Journal articles on the topic '4-nitrophenol reduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '4-nitrophenol reduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Serrà, Albert, Raül Artal, Maria Pozo, Jaume Garcia-Amorós, and Elvira Gómez. "Simple Environmentally-Friendly Reduction of 4-Nitrophenol." Catalysts 10, no. 4 (2020): 458. http://dx.doi.org/10.3390/catal10040458.
Full textMacho, Vendelín, Milan Kučera, and Milan Králik. "Carbonylative Reduction of Nitrophenols to Aminophenols." Collection of Czechoslovak Chemical Communications 60, no. 3 (1995): 514–20. http://dx.doi.org/10.1135/cccc19950514.
Full textChen, Jie, Rong Ji Dai, Bin Tong, Sheng Yuan Xiao, and Weiwei Meng. "Reduction of 4-nitrophenol catalyzed by nitroreductase." Chinese Chemical Letters 18, no. 1 (2007): 10–12. http://dx.doi.org/10.1016/j.cclet.2006.11.009.
Full textKonarev, A. A. "Electrochemical reduction of 4-chloro-2-nitrophenol." Russian Chemical Bulletin 72, no. 2 (2023): 500–506. http://dx.doi.org/10.1007/s11172-023-3813-4.
Full textSree, Vijaya Gopalan, Jung Inn Sohn, and Hyunsik Im. "Pre-Anodized Graphite Pencil Electrode Coated with a Poly(Thionine) Film for Simultaneous Sensing of 3-Nitrophenol and 4-Nitrophenol in Environmental Water Samples." Sensors 22, no. 3 (2022): 1151. http://dx.doi.org/10.3390/s22031151.
Full textLe, Van Thuan, Ngoc Nhu Quynh Ngu, Tan Phat Chau, et al. "Silver and Gold Nanoparticles from Limnophila rugosa Leaves: Biosynthesis, Characterization, and Catalytic Activity in Reduction of Nitrophenols." Journal of Nanomaterials 2021 (May 20, 2021): 1–11. http://dx.doi.org/10.1155/2021/5571663.
Full textVarshney, Shalaka, Dan Meyerstein, Ronen Bar-Ziv, and Tomer Zidki. "The Competition between 4-Nitrophenol Reduction and BH4− Hydrolysis on Metal Nanoparticle Catalysts." Molecules 28, no. 18 (2023): 6530. http://dx.doi.org/10.3390/molecules28186530.
Full textUrkude, Kalyani, Sanjay R. Thakare, and Sandeep Gawande. "An energy efficient photocatalytic reduction of 4-nitrophenol." Journal of Environmental Chemical Engineering 2, no. 1 (2014): 759–64. http://dx.doi.org/10.1016/j.jece.2013.11.019.
Full textRoy, Anindita, Biplab Debnath, Ramkrishna Sahoo, Teresa Aditya, and Tarasankar Pal. "Micelle confined mechanistic pathway for 4-nitrophenol reduction." Journal of Colloid and Interface Science 493 (May 2017): 288–94. http://dx.doi.org/10.1016/j.jcis.2017.01.045.
Full textSaha, Anushree, Ramsingh Kurrey, Santosh Kumar Verma, and Manas Kanti Deb. "Cationic Polystyrene Resin Bound Silver Nanocomposites Assisted Fourier Transform Infrared Spectroscopy for Enhanced Catalytic Reduction of 4-Nitrophenol in Aqueous Medium." Chemistry 4, no. 4 (2022): 1757–74. http://dx.doi.org/10.3390/chemistry4040114.
Full textMojović, Zorica, Srđan Petrović, and Ljiljana Rožić. "The role of ruthenium in perovskite-type mixed oxide in the electrochemical degradation of 4-nitrophenol." Tehnika 75, no. 6 (2020): 695–99. http://dx.doi.org/10.5937/tehnika2006695m.
Full textKhani, Milad, Ramaswami Sammynaiken, and Lee Wilson. "Electrocatalytic Oxidation of Nitrophenols via Ag Nanoparticles Supported on Citric-Acid-Modified Polyaniline." Catalysts 13, no. 3 (2023): 465. http://dx.doi.org/10.3390/catal13030465.
