Academic literature on the topic '4605 Data management and data science'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '4605 Data management and data science.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "4605 Data management and data science"
"Paul" Zhang, Xihui, Ming Wang, M. Shane Banks, Qiunan Zhang, and Colin G. Onita. "Design and Delivery of an Online Information Systems Management Course for MBA Programs." Journal of Information Technology Education: Innovations in Practice 19 (2020): 047–74. http://dx.doi.org/10.28945/4600.
Full textUtli, Hediye, and Birgül Vural Doğru. "The relationship between patient activation level and self-care management in elderly patients with chronic illness in the southeastern anatolian region of Turkey." Progress in Health Sciences 12, no. 1 (April 12, 2022): 14–21. http://dx.doi.org/10.5604/01.3001.0015.8874.
Full textRanjbarfard, Mina, and Zeynab Hatami. "Critical Success Factors for Implementing Business Intelligence Projects (A BI Implementation Methodology Perspective)." Interdisciplinary Journal of Information, Knowledge, and Management 15 (2020): 175–202. http://dx.doi.org/10.28945/4607.
Full textBAKHSH, A., I. BASHIR, H. U. FARID, and S. A. WAJID. "USING CERES-WHEAT MODEL TO SIMULATE GRAIN YIELD PRODUCTION FUNCTION FOR FAISALABAD, PAKISTAN, CONDITIONS." Experimental Agriculture 49, no. 3 (February 26, 2013): 461–75. http://dx.doi.org/10.1017/s0014479713000185.
Full textRamirez, Jorge C. G., Diane J. Cook, Lynn L. Peterson, and Dolores M. Peterson. "An event set approach to sequence discovery in medical data." Intelligent Data Analysis 4, no. 6 (December 22, 2000): 513–30. http://dx.doi.org/10.3233/ida-2000-4605.
Full textFitzgerald, Nurgul, and Shailja Mathur. "Assessment of Dietary Intake Among South Asian Adults in the United States." Current Developments in Nutrition 5, Supplement_2 (June 2021): 124. http://dx.doi.org/10.1093/cdn/nzab035_032.
Full textSchäffer, Utz, and Jürgen Weber. "Management von Data Science." Controlling & Management Review 65, no. 8 (November 2021): 3. http://dx.doi.org/10.1007/s12176-021-0423-4.
Full textKayumba, Ephrem, and Claude Rusibana. "Employee Turnover and Operational Performance of Commercial Banks in Rwanda." Journal of Advance Research in Business Management and Accounting (ISSN: 2456-3544) 7, no. 5 (May 31, 2021): 01–09. http://dx.doi.org/10.53555/nnbma.v7i5.990.
Full textChen, Jinchuan, Yueguo Chen, Xiaoyong Du, Cuiping Li, Jiaheng Lu, Suyun Zhao, and Xuan Zhou. "Big data challenge: a data management perspective." Frontiers of Computer Science 7, no. 2 (April 2013): 157–64. http://dx.doi.org/10.1007/s11704-013-3903-7.
Full textWygant, Robert M. "Data file management." Computers & Industrial Engineering 11, no. 1-4 (January 1986): 367–71. http://dx.doi.org/10.1016/0360-8352(86)90113-0.
Full textDissertations / Theses on the topic "4605 Data management and data science"
Yang, Ying. "Interactive Data Management and Data Analysis." Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10288109.
Full textEveryone today has a big data problem. Data is everywhere and in different formats, they can be referred to as data lakes, data streams, or data swamps. To extract knowledge or insights from the data or to support decision-making, we need to go through a process of collecting, cleaning, managing and analyzing the data. In this process, data cleaning and data analysis are two of the most important and time-consuming components.
One common challenge in these two components is a lack of interaction. The data cleaning and data analysis are typically done as a batch process, operating on the whole dataset without any feedback. This leads to long, frustrating delays during which users have no idea if the process is effective. Lacking interaction, human expert effort is needed to make decisions on which algorithms or parameters to use in the systems for these two components.
We should teach computers to talk to humans, not the other way around. This dissertation focuses on building systems --- Mimir and CIA --- that help user conduct data cleaning and analysis through interaction. Mimir is a system that allows users to clean big data in a cost- and time-efficient way through interaction, a process I call on-demand ETL. Convergent inference algorithms (CIA) are a family of inference algorithms in probabilistic graphical models (PGM) that enjoys the benefit of both exact and approximate inference algorithms through interaction.
