Academic literature on the topic '5-a]pyridine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '5-a]pyridine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "5-a]pyridine"

1

Yao, Jin-hua, Lan-fang Wang, Bing Guo, Kang An, and Jian-ning Guan. "Ethyl 5-methylimidazo[1,2-a]pyridine-2-carboxylate." Acta Crystallographica Section E Structure Reports Online 66, no. 8 (2010): o1999. http://dx.doi.org/10.1107/s1600536810026577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Macor, John E., Ronald Post, and Kevin Ryan. "A synthesis of 5-carboxamidopyrrolo[3,2-b]pyridine." Journal of Heterocyclic Chemistry 29, no. 6 (1992): 1465–67. http://dx.doi.org/10.1002/jhet.5570290616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ronen, Zeev, and Jean-Marc Bollag. "Pyridine metabolism by a denitrifying bacterium." Canadian Journal of Microbiology 37, no. 10 (1991): 725–29. http://dx.doi.org/10.1139/m91-125.

Full text
Abstract:
A denitrifying bacterium capable of pyridine degradation was isolated from contaminated soil. The Gram-negative bacterium, which was identified as an Alcaligenes sp., rapidly metabolized pyridine under anaerobic conditions with nitrate as electron acceptor. [14C]Pyridine was converted to 14CO2, unidentified polar metabolic products, and labeled biomass. During pyridine metabolism, nitrate was reduced to nitrogen gas via nitrite and nitrous oxide. The molar ratio of pyridine to nitrate strongly affected pyridine metabolism. Maximum pyridine degradation occurred at a nitrate concentration above
APA, Harvard, Vancouver, ISO, and other styles
4

Quiroga, Jairo, Yurina Díaz, Justo Cobo, and Christopher Glidewell. "Hydrogen-bonded assembly in six closely related pyrazolo[3,4-b]pyridine derivatives; a simple chain, three types of chains of rings and a complex sheet structure." Acta Crystallographica Section C Crystal Structure Communications 68, no. 1 (2011): o12—o18. http://dx.doi.org/10.1107/s0108270111050207.

Full text
Abstract:
Six closely related pyrazolo[3,4-b]pyridine derivatives, namely 6-chloro-3-methyl-1,4-diphenylpyrazolo[3,4-b]pyridine-5-carbaldehyde, C20H14ClN3O, (I), 6-chloro-3-methyl-4-(4-methylphenyl)-1-phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde, C21H16ClN3O, (II), 6-chloro-4-(4-chlorophenyl)-3-methyl-1-phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde, C20H13Cl2N3O, (III), 4-(4-bromophenyl)-6-chloro-3-methyl-1-phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde, C20H13BrClN3O, (IV), 6-chloro-4-(4-methoxyphenyl)-3-methyl-1-phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde, C21H16ClN3O2, (V), and 6-chloro-3-methyl-4-(4-n
APA, Harvard, Vancouver, ISO, and other styles
5

Yamano, Kimiaki, and Haruhisa Shirahama. "Clitidine 5′-mononucleotide, a toxic pyridine nucleotide from Clitocybe acromelalga." Phytochemistry 35, no. 4 (1994): 897–99. http://dx.doi.org/10.1016/s0031-9422(00)90634-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Podhorez, David E. "Stepwise approach to the 2,3-dihydroimidazo[1,2-a]pyridine and 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine ring systems." Journal of Heterocyclic Chemistry 28, no. 4 (1991): 971–76. http://dx.doi.org/10.1002/jhet.5570280422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Channapur, Manjunath, Roger Hall, Jilali Kessabi, Mark Montgomery, and Ashok Shyadligeri. "Synthesis of 6-Chloro-5-(trifluoroacetyl)pyridine-3-carbonitrile: A Novel, Versatile Intermediate for the Synthesis of Trifluoromethylated Azaindazole Derivatives." Synlett 30, no. 09 (2019): 1057–60. http://dx.doi.org/10.1055/s-0037-1611815.

Full text
Abstract:
A synthesis of 6-chloro-5-(trifluoroacetyl)pyridine-3-carbonitrile, a versatile building block for the synthesis of trifluoromethylated N-heterocycles, is described. The reactions of 6-chloro-5-(trifluoroacetyl)pyridine-3-carbonitrile with 1,2- and 1,3-bisnucleophiles were investigated.
APA, Harvard, Vancouver, ISO, and other styles
8

Barraclough, Paul, Ramachandran Iyer, John C. Lindon, and Janet M. Williams. "An adventitious synthesis of a 5-methylimidazo[4,5-c]pyridine derivative." Tetrahedron Letters 27, no. 49 (1986): 5997–6000. http://dx.doi.org/10.1016/s0040-4039(00)85382-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Jiong, Yan-qing Ge, Gui-long Zhao, and Jian-wu Wang. "Ethyl 6-methyl-2-p-tolylpyrazolo[1,5-a]pyridine-5-carboxylate." Acta Crystallographica Section E Structure Reports Online 65, no. 10 (2009): o2372. http://dx.doi.org/10.1107/s1600536809035314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Dongheng, Yufei Tian, and Yongmin Ma. "Preparation of 5-Functionalised Pyridine Derivatives using a Br/Mg Exchange Reaction: Application to the Synthesis of an Iron-Chelator Prodrug." Journal of Chemical Research 41, no. 11 (2017): 627–30. http://dx.doi.org/10.3184/174751917x15094552081134.

Full text
Abstract:
A novel preparation of 5-functionalised pyridine derivatives is reported from 5-bromo-4-tosyloxypyridines via a Br/Mg exchange procedure with i-PrMgCl·LiCl, followed by addition of an electrophile. The reaction was carried out under mild conditions and gave good to high yields. The resulting 5-functionalised pyridine derivatives enrich the library of pyridinone-type iron-chelator prodrugs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "5-a]pyridine"

1

Tber, Zahira. "L'imidazo[1,2-a]pyridine : fonctionnalisation et synthèse des nouveaux polyhétérocycles." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2021.

Full text
Abstract:
Les préparations de composés comportant un noyau imidazo[1,2-a]pyridinique constituent un thème de recherche important en synthèse organique, compte tenu des nombreuses activités biologiques qu’ils peuvent présenter. Dans la première partie, nous nous sommes concentrés sur le développement de nouvelles stratégies rapides et efficaces basées sur l’utilisation de cuivre et de fer pour fonctionnaliser la position 6 du cycle imidazo[1,2-a]pyridine avec diverses amines et divers thiols. Ensuite, nous avons appliqué avec succès cette procédure pour la préparation de thioéthers symétriques et dissymé
APA, Harvard, Vancouver, ISO, and other styles
2

Nordqvist, Anneli. "Hit Identification and Hit Expansion in Antituberculosis Drug Discovery : Design and Synthesis of Glutamine Synthetase and 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Inhibitors." Doctoral thesis, Uppsala universitet, Avdelningen för organisk farmaceutisk kemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-155428.

Full text
Abstract:
Since the discovery of Mycobacterium tuberculosis (Mtb) as the bacterial agent causing tuberculosis, the permanent eradication of this disease has proven challenging. Although a number of drugs exist for the treatment of tuberculosis, 1.7 million people still die every year from this infection. The current treatment regimen involves lengthy combination therapy with four different drugs in an effort to combat the development of resistance. However, multidrug-resistant and extensively drug-resistant strains are emerging in all parts of the world. Therefore, new drugs effective in the treatment o
APA, Harvard, Vancouver, ISO, and other styles
3

Μαζαρακιώτη, Ελένη. "Σύμπλοκες ενώσεις του καδμίου(ΙΙ) και των λανθανιδίων(ΙΙΙ) με οξιμικούς, υδραζονικούς και ετεροκυκλικούς υποκαταστάτες". Thesis, 2013. http://hdl.handle.net/10889/6199.

Full text
Abstract:
Ο αρχικός στόχος της εργασίας μας ήταν η παρασκευή ετερομεταλλικών συμπλόκων Cd(II)/Ln(III) [Ln=λανθανίδιο] για να μελετηθούν οι φωτοφυσικές τους ιδιότητες. Διάφορα συστήματα αντιδράσεων Cd(II)/Ln(III)/οργανικός υποκαταστάτης έδωσαν μόνο ομομεταλλικές ενώσεις Cd(II) ή Pr(III).Χρησιμοποιώντας διάφορα αντιδρώντα Cd(II) και Pr(NO3)3∙6H2O, παρασκευάστηκαν τα ακόλουθα σύμπλοκα: [CdCl2(PhpaoH)]n (1), [Cd(O2CMe)2(NH2paoH)2] (2), [Cd(ΝΟ3)2(tzpy)2] (3), [CdI2(tzpy)2] (4), [Pr(ΝΟ3)3(tzpy)2]∙tzpy (5∙tzpy), [Cd4(NO3)4{(py)2C(H)(O)}4] (6) [(py)2C(H)(O)- είναι το ανιόν της δι-2-πυρίδυλο μεθανόλης που σχημ
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "5-a]pyridine"

1

Liu, Yan, Tianyi Shang, Chuanming Xu, Hui Yang, Peng Yu, and Kui Lu. "A Novel One-Pot Five-Component Synthesis of Tetrahydro-pyrrolo[3,4-b]pyridine-5-one via Ugi/Aza-Diels–Alder Tandem Reaction." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46318-5_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ragan, John A. "Development and Scale-Up of a Heterocyclic Cross-Coupling for the Synthesis of 5-[2-(3-Methyl-3H-imidazol-4-yl)-thieno[3,2-b]pyridine-7-yl] amino-2-methyl-1H-indole." In Fundamentals of Early Clinical Drug Development. John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470043407.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Taber, Douglass F. "Heteroaromatic Construction: The Fukuyama Synthesis of Tryprostatin A." In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0067.

Full text
Abstract:
Alessandro Palmieri of the University of Camerino developed (Synlett 2010, 2468) the condensation of a nitro acrylate 1 with a 1,3-dicarbonyl partner 2 to give the furan 3. Chaozhong Li of the Shanghai Institute of Organic Chemistry showed (Tetrahedron Lett. 2010, 51, 3678) that an alkenyl halide 4 could be cyclized to the furan 5. Ayhan S. Demir of Middle East Technical University established (Chem. Commun. 2010, 46, 8032) that a Au catalyst could catalyze the addition of an amine 7 to a cyanoester 6 to give the pyrrole 8 . Bruce A. Arndtsen of McGill University effected (Org. Lett. 2010, 12, 4916) the net three-component coupling of an imine 9, an acid chloride 10, and an alkyne 11 to deliver the pyrrole 12. Bernard Delpech of CNRS Gif-sur-Yvette prepared (Org. Lett. 2010, 12, 4760) the pyridine 15 by combining the diene 13 with the incipient carbocation 14. Max Malacria, Vincent Gandon, and Corinne Aubert of UPMC Paris optimized (Synlett 2010, 2314) the internal Co-mediated cyclization of a nitrile alkyne 5 to the tetrasubstituted pyridine 17. Yoshiaki Nakao of Kyoto University and Tamejiro Hiyama, now at Chuo University, effected (J. Am. Chem. Soc. 2010, 132, 13666) selective substitution of a preformed pyridine 18 at the C-4 position by coupling with an alkene 19. We showed (J. Org. Chem. 2010, 75, 5737) that the anion from deprotonation of a pyridine 21 could be added in a conjugate sense to 22 to give 23. Other particularly useful strategies for further substitution of preformed pyridines have been described by Olafs Daugulis of the University of Houston (Org. Lett. 2010, 12, 4277), by Phil S. Baran of Scripps/La Jolla (J. Am. Chem. Soc. 2010, 132, 13194), and by Robert G. Bergmann of the University of California, Berkeley, and Jonathan A. Ellman of Yale University (J. Org. Chem. 2010, 75, 7863). K. C. Majumdar of the University of Kalyani developed (Tetrahedron Lett. 2010, 51, 3807) the oxidative Pd-catalyzed cylization of 24 to the indole 25. Nan Zheng of the University of Arkansas showed (Org. Lett. 2010, 12, 3736) that Fe could be used to catalyze the rearrangement of the azirine 26 to the indole 27.
APA, Harvard, Vancouver, ISO, and other styles
4

Taber, Douglass F. "Heteroaromatic Construction: The Li Synthesis of Mycoleptodiscin A." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0068.

Full text
Abstract:
Kyungsoo Oh of Chung-Ang University cyclized (Org. Lett. 2015, 17, 450) the chloro enone 1 with NBS to the furan 2. Hongwei Zhou of Zhejiang University acylated (Adv. Synth. Catal. 2015, 357, 389) the imine 3, leading to the furan 4. H. Surya Prakash Rao of Pondicherry University found (Synlett 2014, 26, 1059) that under Blaise conditions, exposure of 5 to three equivalents of 6 led to the pyrrole 7. Yoshiaki Nishibayashi of the University of Tokyo and Yoshihiro Miyake, now at Nagoya University, prepared (Chem. Commun. 2014, 50, 8900) the pyrrole 10 by adding the silane 9 to the enone 8. Barry M. Trost of Stanford University developed (Org. Lett. 2015, 17, 1433) the phosphine-mediated cyclization of 11 to an intermediate that on brief exposure to a Pd catalyst was converted to the pyridine 12. Nagatoshi Nishiwaki of the Kochi University of Technology added (Chem. Lett. 2015, 44, 776) the dinitrolactam 14 to the enone 13 to give the pyridine 15. Metin Balci of the Middle East Technical University assembled (Org. Lett. 2015, 17, 964) the tricyclic pyridine 18 by adding propargyl amine 17 to the aldehyde 16. Chada Raji Reddy of the Indian Institute of Chemical Technology cyclized (Org. Lett. 2015, 17, 896) the azido enyne 19 to the pyridine 20 by simple exposure to I2. Björn C. G. Söderberg of West Virginia University used (J. Org. Chem. 2015, 80, 4783) a Pd catalyst to simultaneously reduce and cyclize 21 to the indole 22. Ranjan Jana of the Indian Institute of Chemical Biology effected (Org. Lett. 2015, 17, 672) sequential ortho C–H activation and cyclization, adding 23 to 24 to give the 2-substituted indole 25. In a complementary approach, Debabrata Maiti of the Indian Institute of Technology Bombay added (Chem. Eur. J. 2015, 21, 8723) 27 to 26 to give the 3-substituted indole 28. In a Type 8 construction, Nobutaka Fujii and Hiroaki Ohno of Kyoto University employed (Chem. Eur. J. 2015, 21, 1463) a gold catalyst to add 30 to 29, leading to 31.
APA, Harvard, Vancouver, ISO, and other styles
5

Taber, Douglass F. "Heteroaromatic Synthesis: The Tokuyama Synthesis of (−)-Rhazinilam." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0066.

Full text
Abstract:
Mei-Huey Lin of the National Changhua University of Education rearranged (J. Org. Chem. 2014, 79, 2751) the initial allene derived from 1 to the γ-chloroenone. Displacement with acetate followed by hydrolysis led to the furan 2. A. Stephen K. Hashmi of Ruprecht-Karls-Universität Heidelberg showed (Angew. Chem. Int. Ed. 2014, 53, 3715) that the Au-catalyzed conversion of the bis alkyne 3, mediated by 4, proceeded selectively to give 5. Tehshik P. Yoon of the University of Wisconsin used (Angew. Chem. Int. Ed. 2014, 53, 793) visible light with a Ru catalyst to rearrange the azide 6 to the pyrrole 7. Cheol-Min Park, now at UNIST, found (Chem. Sci. 2014, 5, 2347) that a Ni catalyst reorganized the methoxime 8 to the pyrrole 9. A Rh catalyst converted 8 to the corresponding pyridine (not illustrated). In the course of a synthesis of opioid ligands, Kenner C. Rice of the National Institute on Drug Abuse optimized (J. Org. Chem. 2014, 79, 5007) the preparation of the pyridine 11 from the alcohol 10. Vincent Tognetti and Cyrille Sabot of the University of Rouen heated (J. Org. Chem. 2014, 79, 1303) 12 and 13 under micro­wave irradiation to give the 3-hydroxy pyridine 14. Tomislav Rovis of Colorado State University prepared (J. Am. Chem. Soc. 2014, 136, 2735) the pyridine 17 by the Rh-catalyzed combination of 15 with 16. Fabien Gagosz of the Ecole Polytechnique rearranged (Angew. Chem. Int. Ed. 2014, 53, 4959) the azirine 18, readily available from the oxime of the β-keto ester, to the pyridine 19. Matthias Beller of the Universität Rostock used (Chem. Eur. J. 2014, 20, 1818) a Zn catalyst to mediate the opening of the epoxide 21 with the aniline 20. A Rh cata­lyst effected the oxidation and cyclization of the product amino alcohol to the indole 22. Sreenivas Katukojvala of the Indian Institute of Science Education & Research showed (Angew. Chem. Int. Ed. 2014, 53, 4076) that the diazo ketone 23 could be used to anneal a benzene ring onto the pyrrole 24, leading to the 2,7-disubstituted indole 25.
APA, Harvard, Vancouver, ISO, and other styles
6

Taber, Douglass F. "Heteroaromatic Construction: The Jia Synthesis of (-)- cis -Clavicipitic Acid." In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0065.

Full text
Abstract:
Simultaneously, Aaran Aponick of the University of Florida (Organic Lett. 2009, 11, 4624) and Shuji Akai of the University of Shizuoka (Organic Lett. 2009, 11, 5002) reported the Au-mediate conversion of a propargylic diol such as 1 to the furan 2. Pyrroles can also be prepared using the same protocol. Jason K. Sello of Brown University developed (Organic Lett. 2009, 11, 2984) the direct aldol condensation of an acetoacetate 3 with the protected 1,3-dihydroxy acetone 4 to give 5, the methyl ester of a methylenomycin furan (MMF) bacterial-signaling molecule from Streptomyces coelicolor. Nobuharu Iwasawa of the Tokyo Institute of Technology demonstrated (Angew. Chem. Int. Ed. 2009, 48, 8318) that the imine 6 was sufficiently nucleophilic to react with the Rh vinylidene derived from the alkyne 7, leading to the pyrrole 8. Min Shi of the Shanghai Institute of Organic Chemistry extended (J. Org. Chem. 2009, 74, 5983) the reactivity of methylene cyclopropanes to the condensation of the aldehyde 9 with an acyl hydrazide, to give the pyrrole 11. Xue-Long Hou, also of the Shanghai Institute of Organic Chemistry, described (Tetrahedron Lett. 2009, 50, 6944) the Au-mediated reorganization of the alkynyl aziridine 12 to the pyrrole 13. Masahiro Yoshida of the University of Tokushima carried out (Tetrahedron Lett. 2009, 50, 6268) a similar rearrangement under oxidative conditions, giving the iodinated pyrrole 15. André M. Beauchemin of the University of Ottawa showed (Angew. Chem. Int. Ed. 2009, 48, 8325) that under acid catalysis, the oxime 16 cyclized to the pyridine 17. Shunsuke Chiba of Nanyang Technological University developed (J. Am. Chem. Soc. 2009, 131, 12570) the Mn(III)-mediated fusion of a cyclopropanol 18 with an alkenyl azide 19 to deliver the pyridine 20. Kazuaki Shimada of Iwate University found (Tetrahedron Lett. 2009, 50, 6651) that an isotellurazole such as 21, easily prepared from the corresponding alkyne, condensed with another alkyne 22, delivering the pyridine 23 with high regiocontrol. Christopher J. Moody of the University of Nottingham devised (Organic Lett. 2009, 11, 3686) a new route to the 1,2,4-triazine 24 from an α-diazoacetoacetate. He carried 24 on to the pyridine 26 by condensation with norbornadiene 25.
APA, Harvard, Vancouver, ISO, and other styles
7

Taber, Douglass F. "Heteroaromatic Construction: The Sato Synthesis of (–)-Herbindole." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0067.

Full text
Abstract:
Troels Skrydstrup of Aarhus University devised (Angew. Chem. Int. Ed. 2012, 51, 4681) a gold-catalyzed protocol for the condensation of 1 with 2 to deliver the furan 3. Thomas A. Moss of AstraZeneca Mereside found (Tetrahedron Lett. 2012, 53, 3056) that readily-available α-chloroaldehydes such as 4 could be combined with 5 to make the furan 6. This same approach can be used to assemble pyrroles. Yong-Qiang Tu and Shao-Hua Wang of Lanzhou University developed (J. Org. Chem. 2012, 77, 4167) a Pd-cascade cyclization that transformed the ester 7 into the pyrrole 8. Cheol-Min Park of the Nanyang Technological University rearranged (Chem. Commun. 2012, 48, 3996; J. Am. Chem. Soc. 2012, 134, 4104) the oxime ether 10 to the pyrrole 11. Glenn C. Micalizio of Scripps/Florida established (J. Am. Chem. Soc. 2012, 134, 1352) a Ti-mediated coupling of 12 with an aromatic aldehyde to deliver the pyridine 13. Yoichiro Kuninobu, now at the University of Tokyo, and Kazuhiko Takai of Okayama University observed (Org. Lett. 2012, 14, 3182) high regioselectivity in the Re-mediated condensation of 14 with 15 to give the pyridine 16. Douglas M. Mans of GlaxoSmithKline, King of Prussia, cyclized (Org. Lett. 2012, 14, 1604) the amide 17 to the oxazole (not illustrated), leading, after intramolecular 4+2 cycloaddition, to the pyridine 18. Karl Hemming of the University of Huddersfield combined (Org. Lett. 2012, 14, 126) the cyclopropenone 20 with the imine 19 to construct the pyridine 21. Shu-Jiang Tu of Xuzhou University and Guigen Li of Texas Tech University condensed (Org. Lett. 2012, 14, 700) enamine 22 with the aldehyde hydrate 23 to give the pyrrole 24, which should be readily aromatized to the corresponding indole. Biaolin Yin of the South China University of Technology cyclized (Org. Lett. 2012, 14, 1098) the furan 25 to the indole 26. Richmond Sarpong of the University of California, Berkeley rearranged (J. Am. Chem. Soc. 2012, 134, 9946) the alkynyl cyclopropane 27 to an intermediate that was aromatized to the indole 28. Stefan France of Georgia Tech uncovered (Angew. Chem. Int. Ed. 2012, 51, 3198) an In catalyst that rearranged the cyclopropene 29 to the indole 30.
APA, Harvard, Vancouver, ISO, and other styles
8

Taber, Douglass. "Preparation of Heteroaromatics." In Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0068.

Full text
Abstract:
Masahiro Yoshida of the University of Tokushima described (Tetrahedron Lett. 2008, 49, 5021) the Pt-mediated rearrangement of alkynyl oxiranes such as 1 to the furan 2. Roman Dembinski of Oakland University reported (J. Org. Chem. 2008, 73, 5881) a related zinc-mediated rearrangement of propargyl ketones to furans. The cyclization of aryloxy ketones such as 3 to the benzofuran 4 developed (Tetrahedron Lett. 2008, 49, 6579) by Ikyon Kim of the Korea Research Institute of Chemical Technology is likely proceeding by a Friedel-Crafts mechanism. Sandro Cacchi and Giancarlo Fabrizi of Università degli Studi “La Sapienza”, Roma, observed (Organic Lett. 2008, 10, 2629) that base converted the enamine 5 to the pyrrole 6. Alternatively, oxidation of 5 with CuBr led to a pyridine. Zhuang-ping Zhuan of Xiamen University prepared (Adv. Synth. Cat. 2008, 350, 2778) pyrroles such as 9 by condensing an alkynyl carbinol 7 with a 1,3-dicarbonyl compound. Richard C. Larock of Iowa State University found (J. Org. Chem. 2008, 73, 6666) that combination of an alkynyl ketone 10 with 11 followed by oxidation with I-Cl led to the pyrazole 12. The “click” condensation of azides with alkynes, leading to the 1,4-disubstituted 1,2,3- triazole, has proven to be a powerful tool for combinatorial synthesis. Valery V. Fokin of Scripps/La Jolla and Zhenyang Lin and Guochen Jia of the Hong Kong University of Science and Technology have developed (J. Am. Chem. Soc. 2008, 130, 8923) a complementary approach, using Ru catalysts to prepare 1,5-disubstituted 1,2,3- triazoles. Remarkably, internal alkynes participate, and, as in the conversion of 13 to 15, propargylic alcohols direct the regioselectivity of the cycloaddition. A variety of methods have been put forward for functionalizing pyridines. Sukbok Chang of KAIST described (J. Am. Chem. Soc. 2008, 130, 9254) the direct oxidative homologation of a pyridine N -oxide 16 to give the unsaturated ester 18. Jonathan Clayden of the University of Manchester observed (Organic Lett. 2008, 10, 3567) that metalation of 19 gave an anion that rearranged to 20 with complete retention of enantiomeric excess. Shigeo Katsumura of Kwansei Gakuin University developed (Tetrahedron Lett. 2008, 49, 4349) an intriguing three-component coupling, combining 21, 22, and methanesulonamide 23 to give the pyridine 24.
APA, Harvard, Vancouver, ISO, and other styles
9

Taber, Douglass. "Synthesis of Heteroaromatics." In Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0066.

Full text
Abstract:
Yasutaka Ishii of Kansai University has developed (J. Org. Chem. 2007, 72, 8820) a novel route to furans, using a mixed-metal catalyst to effect condensation of an aldehyde or 1,3 diketone such as 1 with an acceptor such as 2 to give the 3-furoate 3. In a complementary approach, Yong-Min Liang of Lanzhou University has found (J. Org. Chem. 2007, 72, 10276) that diazoacetate 5 will condense with an alkynyl ketone to give the 2-furoate 6. David W. Knight of Cardiff University has shown (Tetrahedron Lett. 2007, 48, 7709) that an alkynyl diol such as 7, readily available by dihydroxylation of the corrresponding alkenyl alkyne, cyclized to the furan on exposure to AgNO3 on silica gel. Professor Knight has also (Tetrahedron Lett. 2007, 48, 7906) established a route to poly-substituted pyrroles 10, by iodination of alkynyl sulfonamides such as 9. Similarly, Richard C. Larock of Iowa State University found (J. Org. Chem. 2007, 72, 9643) that I-Cl cyclized methoximes such as 11 to the corresponding iodo isoxazole 12, and Stephen L. Buchwald of MIT uncovered (Organic Lett. 2007, 9, 5521) the cyclization of an enamide such as 13 with I2 to the corresponding oxazole 14. In developing a more efficient route to a new class of materials that he has named “triazolamers”, Paramjit S. Arora of New York University was able (J. Org. Chem. 2007, 72, 7963) to effect diazo transfer to the amine 15 and subsequent condensation with 16 to give 17, without isolation of the intermediate azide. C. V. Asokan and E. R. Anabha of Mahatma Gandhi University have described (Tetrahedron Lett. 2007, 48, 5641) the activation of a ketone 18 followed by condensation with malononitrile 19 to give the pyridine 20. Hans-Ulrich Reissig of the Freie Universität Berlin has established (Organic Lett. 2007, 9, 5541) a complementary three-component coupling of a nitrile 21 with the allenyl anion 22, followed by a carboxylic acid 23 to deliver the pyridine 24. Akio Saito and Yuji Hanzawa of the Showa Pharmaceutical University have reported (Tetrahedron Lett. 2007, 48, 6852) the intramolecular Rh-catalyzed cyclization of a methoxime lactone such as 25 to the pyridine 26.
APA, Harvard, Vancouver, ISO, and other styles
10

Taber, Douglass F. "Heteroaromatic Construction: The Sperry Synthesis of (+)-Terreusinone." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0066.

Full text
Abstract:
Akio Saito and Yuji Hanzawa of Showa Pharmaceutical University found (Tetrahedron Lett. 2011, 52, 4658) that an alkynyl keto ester 1 could be oxidatively cyclized to the furan 2. Eric M. Ferreira of Colorado State University showed (Org. Lett. 2011, 13, 5924) that depending on the conditions, a Pt catalyst could cyclize 3 to either 4 or 5. Shunsuke Chiba of Nanyang Technological University used (J. Am. Chem. Soc. 2011, 133, 13942) Cu catalysis for the oxidation of 6 to the pyrrole 7. Vladimir Gevorgyan of the University of Illinois at Chicago devised (Org. Lett. 2011, 13, 3746) a convergent assembly of the pyrrole 10 from the alkyne 8 and the alkyne 9. Dale L. Boger of Scripps La Jolla extended (J. Am. Chem. Soc. 2011, 133, 12285) the scope of the Diels-Alder addition of the triazine 11 to an alkyne 12 to give the pyridine 13. Tomislav Rovis, also of Colorado State University, used (Chem. Commun. 2011, 47, 11846) a Rh catalyst to add an alkyne 15 to the oxime 14 to give the pyridine 16. Sensuke Ogoshi of Osaka University, under Ni catalysis, added (J. Am. Chem. Soc. 2011, 133, 18018) a nitrile 18 to the diene 17 to give the pyridine 19. Alexander Deiters of North Carolina State University showed (Org. Lett. 2011, 13, 4352) that the complex tethered diyne 20 combined with 21 with high regiocontrol to give 22. Yong-Min Liang of Lanzhou University prepared (J. Org. Chem. 2011, 76, 8329) the indole 24 by cyclizing the alkyne 23. Xiuxiang Qi and Kang Zhao of Tianjin University found (J. Org. Chem. 2011, 76, 8690) that the enamine 25 could be oxidatively cyclized to the indole 26. Kazuhiro Yoshida and Akira Yanagisawa of Chiba University established (Org. Lett. 2011, 13, 4762) that ring-closing metathesis converted the keto ester 27 to the indole 28. Alessandro Palmieri and Roberto Ballini of the Università di Camerino observed (Adv. Synth. Catal. 2011, 353, 1425) that the pyrrole 30 spontaneously added to the nitro acrylate 29 to give an adduct that cyclized to 31 on exposure to acid.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "5-a]pyridine"

1

Asath, R. Mohamed, S. Premkumar, T. N. Rekha, A. Jawahar, T. Mathavan, and A. Milton Franklin Benial. "Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4948193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chai, Chaoyang, Qingzhi Su, and Feng Zhao. "Synthesis and Photophysical Properties of a Copper(I) Complex Emitting Material Containing 5-(9H-fluoren-2-yl)-2-(1H-imidazol-2-yl)Pyridine Ligand." In 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018). Atlantis Press, 2018. http://dx.doi.org/10.2991/iceep-18.2018.276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!