Full textZhang, Qi, Xinfei Fan, Hua Wang, Shuo Chen, and Xie Quan. "Fabrication of Au/CNT hollow fiber membrane for 4-nitrophenol reduction." RSC Advances 6, no. 47 (2016): 41114–21. http://dx.doi.org/10.1039/c6ra07705f.
Full textYang, Desheng, Rui Zhang, Ting Zhao, et al. "Efficient reduction of 4-nitrophenol catalyzed by 4-carbo-methoxypyrrolidone modified PAMAM dendrimer–silver nanocomposites." Catalysis Science & Technology 9, no. 21 (2019): 6145–51. http://dx.doi.org/10.1039/c9cy01655d.
Full textKhuat, Hoang Binh, Van Chung Tran, Thu Huong Nguyen, and Thi Thao Ta. "Simultaneous analysis of nitro compounds by Voltammetric method combined with the partial least squares (PLS) and the principal component regression (PCR)." International Journal of Engineering Research & Science 4, no. 1 (2018): 44–48. https://doi.org/10.5281/zenodo.1187320.
Full textYudha S, Salprima, Aswin Falahudin, Risky Hadi Wibowo, John Hendri, and Dennie Oktrin Wicaksono. "Reduction of 4-nitrophenol Mediated by Silver Nanoparticles Synthesized using Aqueous Leaf Extract of Peronema canescens." Bulletin of Chemical Reaction Engineering & Catalysis 16, no. 2 (2021): 253–59. http://dx.doi.org/10.9767/bcrec.16.2.10426.253-259.
Full textSwetha, B. M., Rajeev Kumar, Anupama A. V., Sarvesh Kumar, Fei Yan, and Balaram Sahoo. "Photocatalytic 4-Nitrophenol Reduction by Hydrothermally Synthesized Mesoporous Co- and/or Fe-Substituted Aluminophosphates." Catalysts 14, no. 7 (2024): 408. http://dx.doi.org/10.3390/catal14070408.
Full textÇıplak, Zafer, Ceren Gökalp, Bengü Getiren, Atila Yıldız, and Nuray Yıldız. "Catalytic performance of Ag, Au and Ag-Au nanoparticles synthesized by lichen extract." Green Processing and Synthesis 7, no. 5 (2018): 433–40. http://dx.doi.org/10.1515/gps-2017-0074.
Full textMejía, Yetzin Rodriguez, and Naveen Kumar Reddy Bogireddy. "Reduction of 4-nitrophenol using green-fabricated metal nanoparticles." RSC Advances 12, no. 29 (2022): 18661–75. http://dx.doi.org/10.1039/d2ra02663e.
Full textCui, Yanshuai, Bo Liang, Jin Zhang, et al. "Polyethyleneimine-stabilized palladium nanoparticles for reduction of 4-nitrophenol." Transition Metal Chemistry 44, no. 7 (2019): 655–62. http://dx.doi.org/10.1007/s11243-019-00330-6.
Full textJadbabaei, Nastaran, Ryan James Slobodjian, Danmeng Shuai, and Huichun Zhang. "Catalytic reduction of 4-nitrophenol by palladium-resin composites." Applied Catalysis A: General 543 (August 2017): 209–17. http://dx.doi.org/10.1016/j.apcata.2017.06.023.
Full textDemeester, Alexia, Fatima Douma, Renaud Cousin та ін. "Carboxymethyl β-Cyclodextrin Assistance for the 4-Nitrophenol Reduction Using Cobalt-Based Layered Double Hydroxides". International Journal of Molecular Sciences 25, № 12 (2024): 6390. http://dx.doi.org/10.3390/ijms25126390.
Full textIben Ayad, Anas, Denis Luart, Aissa Ould Dris, and Erwann Guénin. "Kinetic Analysis of 4-Nitrophenol Reduction by “Water-Soluble” Palladium Nanoparticles." Nanomaterials 10, no. 6 (2020): 1169. http://dx.doi.org/10.3390/nano10061169.
Full textCao, Xinjiang, Shancheng Yan, Feihu Hu, et al. "Reduced graphene oxide/gold nanoparticle aerogel for catalytic reduction of 4-nitrophenol." RSC Advances 6, no. 68 (2016): 64028–38. http://dx.doi.org/10.1039/c6ra09386h.
Full textNguyen Le My Linh and Dang Thi Thanh Nhan. "Kinetics of 4‑nitrophenol reduction with NaBH<sub>4</sub> over Ag/CuO nanomaterial catalyst." Vietnam Journal of Catalysis and Adsorption 12, no. 4 (2024): 153–59. http://dx.doi.org/10.62239/jca.2023.079.
Full textGadgil, Bhushan, Pia Damlin, Antti Viinikanoja, Markku Heinonen, and Carita Kvarnström. "One-pot synthesis of an Au/Au2S viologen hybrid nanocomposite for efficient catalytic applications." Journal of Materials Chemistry A 3, no. 18 (2015): 9731–37. http://dx.doi.org/10.1039/c5ta01372k.
Full textArindam, Indra, and Kumar Lahiri Goutam. "Water soluble polymer supported silver and platinum nanoparticles for efficient reduction of 4-nitrophenol." Journal of Indian Chemical Society Vol. 92, Dec 2015 (2015): 1791–98. https://doi.org/10.5281/zenodo.5599336.
Full textAbebe, Buzuayehu, Bontu Kefale, and Dereje Tsegaye Leku. "Synthesis of copper–silver–zinc oxide nanocomposites for 4-nitrophenol reduction: doping and heterojunction." RSC Advances 13, no. 7 (2023): 4523–29. http://dx.doi.org/10.1039/d2ra07845g.
Full textZhou, Wei, Yi Zhou, Yu Liang, Xiaohui Feng, and Hong Zhou. "Silver nanoparticles on carboxyl-functionalized Fe3O4 with high catalytic activity for 4-nitrophenol reduction." RSC Advances 5, no. 62 (2015): 50505–11. http://dx.doi.org/10.1039/c5ra04647e.
Full textHuang, Deshun, Guiying Yang, Xingwen Feng, Xinchun Lai, and Pengxiang Zhao. "Triazole-stabilized gold and related noble metal nanoparticles for 4-nitrophenol reduction." New Journal of Chemistry 39, no. 6 (2015): 4685–94. http://dx.doi.org/10.1039/c5nj00673b.
Full textHaddad, Reza, and Ali Roostaie. "Nano-Polyoxotungstate [Cu20P8W48] Immobilized on Magnetic Nanoparticles as an Excellent Heterogeneous Catalyst Nanoreactors for Green Reduction of Nitrophenol Compounds." Journal of Spectroscopy 2022 (May 26, 2022): 1–11. http://dx.doi.org/10.1155/2022/7019037.
Full textKrämer, Petra M., Qing X. Li, and Bruce D. Hammock. "Integration of Liquid Chromatography with Immunoassay: An Approach Combining the Strengths of Both Methods." Journal of AOAC INTERNATIONAL 77, no. 5 (1994): 1275–87. http://dx.doi.org/10.1093/jaoac/77.5.1275.
Full textJia, Wei-Guo, Yuan-Chen Dai, Hai-Ning Zhang, Xiaojing Lu, and En-Hong Sheng. "Synthesis and characterization of gold complexes with pyridine-based SNS ligands and as homogeneous catalysts for reduction of 4-nitrophenol." RSC Advances 5, no. 37 (2015): 29491–96. http://dx.doi.org/10.1039/c5ra01749a.
Full textNoël, Sébastien, Hervé Bricout, Ahmed Addad, et al. "Catalytic reduction of 4-nitrophenol with gold nanoparticles stabilized by large-ring cyclodextrins." New Journal of Chemistry 44, no. 48 (2020): 21007–11. http://dx.doi.org/10.1039/d0nj03687k.
Full textPanda, Jagannath, Soumya Prakash Biswal, Himanshu Sekhar Jena, Arijit Mitra, Raghabendra Samantray, and Rojalin Sahu. "Role of Lewis Acid Metal Centers in Metal–Organic Frameworks for Ultrafast Reduction of 4-Nitrophenol." Catalysts 12, no. 5 (2022): 494. http://dx.doi.org/10.3390/catal12050494.
Full textKaur, Jaspreet, Khushwinder Kaur, Surinder K. Mehta, and Avtar S. Matharu. "A novel molybdenum oxide–Starbon catalyst for wastewater remediation." Journal of Materials Chemistry A 8, no. 29 (2020): 14519–27. http://dx.doi.org/10.1039/d0ta05388k.
Full textKhuat, Hoang Binh, Van Chung Tran, Thu Huong Nguyen, and Thi Thao Ta. "Simultaneous analysis of nitro compounds by Voltammetric method combined with the principal component regression (PCR)." International Journal of Engineering Research & Science 4, no. 10 (2018): 06–11. https://doi.org/10.5281/zenodo.1474106.
Full textVeerakumar, Pitchaimani, Rajesh Madhu, Shen-Ming Chen, et al. "Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications." J. Mater. Chem. A 2, no. 38 (2014): 16015–22. http://dx.doi.org/10.1039/c4ta03097d.
Full textWang, Kun, Xun Zhu, Yang Yang, Dingding Ye, Rong Chen, and Qiang Liao. "Photothermal reduction of 4-nitrophenol to 4-aminophenol using silver/polydopamine catalysts." Journal of Environmental Chemical Engineering 10, no. 5 (2022): 108253. http://dx.doi.org/10.1016/j.jece.2022.108253.
Full textBui Thi Thanh, Ha, Duong Le Van, Hung Ta Ngoc, et al. "Reduction of 4-nitrophenol to 4-aminophenol using Pt/HKUST-1 catalyst." Vietnam Journal of Catalysis and Adsorption 11, no. 1 (2021): 110–16. http://dx.doi.org/10.51316/jca.2022.017.
Full textKong, Xiangkai, Hongying Zhu, ChangLe Chen, Guangming Huang, and Qianwang Chen. "Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts." Chemical Physics Letters 684 (September 2017): 148–52. http://dx.doi.org/10.1016/j.cplett.2017.06.049.
Full textDeng, Liujun, Yu Zou, and Jiang Jiang. "Plasmonic MoO2 embedded MoNi4 nanosheets prepared by NiMoO4 transformation for visible-light-enhanced 4-nitrophenol reduction." Dalton Transactions 50, no. 46 (2021): 17235–40. http://dx.doi.org/10.1039/d1dt03216j.
Full textMa, Bing, Man Wang, Di Tian, Yanyan Pei, and Liangjie Yuan. "Micro/nano-structured polyaniline/silver catalyzed borohydride reduction of 4-nitrophenol." RSC Advances 5, no. 52 (2015): 41639–45. http://dx.doi.org/10.1039/c5ra05396j.
Full textQiu, Yunfeng, Zhuo Ma, and PingAn Hu. "Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol." J. Mater. Chem. A 2, no. 33 (2014): 13471–78. http://dx.doi.org/10.1039/c4ta02268h.
Full textLee, Hye-Rim, Jung Hyun Park, Faizan Raza, et al. "Photoactive WS2 nanosheets bearing plasmonic nanoparticles for visible light-driven reduction of nitrophenol." Chemical Communications 52, no. 36 (2016): 6150–53. http://dx.doi.org/10.1039/c6cc00708b.
Full textHu, Huawen, Xiaowen Wang, Dagang Miao, et al. "A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol." Chemical Communications 51, no. 93 (2015): 16699–702. http://dx.doi.org/10.1039/c5cc05826k.
Full textLin, Shali, Xiaohu Mi, Lei Xi, et al. "Efficient Reduction Photocatalyst of 4-Nitrophenol Based on Ag-Nanoparticles-Doped Porous ZnO Heterostructure." Nanomaterials 12, no. 16 (2022): 2863. http://dx.doi.org/10.3390/nano12162863.
Full textZhu, Yue, Juan Du, Qianqian Peng, et al. "The synthesis of highly active carbon dot-coated gold nanoparticles via the room-temperature in situ carbonization of organic ligands for 4-nitrophenol reduction." RSC Advances 10, no. 33 (2020): 19419–24. http://dx.doi.org/10.1039/d0ra02048f.
Full textDeka, Juti Rani, Mu-Hsin Lee, Diganta Saikia, Hsien-Ming Kao, and Yung-Chin Yang. "Confinement of Cu nanoparticles in the nanocages of large pore SBA-16 functionalized with carboxylic acid: enhanced activity and improved durability for 4-nitrophenol reduction." Dalton Transactions 48, no. 23 (2019): 8227–37. http://dx.doi.org/10.1039/c9dt00248k.
Full textMin, Jianzhong, Fei Wang, Yunliang Cai, Shuai Liang, Zhenwei Zhang, and Xingmao Jiang. "Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol." Chemical Communications 51, no. 4 (2015): 761–64. http://dx.doi.org/10.1039/c4cc07629j.
Full text