Academic literature on the topic '3D seismic data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D seismic data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3D seismic data"
Puspasari, Trevi Jayanti, and Sumirah Sumirah. "APLIKASI METODE PSEUDO 3D SEISMIK DI CEKUNGAN JAWA BARAT UTARA MENGGUNAKAN K.R. BARUNA JAYA II." Oseanika 1, no. 2 (January 14, 2021): 1–12. http://dx.doi.org/10.29122/oseanika.v1i2.4562.
Full textRobertson, James D. "Reservoir Management Using 3D Seismic Data." Journal of Petroleum Technology 41, no. 07 (July 1, 1989): 663–67. http://dx.doi.org/10.2118/19887-pa.
Full textZHELUDEV, VALERY A., DAN D. KOSLOFF, and EUGENE Y. RAGOZA. "COMPRESSION OF SEGMENTED 3D SEISMIC DATA." International Journal of Wavelets, Multiresolution and Information Processing 02, no. 03 (September 2004): 269–81. http://dx.doi.org/10.1142/s0219691304000536.
Full textWaage, Malin, Stefan Bünz, Martin Landrø, Andreia Plaza-Faverola, and Kate A. Waghorn. "Repeatability of high-resolution 3D seismic data." GEOPHYSICS 84, no. 1 (January 1, 2019): B75—B94. http://dx.doi.org/10.1190/geo2018-0099.1.
Full textAdmasu, Fitsum, Stefan Back, and Klaus Toennies. "Autotracking of faults on 3D seismic data." GEOPHYSICS 71, no. 6 (November 2006): A49—A53. http://dx.doi.org/10.1190/1.2358399.
Full textHolt, Rob, and Andy Lubrano. "Stabilizing the phase of onshore 3D seismic data." GEOPHYSICS 85, no. 6 (November 1, 2020): V473—V479. http://dx.doi.org/10.1190/geo2019-0695.1.
Full textCarpenter, Chris. "Innovative Processing of 3D Land-Seismic Data." Journal of Petroleum Technology 66, no. 03 (March 1, 2014): 144–47. http://dx.doi.org/10.2118/0314-0144-jpt.
Full textFaraklioti, Maria, and Maria Petrou. "Horizon picking in 3D seismic data volumes." Machine Vision and Applications 15, no. 4 (October 2004): 216–19. http://dx.doi.org/10.1007/s00138-004-0151-8.
Full textGiustiniani, Michela, Flavio Accaino, Stefano Picotti, and Umberta Tinivella. "3D seismic data for shallow aquifers characterisation." Journal of Applied Geophysics 68, no. 3 (July 2009): 394–403. http://dx.doi.org/10.1016/j.jappgeo.2009.03.005.
Full textDeighton, M., and M. Petrou. "Data mining for large scale 3D seismic data analysis." Machine Vision and Applications 20, no. 1 (November 15, 2007): 11–22. http://dx.doi.org/10.1007/s00138-007-0101-3.
Full textDissertations / Theses on the topic "3D seismic data"
Deighton, M. J. "3D texture analysis in seismic data." Thesis, University of Surrey, 2006. http://epubs.surrey.ac.uk/842764/.
Full textQian, Zhongping. "Analysis of seismic anisotropy in 3D multi-component seismic data." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3515.
Full textFERNANDES, RODRIGO COSTA. "REGISTRATION OF 3D SEISMIC TO WELL DATA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15359@1.
Full textData acquired directly from borehole are more reliable than seismic data, and then, the first can be used to adjust the second. This work proposes the correction of a volume of seismic amplitudes through a three step algorithm. The first step is the identification of common features in both sets using a pattern recognition algorithm. The second step consists of the generation and the optimization of a mesh aligned with the features in the volumetric data using a new algorithm based on image processing and computational intelligence. The last step is the seismic-to-well registration using a point-to-point volumetric deformation achieved by a radial basis function interpolation. The dissertation also presents some results from 2D and 3D implementations allowing conclusions and suggestions for future work.
MEINICKE, MAURICIO KRECZMARSKY GUIMARAES. "3D OPACITY IN VOLUME RENDERING OF SEISMIC DATA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10461@1.
Full textEste trabalho propõe uma técnica chamada de Opacidade 3D para visualização volumétrica de dados sísmicos. O grande desafio da visualização volumétrica é definir uma função de transferência multidimensional que melhor se adapte ao dado que se deseja visualizar. Será apresentada uma função de transferência que utiliza três tabelas de cores 1D para compor a uma tabela de cores 3D. O trabalho de Silva[30] sobre opacidade 2D serviu de motivação para o desenvolvimento da técnica de opacidade 3D e ao longo deste trabalho são feitas comparações entre ambos. São apresentados exemplos reproduzindo a opacidade 2D e outros mostrando como a técnica proposta pode auxiliar no estudo de determinados eventos sísmicos.
This work proposes a 3D opacity technique for the volume rendering of seismic data. The greater challenge of volume rendering is to define a multidimensional transfer function better adapted to the data to be visualized. This work presents a transfer function that uses three 1D color tables to compose a 3D color table. The work from Silva[30] about 2D opacity has served as a motivation for the development of the 3D opacity technique and, hence, some comparisons are made between them. Some examples are presented in order to reproduce the 2D opacity technique and to show how the proposed technique can improve the visualization of specific seismic events.
Al-Yaqoobi, Ahmed Musallam Ali. "Full-waveform inversion to 3D seismic land data." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10927.
Full textWild, Christopher. "The propagation of strike-slip faults using 3D seismic data." Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/87446/.
Full textFIGUEIREDO, AURELIO MORAES. "MAPPING HORIZONS AND SEISMIC FAULTS FROM 3D SEISMIC DATA USING THE GROWING NEURAL GAS ALGORITHM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11341@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
GRUPO DE TECNOLOGIA DE COMPUTAÇÃO GRÁFICA - PUC-RIO
Neste trabalho apresentamos um algoritmo baseado em agrupamento de dados para o mapeamento automático de horizontes e de falhas sísmicas a partir de dados sísmicos 3D. Apresentamos uma técnica para quantizar o volume sísmico de entrada a partir dos neurônios do grafo resultante do processo de treinamento de uma instância do algoritmo Growing Neural Gas (GNG). No conjunto de amostras de entrada utilizadas pelo GNG, cada amostra representa um voxel do volume de entrada, e retém informações da vizinhança vertical desse voxel. Depois da etapa de treinamento, a partir do grafo gerado pelo GNG um novo volume quantizado é gerado, e nesse volume possíveis ambigüidades e imperfeições existentes no volume de entrada tendem a ser minimizadas. A partir do volume quantizado descrevemos uma nova técnica de extração de horizontes, desenvolvida com o objetivo de que seja possível mapear horizontes na presença de estruturas geológicas complexas, como por exemplo horizontes que possuam porções completamente desconectadas por uma ou mesmo diversas falhas sísmicas. Também iniciamos o desenvolvimento de uma abordagem de mapeamento de falhas sísmicas utilizando informações presentes no volume quantizado. Os resultados obtidos pelo processo de mapeamento de horizontes, testado em volumes diferentes, foram bastante promissores. Além disso, os resultados iniciais obtidos pelo processo de extração de falhas sugerem que a técnica pode vir a ser uma boa alternativa para a tarefa.
In this work we present a clusterization-based method to map seismic horizons and faults from 3D seismic data. We describe a method used to quantize an initial seismic volume using a trained instance of the Growing Neural Gas (GNG) algorithm. To accomplish this task we create a training set where each sample corresponds to an entry volume voxel, retaining its vertical neighboring information. After the training procedure, the resulting graph is used to create a quantized version of the original volume. In this quantized volume both horizons and faults are more evidenced in the data, and we present a method that uses the created volume to map seismic horizons, even when they are completely disconnected by seismic faults. We also present another method that uses the quantized version of the volume to map the seismic faults. The horizon mapping procedure, tested in different volume date, yields good results. The preliminary results presented for the fault mapping procedure also yield good results, but needs further testing.
Halvorsen, Hanne Sundgot. "Mapping of shallow Tunnel Valleys combining 2D and 3D Seismic Data." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18383.
Full textSexton, Paul. "3D velocity-depth model building using surface seismic and well data." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/4824/.
Full textRodriguez, Tablante Johiris Isabel. "Extracting 3D Information from 2D Crooked Line Seismic Data on Hardrock Environments." Doctoral thesis, Uppsala University, Department of Earth Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6510.
Full textSeismic methods have been used in sedimentary environment for almost 80 years. During that time, exploration geophysicists have developed a number of techniques to handle specific aspects of working in sedimentary areas. This is not the case for studies in the hardrock environment, where significantly less time and money have been invested on seismic investigations. Therefore, there is still a need to develop the right techniques appropriate for working in hardrock environments. The research presented here, covers aspects of acquisition, processing and interpretation in hardrock environments. A cost-effective alternative for two-dimensional data acquisition is presented. Acquisition parameters are also discussed and recommendations for future work are given. The main effort of this thesis, however, was to find appropriate processing methods to address some of the different problems present in datasets acquired in the hardrock environment. Comparison of two computer programs for first arrival seismic tomography was performed in order to find the most suitable one for processing crooked line geometries. Three-dimensional pre-stack depth migration was also tested to find a detailed near-surface image. A processing method geared to enhance the signal-to-noise ratio was applied to the dataset with the lowest signal amplitudes to improve the quality of the stack. Finally, cross-dip analysis and corrections were performed on two of the three datasets included in this thesis. Cross-dip analysis was also applied as an interpretation tool to provide the information needed for estimation of the true dip of some of the reflectors related to geological structures. The results presented in this thesis indicate that cross-dip analysis and corrections are one of the most powerful tools for processing and interpretation in the presence of complex geology. Therefore, it is recommended to include this method as a standard step in the processing and interpretation sequence of data acquired in hardrock environments.
Books on the topic "3D seismic data"
Reymond, Benoît. Three-dimensional sequence stratigraphy offshore Louisiana, Gulf of Mexico (West Cameron 3D seismic data). [Lausanne]: Section des sciences de la terre, Institut de géologie et paléontologie, Université de Lausanne, 1994.
Find full textTiwari, R. K., and R. Rekapalli. Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19304-1.
Full textHerwanger, Jorg. Seismic Geomechanics: How to Build and Calibrate Geomechanical Models using 3D and 4D Seismic Data. EAGE Publications bv, 2011. http://dx.doi.org/10.3997/9789073834101.
Full textHerwanger, Jorg. Ebook - Seismic Geomechanics: How to Build and Calibrate Geomechanical Models using 3D and 4D Seismic Data (EET 5). EAGE Publications bv, 2014. http://dx.doi.org/10.3997/9789462820005.
Full textRekapalli, R., and R. K. Tiwari. Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data. Springer, 2020.
Find full textBook chapters on the topic "3D seismic data"
Chen, Po, and En-Jui Lee. "Data Sensitivity Kernels." In Full-3D Seismic Waveform Inversion, 191–310. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_4.
Full textNanda, Niranjan C. "Evaluation of High-Resolution 3D and 4D Seismic Data." In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production, 129–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26491-2_8.
Full textNanda, Niranjan C. "Evaluation of High-Resolution 3D and 4D Seismic Data." In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production, 149–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75301-6_8.
Full textBuske, Stefan. "3-D Prestack Kirchhoff Migration of the ISO89-3D Data Set." In Seismic Exploration of the Deep Continental Crust, 157–71. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8670-3_9.
Full textTiwari, R. K., and R. Rekapalli. "Denoising the 3D Seismic Data Using Multichannel Singular Spectrum Analysis." In Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data, 85–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19304-1_7.
Full textTiwari, R. K., and R. Rekapalli. "Introduction to Denoising and Data Gap Filling of Seismic Reflection Data." In Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data, 1–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19304-1_1.
Full textStrykowski, G. "Empirical Covariance Functions between Seismic, Density and Gravity Data — an Important Constraint in 3D Gravimetric-Seismic Stochastic Inversion." In Theory and Practice of Geophysical Data Inversion, 335–60. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-322-89417-5_21.
Full textTiwari, R. K., and R. Rekapalli. "Frequency and Time Domain SSA for 2D Seismic Data Denoising." In Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data, 33–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19304-1_4.
Full textTiwari, R. K., and R. Rekapalli. "Seismic Data Gap Filling Using the Singular Spectrum Based Analysis." In Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data, 95–102. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19304-1_8.
Full textAdmasu, Fitsum, and Klaus Tönnies. "Multi-scale Bayesian Based Horizon Matchings Across Faults in 3d Seismic Data." In Lecture Notes in Computer Science, 384–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11861898_39.
Full textConference papers on the topic "3D seismic data"
Hollis, D., C. Cox, R. Clayton, F. Lin, D. Li, and B. Schmandt. "Long Beach 3D Seismic Survey: Data Mining Continuous Passive Seismic Data." In 4th EAGE Passive Seismic Workshop. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20142340.
Full textBouloudas, P. "Quantitative inversion improvements from 3D broadband seismic." In EAGE Workshop on Broadband Marine Seismic Data. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412436.
Full textLin, Wu, Ling Yun, and Guo Xiangyu. "3D seismic data monitoring and evaluation." In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817761.
Full textHu, Jianxing, and Paul Valasek. "Migration deconvolution of 3D seismic data." In SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. http://dx.doi.org/10.1190/1.1820697.
Full textYu, Gang, Junjun Wu, Yuanzhong Chen, and Ximing Wang. "Borehole-Driven 3D Surface Seismic Data Processing Using DAS-VSP Data." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21463-ms.
Full textSong, Jian‐guo, Zhen‐chun Li, Yan‐guang Wang, and Qing‐feng Kong. "Joint frequency expanding method of crosswell seismic data and 3D seismic data." In SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513116.
Full textLomas, A., and A. Curtis. "3D Marchenko Redatuming Using 2D and 3D Seismic Data." In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801342.
Full textBlinov, Alexander B. "Reconstruction of 3D-horizons from 3D-seismic data sets." In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology III. SPIE, 2004. http://dx.doi.org/10.1117/12.513165.
Full textCao, Danping, Xingyao Yin, and Fanchang Zhang. "Joint inversion of 3D seismic, VSP and crosswell seismic data." In SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255336.
Full textNakayama, Shotaro, Kamel Belaid, and Tomohide Ishiyama. "3D OBC Seismic Data Acquisition Productivity Enhancement." In Abu Dhabi International Petroleum Conference and Exhibition. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/160944-ms.
Full textReports on the topic "3D seismic data"
Friedmann, S. J., and C. Kostov. Numerical Simulations of 3D Seismic Data Final Report CRADA No. TC02095.0. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1396194.
Full textBellefleur, G., E. Schetselaar, and D. White. Acquisition, processing and interpretation of the Lalor 3C-3D seismic data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2014. http://dx.doi.org/10.4095/296308.
Full textBellefleur, G., and D. White. 3D-3C seismic acquisition and data processing at the Lalor VMS Deposit, Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2014. http://dx.doi.org/10.4095/293613.
Full textM. Karrenbach. AN INTEGRATED MULTI-COMPONENT PROCESSING AND INTERPRETATION FRAMEWORK FOR 3D BOREHOLE SEISMIC DATA. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/842641.
Full textM. Karrenbach. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/862091.
Full textM. Karrenbach. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/862092.
Full textM. Karrenbach. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/883087.
Full textBarbara Romanowicz and Mark Panning. Calibration of 3D Upper Mantle Structure in Eurasia Using Regional and Teleseismic Full Waveform Seismic Data. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/838993.
Full textBarbara Romanowicz and Mark Panning. Calibration of 3D Upper Mantle Structure in Eurasia Using Regional and Teleseismic Full Waveform Seismic Data. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/838994.
Full textParra, J. O., C. L. Hackett, R. L. Brown, H. A. Collier, and A. Datta-Gupta. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/290867.
Full text