Mimir provides a general language for user to express different data cleaning needs. It acts as a shim layer that wraps around the database making it possible for the bulk of the ETL process to remain within a classical deterministic system. Mimir also helps users to measure the quality of an analysis result and provides rankings for cleaning tasks to improve the result quality in a cost efficient manner. CIA focuses on providing user interaction through the process of inference in PGMs. The goal of CIA is to free users from the upfront commitment to either approximate or exact inference, and provide user more control over time/accuracy trade-offs to direct decision-making and computation instance allocations. This dissertation describes the Mimir and CIA frameworks to demonstrate that it is feasible to build efficient interactive data management and data analysis systems.
Dedge, Parks Dana M. "Defining Data Science and Data Scientist." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7014.
Full textWang, Yi. "Data Management and Data Processing Support on Array-Based Scientific Data." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1436157356.
Full textFernández, Moctezuma Rafael J. "A Data-Descriptive Feedback Framework for Data Stream Management Systems." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/116.
Full textAnumalla, Kalyani. "DATA PREPROCESSING MANAGEMENT SYSTEM." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1196650015.
Full textNguyen, Benjamin. "Privacy-Centric Data Management." Habilitation à diriger des recherches, Université de Versailles-Saint Quentin en Yvelines, 2013. http://tel.archives-ouvertes.fr/tel-00936130.
Full textKarras, Panagiotis. "Data structures and algorithms for data representation in constrained environments." Thesis, Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38897647.
Full textWason, Jasmin Lesley. "Automating data management in science and engineering." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396143.
Full textNyström, Dag. "Data Management in Vehicle Control-Systems." Doctoral thesis, Mälardalen University, Department of Computer Science and Electronics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66.
Full textAs the complexity of vehicle control-systems increases, the amount of information that these systems are intended to handle also increases. This thesis provides concepts relating to real-time database management systems to be used in such control-systems. By integrating a real-time database management system into a vehicle control-system, data management on a higher level of abstraction can be achieved. Current database management concepts are not sufficient for use in vehicles, and new concepts are necessary. A case-study at Volvo Construction Equipment Components AB in Eskilstuna, Sweden presented in this thesis, together with a survey of existing database platforms confirms this. The thesis specifically addresses data access issues by introducing; (i) a data access method, denoted database pointers, which enables data in a real-time database management system to be accessed efficiently. Database pointers, which resemble regular pointers variables, permit individual data elements in the database to be directly pointed out, without risking a violation of the database integrity. (ii) two concurrency-control algorithms, denoted 2V-DBP and 2V-DBP-SNAP which enable critical (hard real-time) and non-critical (soft real-time) data accesses to co-exist, without blocking of the hard real-time data accesses or risking unnecessary abortions of soft real-time data accesses. The thesis shows that 2V-DBP significantly outperforms a standard real-time concurrency control algorithm both with respect to lower response-times and minimized abortions. (iii) two concepts, denoted substitution and subscription queries that enable service- and diagnostics-tools to stimulate and monitor a control-system during run-time. The concepts presented in this thesis form a basis on which a data management concept suitable for embedded real-time systems, such as vehicle control-systems, can be built.
Ett modernt fordon är idag i princip helt styrt av inbyggda datorer. I takt med att funktionaliteten i fordonen ökar, blir programvaran i dessa datorer mer och mer komplex. Komplex programvara är svår och kostsam att konstruera. För att hantera denna komplexitet och underlätta konstruktion, satsar nu industrin på att finna metoder för att konstruera dessa system på en högre abstraktionsnivå. Dessa metoder syftar till att strukturera programvaran idess olika funktionella beståndsdelar, till exempel genom att använda så kallad komponentbaserad programvaruutveckling. Men, dessa metoder är inte effektiva vad gäller att hantera den ökande mängden information som följer med den ökande funktionaliteten i systemen. Exempel på information som skall hanteras är data från sensorer utspridda i bilen (temperaturer, tryck, varvtal osv.), styrdata från föraren (t.ex. rattutslag och gaspådrag), parameterdata, och loggdata som används för servicediagnostik. Denna information kan klassas som säkerhetskritisk eftersom den används för att styra beteendet av fordonet. På senare tid har dock mängden icke säkerhetskritisk information ökat, exempelvis i bekvämlighetssystem som multimedia-, navigations- och passagerarergonomisystem.
