition rate of 300kHz, theta resolution of 0.19 degrees and phi resolution of 0.625 degrees. Horizontal Datum NAD83(2011), Projection North Carolina State Plane (3200) meters; Vertical Datum NAVD88, meters with geoid09 applied.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography