Journal articles on the topic '4611 Machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 journal articles for your research on the topic '4611 Machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gusev, I. V., D. V. Gavrilov, R. E. Novitsky, T. Yu Kuznetsova, and S. A. Boytsov. "Improvement of cardiovascular risk assessment using machine learning methods." Russian Journal of Cardiology 26, no. 12 (October 25, 2021): 4618. http://dx.doi.org/10.15829/1560-4071-2021-4618.
Full textHayles, N. Katherine. "Deeper into the machine: Learning to speak digital." Computers and Composition 19, no. 4 (December 2002): 371–86. http://dx.doi.org/10.1016/s8755-4615(02)00140-8.
Full textThongprayoon, Charat, Janina Paula T. Sy-Go, Voravech Nissaisorakarn, Carissa Y. Dumancas, Mira T. Keddis, Andrea G. Kattah, Pattharawin Pattharanitima, et al. "Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia." Diagnostics 11, no. 11 (November 15, 2021): 2119. http://dx.doi.org/10.3390/diagnostics11112119.
Full textWilkes, Edmund H., Gill Rumsby, and Gary M. Woodward. "Using Machine Learning to Aid the Interpretation of Urine Steroid Profiles." Clinical Chemistry 64, no. 11 (November 1, 2018): 1586–95. http://dx.doi.org/10.1373/clinchem.2018.292201.
Full textBernert, Rebecca A., Amanda M. Hilberg, Ruth Melia, Jane Paik Kim, Nigam H. Shah, and Freddy Abnousi. "Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations." International Journal of Environmental Research and Public Health 17, no. 16 (August 15, 2020): 5929. http://dx.doi.org/10.3390/ijerph17165929.
Full textPotty, Anish GR, Ajish S. R. Potty, Rithesh Punyamurthula, Sreeram Penna, Chris Benavides, Prithviraj Chavan, and R. Justin Mistovich. "MACHINE-LEARNING IDENTIFIES BEST MEASURES TO PREDICT ACL RECONSTRUCTION OUTCOME." Orthopaedic Journal of Sports Medicine 7, no. 3_suppl (March 1, 2019): 2325967119S0014. http://dx.doi.org/10.1177/2325967119s00144.
Full textAgarwal, Manan, Khushboo K. Rao, Kaushar Vaidya, and Souradeep Bhattacharya. "ML-MOC: Machine Learning (kNN and GMM) based Membership determination for Open Clusters." Monthly Notices of the Royal Astronomical Society 502, no. 2 (February 11, 2021): 2582–99. http://dx.doi.org/10.1093/mnras/stab118.
Full textShahbazian, Reza, and Irina Trubitsyna. "DEGAIN: Generative-Adversarial-Network-Based Missing Data Imputation." Information 13, no. 12 (December 12, 2022): 575. http://dx.doi.org/10.3390/info13120575.
Full textCrowson, Matthew G., Dana Moukheiber, Aldo Robles Arévalo, Barbara D. Lam, Sreekar Mantena, Aakanksha Rana, Deborah Goss, David W. Bates, and Leo Anthony Celi. "A systematic review of federated learning applications for biomedical data." PLOS Digital Health 1, no. 5 (May 19, 2022): e0000033. http://dx.doi.org/10.1371/journal.pdig.0000033.
Full textMehravaran, Shiva, Iman Dehzangi, and Md Mahmudur Rahman. "Interocular Symmetry Analysis of Corneal Elevation Using the Fellow Eye as the Reference Surface and Machine Learning." Healthcare 9, no. 12 (December 16, 2021): 1738. http://dx.doi.org/10.3390/healthcare9121738.
Full textDeVincentis, Alyssa J., Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, et al. "Bright and blind spots of water research in Latin America and the Caribbean." Hydrology and Earth System Sciences 25, no. 8 (August 30, 2021): 4631–50. http://dx.doi.org/10.5194/hess-25-4631-2021.
Full textBirnbaum, Michael L., Avner Abrami, Stephen Heisig, Asra Ali, Elizabeth Arenare, Carla Agurto, Nathaniel Lu, John M. Kane, and Guillermo Cecchi. "Acoustic and Facial Features From Clinical Interviews for Machine Learning–Based Psychiatric Diagnosis: Algorithm Development." JMIR Mental Health 9, no. 1 (January 24, 2022): e24699. http://dx.doi.org/10.2196/24699.
Full textWhite, Gentry. "Criminal Justice Forecasts of Risk: A Machine Learning Approach. By R. Berk. New York: Springer. 2012. 115 pages. €39.95 (paperback). ISBN 978-1-4614-3084-1." Australian & New Zealand Journal of Statistics 55, no. 2 (March 1, 2013): 199–201. http://dx.doi.org/10.1111/anzs.12019.