Denna avhandling syftar till att visa hur ett datahanteringssystem för inbyggda system, till exempel fordonssystem, kan konstrueras. Genom att använda ett realtidsdatabashanteringssystem för att lyfta upp datahanteringen på en högre abstraktionsnivå kan fordonssystem tillåtas att hantera stora mängder information på ett mycket enklare sätt än i nuvarande system. Ett sådant datahanteringssystem ger systemarkitekterna möjlighet att strukturera och modellera informationen på ett logiskt och överblickbart sätt. Informationen kan sedan läsas och uppdateras genom standardiserade gränssnitt anpassade förolika typer av funktionalitet. Avhandlingen behandlar specifikt problemet hur information i databasen, med hjälp av en concurrency-control algoritm, skall kunna delas av både säkerhetskritiska och icke säkerhetskritiska systemfunktioner i fordonet. Vidare avhandlas hur information kan distribueras både mellan olika datorsystem i fordonet, men också till diagnostik- och serviceverktyg som kan kopplas in i fordonet.
Tran, Viet-Trung. "Scalable data-management systems for Big Data." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00920432.
Full textBooks on the topic "4605 Data management and data science"
Data with semantics: Data models and data management. New York: Van Nostrand Reinhold, 1989.
Find full textLawrence, Dubov, ed. Master data management and data governance. 2nd ed. New York: McGraw-Hill, 2011.
Find full textGhosh, Sakti P. Data base organization for data management. 2nd ed. Orlando (Fla.): Academic Press, 1986.
Find full textData base organization for data management. 2nd ed. Orlando, Fla: Academic Press, 1986.
Find full textLiu, Qing. Data Provenance and Data Management in eScience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textLoomis, Mary E. S. Data management and file processing. Englewood Cliffs(N.J.): Prentice-Hall, 1986.
Find full textKunii, Hideko S. Graph data model and its data language. Tokyo: Springer-Verlag, 1990.
Find full textBook chapters on the topic "4605 Data management and data science"
Kekre, Sunder, Tridas Mukhopadhyay, and Kannan Srinivasan. "Modeling Impacts of Electronic Data Interchange Technology." In International Series in Operations Research & Management Science, 359–79. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4949-9_12.
Full textDaley, D. J., and L. D. Servi. "Estimating Customer Loss Rates from Transactional Data." In International Series in Operations Research & Management Science, 313–32. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5191-1_20.
Full textWojtkowski, Wita, and W. Gregory Wojtkowski. "Resource Object Data Manager: Structured Approach to Systems and Network Management." In Systems Science, 475–80. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2862-3_84.
Full textWeik, Martin H. "management data." In Computer Science and Communications Dictionary, 971. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_10996.
Full textWeik, Martin H. "data management." In Computer Science and Communications Dictionary, 352. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_4318.
Full textSpengler, Sylvia. "Data Scientists, Data Management and Data Policy." In Lecture Notes in Computer Science, 490. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22351-8_32.
Full textKampakis, Stylianos. "Data Management." In The Decision Maker's Handbook to Data Science, 23–29. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5494-3_2.
Full textPapp, Stefan, and Bernhard Ortner. "Data Management." In The Handbook of Data Science and AI, 131–51. München: Carl Hanser Verlag GmbH & Co. KG, 2022. http://dx.doi.org/10.3139/9781569908877.005.
Full textGadatsch, Andreas, and Dirk Schreiber. "Management von Big Data Projekten." In Data Science, 41–62. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33403-1_3.
Full textZanin, Massimiliano, Andrew Cook, and Seddik Belkoura. "Data Science." In Complexity Science in Air Traffic Management, 105–29. Burlington, VT : Ashgate, [2016] |: Routledge, 2016. http://dx.doi.org/10.4324/9781315573205-7.
Full textConference papers on the topic "4605 Data management and data science"
Getoor, Lise. "Responsible Data Science." In SIGMOD/PODS '19: International Conference on Management of Data. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3299869.3314117.
Full textHandley, Thomas H., and Y. Philip Li. "DataHub: Knowledge-based data management for data discovery." In The earth and space science information system (ESSIS). AIP, 1993. http://dx.doi.org/10.1063/1.44479.
Full textParashar, Manish. "Data-Management for Extreme Science." In HPDC '22: The 31st International Symposium on High-Performance Parallel and Distributed Computing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3502181.3537771.
Full textRossi, Rogério, and Kechi Hirama. "Characterizing Big Data Management." In InSITE 2015: Informing Science + IT Education Conferences: USA. Informing Science Institute, 2015. http://dx.doi.org/10.28945/2192.
Full textBaunsgaard, Sebastian, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan, Stefan Geißelsöder, Philipp M. Grulich, Michael Hildebrand, et al. "ExDRa: Exploratory Data Science on Federated Raw Data." In SIGMOD/PODS '21: International Conference on Management of Data. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448016.3457549.
Full textKumar, Arun. "Automation of Data Prep, ML, and Data Science." In SIGMOD/PODS '21: International Conference on Management of Data. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448016.3457537.
Full textFu, Lingli, Sheng Ding, and Tao Chen. "Clinical Data Management System." In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462386.
Full textXiao-dan, Wu, Yue Dian-min, Liu Feng-li, Wang Yun-feng, and Chu Chao-Hsien. "Privacy Preserving Data Mining Algorithms by Data Distortion." In 2006 International Conference on Management Science and Engineering. IEEE, 2006. http://dx.doi.org/10.1109/icmse.2006.313871.
Full textChard, Ryan, Kyle Chard, Steve Tuecke, and Ian Foster. "Software Defined Cyberinfrastructure for Data Management." In 2017 IEEE 13th International Conference on e-Science (e-Science). IEEE, 2017. http://dx.doi.org/10.1109/escience.2017.69.
Full textStoyanovich, Julia. "Teaching Responsible Data Science." In SIGMOD/PODS '22: International Conference on Management of Data. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3531072.3535318.
Full textReports on the topic "4605 Data management and data science"
Mount, Richard P. The Office of Science Data-Management Challenge. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/878079.
Full textMaltzahn, Carlos. Science-Driven Data Management for Multi-Tiered Storage. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1594174.
Full textParashar, Manish. SIRIUS: Science-Driven Data Management for Multi-Tiered Storage. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1736017.
Full textAncion, Zoé, Francis Andre, Sarah Cadorel, Romain Feret, Odile Hologne, Kenneth Maussang, Marine Moguen-Toursel, and Véronique Stoll. Data Management Plan - Recommendations to the ANR. Ministère de l'enseignement supérieur et de la recherche, June 2019. http://dx.doi.org/10.52949/23.
Full textAncion, Zoé, Francis Andre, Sarah Cadorel, Romain Feret, Odile Hologne, Kenneth Maussang, Marine Moguen-Toursel, and Véronique Stoll. Data Management Plan - Recommendations to the ANR. Ministère de l'enseignement supérieur et de la recherche, June 2019. http://dx.doi.org/10.52949/23.
Full textMoulton, David, Dean Williams, Deb Agarwal, Tom Boden, Roelof Versteeg, Charlie Koven, Tim Scheibe, et al. Building a Cyberinfrastructure for Environmental System Science: Modeling Frameworks, Data Management, and Scientific Workflows, Workshop Report, Potomac, Maryland, April 30-May 1, 2015. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1471414.
Full textSemerikov, Serhiy O., Vladyslav S. Pototskyi, Kateryna I. Slovak, Svitlana M. Hryshchenko, and Arnold E. Kiv. Automation of the Export Data from Open Journal Systems to the Russian Science Citation Index. [б. в.], November 2018. http://dx.doi.org/10.31812/123456789/2651.
Full textSoenen, Karen, Dana Gerlach, Christina Haskins, Taylor Heyl, Danie Kinkade, Sawyer Newman, Shannon Rauch, et al. How can BCO-DMO help with your oceanographic data? How can BCO-DMO help with your oceanographic data?, December 2021. http://dx.doi.org/10.1575/1912/27803.
Full textWoods, Mel, Saskia Coulson, Raquel Ajates, Angelos Amditis, Andy Cobley, Dahlia Domian, Gerid Hager, et al. Citizen Science Projects: How to make a difference. WeObserve, 2020. http://dx.doi.org/10.20933/100001193.
Full textShapovalov, Yevhenii B., Viktor B. Shapovalov, and Vladimir I. Zaselskiy. TODOS as digital science-support environment to provide STEM-education. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3250.
Full text