Full textElxan oğlu Huseynov, Natiq. "Supported by artificial intelligence intellectual decision systems." SCIENTIFIC WORK 75, no. 2 (February 18, 2022): 104–11. http://dx.doi.org/10.36719/2663-4619/75/104-111.
Full textHowson, Stephanie N., Michael J. McShea, Raghav Ramachandran, Howard S. Burkom, Hsien-Yen Chang, Jonathan P. Weiner, and Hadi Kharrazi. "Improving the Prediction of Persistent High Health Care Utilizers: Retrospective Analysis Using Ensemble Methodology." JMIR Medical Informatics 10, no. 3 (March 24, 2022): e33212. http://dx.doi.org/10.2196/33212.
Full textIkonnikova, Anna, Anastasia Anisimova, Sergey Galkin, Anastasia Gunchenko, Zhabikai Abdukhalikova, Marina Filippova, Sergey Surzhikov, et al. "Genetic Association Study and Machine Learning to Investigate Differences in Platelet Reactivity in Patients with Acute Ischemic Stroke Treated with Aspirin." Biomedicines 10, no. 10 (October 13, 2022): 2564. http://dx.doi.org/10.3390/biomedicines10102564.
Full textSánchez-Hernández, Ballesteros-Herráez, Kraiem, Sánchez-Barba, and Moreno-García. "Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach." Applied Sciences 9, no. 24 (December 4, 2019): 5287. http://dx.doi.org/10.3390/app9245287.
Full textBarakat, Chadi, Marcel Aach, Andreas Schuppert, Sigurður Brynjólfsson, Sebastian Fritsch, and Morris Riedel. "Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled Data Analysis and Machine Learning Platform for Medical Diagnosis Support." Diagnostics 13, no. 3 (January 20, 2023): 391. http://dx.doi.org/10.3390/diagnostics13030391.
Full textHajimahmud Abdullayev, Vugar. "Data search computing based on the similarity-dıfference metric." SCIENTIFIC WORK 60, no. 11 (November 6, 2020): 46–60. http://dx.doi.org/10.36719/2663-4619/60/46-60.
Full textGupta, Vishan Kumar, and Prashant Singh Rana. "Toxicity prediction of small drug molecules of androgen receptor using multilevel ensemble model." Journal of Bioinformatics and Computational Biology 17, no. 05 (October 2019): 1950033. http://dx.doi.org/10.1142/s0219720019500331.
Full textZini, Julia El, Yara Rizk, and Mariette Awad. "An Optimized Parallel Implementation of Non-Iteratively Trained Recurrent Neural Networks." Journal of Artificial Intelligence and Soft Computing Research 11, no. 1 (January 1, 2021): 33–50. http://dx.doi.org/10.2478/jaiscr-2021-0003.
Full textReisinger, Raquel, Sergiusz Wesolowski, Umang Swami, Pedro C. Barata, Edgar Javier Hernandez, Roberto Nussenzveig, Gordon Lemmon, et al. "Differences in the genomic landscape of advanced prostate cancer (aPC) patients (pts) with BRCA1 versus BRCA2 mutations as detected by machine learning analysis of the comprehensive genomic profile (CGP) of cell-free DNA (cfDNA)." Journal of Clinical Oncology 39, no. 6_suppl (February 20, 2021): 162. http://dx.doi.org/10.1200/jco.2021.39.6_suppl.162.
Full textSimpson, Hope, Earnest Njih Tabah, Richard O. Phillips, Michael Frimpong, Issaka Maman, Edwin Ampadu, Joseph Timothy, Paul Saunderson, Rachel L. Pullan, and Jorge Cano. "Mapping suitability for Buruli ulcer at fine spatial scales across Africa: A modelling study." PLOS Neglected Tropical Diseases 15, no. 3 (March 3, 2021): e0009157. http://dx.doi.org/10.1371/journal.pntd.0009157.
Full textAfanaseva, Kseniia S., Evgeny A. Bakin, Olga V. Pirogova, Elena V. Morozova, Ildar M. Barkhatov, Anna G. Smirnova, Sergey N. Bondarenko, Ivan S. Moiseev, and Alexander D. Kulagin. "Predictive Model and Factors of Relapse after Allogeneic Stem Cell Transplantation in Adults with Ph-Positive Acute Lymphoblastic Leukemia." Blood 138, Supplement 1 (November 5, 2021): 3934. http://dx.doi.org/10.1182/blood-2021-153763.
Full textGerratana, Lorenzo, Masha Kocherginsky, Andrew A. Davis, Paolo D’Amico, Carolina Reduzzi, Qiang Zhang, Fabio Puglisi, and Massimo Cristofanilli. "Abstract P2-02-01: Stage IV stratification using circulating tumor cells (CTCs) enumeration modeling: A retrospective analysis of the MONARCH 2 study." Cancer Research 82, no. 4_Supplement (February 15, 2022): P2–02–01—P2–02–01. http://dx.doi.org/10.1158/1538-7445.sabcs21-p2-02-01.
Full textDelgado, Jorge Enrique. "Contextos emergentes e instrução no ensino superior ibero-americano: desafios do mundo pós-factual (Emerging Contexts and Teaching in Ibero-American Higher Education: Challenges of the Post-Truth World)." Revista Eletrônica de Educação 15 (November 30, 2021): e4912046. http://dx.doi.org/10.14244/198271994912.
Full textErban, Alexander, Ines Fehrle, Federico Martinez-Seidel, Federico Brigante, Agustín Lucini Más, Veronica Baroni, Daniel Wunderlin, and Joachim Kopka. "Discovery of food identity markers by metabolomics and machine learning technology." Scientific Reports 9, no. 1 (July 4, 2019). http://dx.doi.org/10.1038/s41598-019-46113-y.
Full textXu, Fabao, Cheng Wan, Lanqin Zhao, Qijing You, Yifan Xiang, Lijun Zhou, Zhongwen Li, et al. "Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning." Frontiers in Physiology 12 (November 25, 2021). http://dx.doi.org/10.3389/fphys.2021.649316.
Full textJun, Zhang, Yu Jia, Yu Peng, Wang Xiaoling, Tong Dawei, and Wang Jiajun. "Enhanced semi‐supervised ensemble machine learning approach for earthwork construction simulation activity sequence automatically updating driven by weather data." Geological Journal, November 13, 2022. http://dx.doi.org/10.1002/gj.4631.
Full textPeet, Evan D., Dana Schultz, Susan Lovejoy, and Fuchiang (Rich) Tsui. "Variation in the infant health effects of the women, infants, and children program by predicted risk using novel machine learning methods." Health Economics, October 17, 2022. http://dx.doi.org/10.1002/hec.4617.
Full textMueller, Andreas, Gian Candrian, Juri D. Kropotov, Valery A. Ponomarev, and Gian-Marco Baschera. "Classification of ADHD patients on the basis of independent ERP components using a machine learning system." Nonlinear Biomedical Physics 4, S1 (June 2010). http://dx.doi.org/10.1186/1753-4631-4-s1-s1.
Full textKulkarni, Anoop R., Ashwini A. Patel, Kanchan V. Pipal, Sujeet G. Jaiswal, Manisha T. Jaisinghani, Vidya Thulkar, Lumbini Gajbhiye, et al. "Machine-learning algorithm to non-invasively detect diabetes and pre-diabetes from electrocardiogram." BMJ Innovations, August 9, 2022, bmjinnov—2021–000759. http://dx.doi.org/10.1136/bmjinnov-2021-000759.
Full textSzymanski, Tomasz, Rachel Ashton, Sara Sekelj, Bruno Petrungaro, Kevin G. Pollock, Belinda Sandler, Steven Lister, Nathan R. Hill, and Usman Farooqui. "Budget impact analysis of a machine learning algorithm to predict high risk of atrial fibrillation among primary care patients." EP Europace, February 28, 2022. http://dx.doi.org/10.1093/europace/euac016.
Full textBurdick, Hoyt, Eduardo Pino, Denise Gabel-Comeau, Carol Gu, Jonathan Roberts, Sidney Le, Joseph Slote, et al. "Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals." BMC Medical Informatics and Decision Making 20, no. 1 (October 27, 2020). http://dx.doi.org/10.1186/s12911-020-01284-x.
Full textBrinkley, Catherine, and Carl Stahmer. "What Is in a Plan? Using Natural Language Processing to Read 461 California City General Plans." Journal of Planning Education and Research, March 9, 2021, 0739456X2199589. http://dx.doi.org/10.1177/0739456x21995890.
Full textLachmann, M., T. Trenkwalder, H. A. A. Covarrubias, E. Rippen, F. Schuermann, A. Presch, C. Ruff, et al. "Man-machine interaction-based phenotyping identifies pathophysiologically and prognostically informative clusters among patients with mitral regurgitation undergoing transcatheter edge-to-edge repair." European Heart Journal 43, Supplement_2 (October 1, 2022). http://dx.doi.org/10.1093/eurheartj/ehac544.1568.
Full textGianquintieri, L., M. Malavolti, S. Ferrante, and E. G. Caiani. "Development and validation of an automated tool to scan scientific literature for the use of specific technologies in the field of cardiology." European Heart Journal 41, Supplement_2 (November 1, 2020). http://dx.doi.org/10.1093/ehjci/ehaa946.3555.
Full text