To see the other types of publications on this topic, follow the link: Abelian categories.

Journal articles on the topic 'Abelian categories'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Abelian categories.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pop, Flaviu. "Coplexes in abelian categories." Studia Universitatis Babes-Bolyai Matematica 62, no. 1 (March 1, 2017): 3–13. http://dx.doi.org/10.24193/subbmath.2017.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ebrahimi, Ramin, and Alireza Nasr-Isfahani. "Representation of n-abelian categories in abelian categories." Journal of Algebra 563 (December 2020): 352–75. http://dx.doi.org/10.1016/j.jalgebra.2020.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ZHENG, QILIAN, and JIAQUN WEI. "QUOTIENT CATEGORIES OF n-ABELIAN CATEGORIES." Glasgow Mathematical Journal 62, no. 3 (September 30, 2019): 673–705. http://dx.doi.org/10.1017/s0017089519000417.

Full text
Abstract:
AbstractThe notion of mutation pairs of subcategories in an n-abelian category is defined in this paper. Let ${\cal D} \subseteq {\cal Z}$ be subcategories of an n-abelian category ${\cal A}$. Then the quotient category ${\cal Z}/{\cal D}$ carries naturally an (n + 2) -angulated structure whenever $ ({\cal Z},{\cal Z}) $ forms a ${\cal D} \subseteq {\cal Z}$-mutation pair and ${\cal Z}$ is extension-closed. Moreover, we introduce strongly functorially finite subcategories of n-abelian categories and show that the corresponding quotient categories are one-sided (n + 2)-angulated categories. Finally, we study homological finiteness of subcategories in a mutation pair.
APA, Harvard, Vancouver, ISO, and other styles
4

Janelidze, George, László Márki, and Walter Tholen. "Semi-abelian categories." Journal of Pure and Applied Algebra 168, no. 2-3 (March 2002): 367–86. http://dx.doi.org/10.1016/s0022-4049(01)00103-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lyubashenko, V. "Ribbon Abelian Categories as Modular Categories." Journal of Knot Theory and Its Ramifications 05, no. 03 (June 1996): 311–403. http://dx.doi.org/10.1142/s0218216596000229.

Full text
Abstract:
A category N of labeled (oriented) trivalent graphs (nets) or ribbon graphs is extended by new generators called fusing, braiding, twist and switch with relations which can be called Moore-Seiberg relations. A functor to N is constructed from the category Surf of oriented surfaces with labeled boundary and their homeomorphisms. Given a (eventually non-semisimple) k-linear abelian ribbon braided category [Formula: see text] with some finiteness conditions we construct a functor from a central extension of N with the set of labels [Formula: see text] ObC to k-vector spaces. Composing the functors we get a modular functor from a central extension of Surfto k-vector spaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Amzil, Houda, Driss Bennis, J. R. García Rozas, Hanane Ouberka, and Luis Oyonarte. "Subprojectivity in Abelian Categories." Applied Categorical Structures 29, no. 5 (March 11, 2021): 889–913. http://dx.doi.org/10.1007/s10485-021-09638-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gillespie, James. "Hereditary abelian model categories." Bulletin of the London Mathematical Society 48, no. 6 (September 13, 2016): 895–922. http://dx.doi.org/10.1112/blms/bdw051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Panyue, and Bin Zhu. "n-Abelian quotient categories." Journal of Algebra 527 (June 2019): 264–79. http://dx.doi.org/10.1016/j.jalgebra.2019.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kálnai, Peter, and Jan Žemlička. "Compactness in abelian categories." Journal of Algebra 534 (September 2019): 273–88. http://dx.doi.org/10.1016/j.jalgebra.2019.05.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Xiao-Wu, and Henning Krause. "Expansions of abelian categories." Journal of Pure and Applied Algebra 215, no. 12 (December 2011): 2873–83. http://dx.doi.org/10.1016/j.jpaa.2011.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Richman, Fred. "Pre-abelian Clan Categories." Rocky Mountain Journal of Mathematics 32, no. 4 (December 2002): 1605–16. http://dx.doi.org/10.1216/rmjm/1181070043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kato, Toyonori, and Tamotsu Ikeyama. "Localization in Abelian Categories." Communications in Algebra 18, no. 8 (January 1990): 2519–40. http://dx.doi.org/10.1080/00927879008824036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Janelidze, Tamar. "Relative Semi-abelian Categories." Applied Categorical Structures 17, no. 4 (August 12, 2008): 373–86. http://dx.doi.org/10.1007/s10485-008-9155-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Yilin, and Guodong Zhou. "From short exact sequences of abelian categories to short exact sequences of homotopy categories and derived categories." Electronic Research Archive 30, no. 2 (2022): 535–64. http://dx.doi.org/10.3934/era.2022028.

Full text
Abstract:
<abstract><p>We show that a short exact sequence of abelian categories gives rise to short exact sequences of abelian categories of complexes, homotopy categories and unbounded derived categories, refining a result of J. Miyachi.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
15

Liu, Yu, and Panyue Zhou. "From n-exangulated categories to n-abelian categories." Journal of Algebra 579 (August 2021): 210–30. http://dx.doi.org/10.1016/j.jalgebra.2021.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zhou, Panyue, Jinde Xu, and Baiyu Ouyang. "Mutation pairs and quotient categories of Abelian categories." Communications in Algebra 45, no. 1 (October 11, 2016): 392–410. http://dx.doi.org/10.1080/00927872.2016.1175581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kalebogaz, Berke, and Derya Keskin Tütüncü. "(D4)-Objects in Abelian Categories." Algebra Colloquium 29, no. 02 (April 30, 2022): 231–40. http://dx.doi.org/10.1142/s1005386722000190.

Full text
Abstract:
Let 𝒜 be an abelian category and [Formula: see text]. Then M is called a [Formula: see text]-object if, whenever A and B are subobjects of M with [Formula: see text] and [Formula: see text] is an epimorphism, [Formula: see text] is a direct summand of A. In this paper we give several equivalent conditions of [Formula: see text]-objects in an abelian category. Among other results, we prove that any object M in an abelian category 𝒜 is [Formula: see text] if and only if for every subobject K of M such that K is the intersection [Formula: see text] of perspective direct summands [Formula: see text] and [Formula: see text] of M with [Formula: see text], every morphismr [Formula: see text] can be lifted to an endomorphism [Formula: see text] in [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
18

Pop, Flaviu. "Natural dualities between abelian categories." Central European Journal of Mathematics 9, no. 5 (May 26, 2011): 1088–99. http://dx.doi.org/10.2478/s11533-011-0048-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kvamme, Sondre. "Axiomatizing subcategories of Abelian categories." Journal of Pure and Applied Algebra 226, no. 4 (April 2022): 106862. http://dx.doi.org/10.1016/j.jpaa.2021.106862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schneiders, Jean-Pierre. "Quasi-abelian categories and sheaves." Mémoires de la Société mathématique de France 1 (1999): 1–140. http://dx.doi.org/10.24033/msmf.389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Crivei, Septimiu, M. Tamer Koşan, and Tülay Yildirim. "Regular morphisms in abelian categories." Journal of Algebra and Its Applications 18, no. 09 (July 17, 2019): 1950180. http://dx.doi.org/10.1142/s0219498819501809.

Full text
Abstract:
We establish some properties involving regular morphisms in abelian categories. We show a decomposition theorem on the image of a regular sum of morphisms, a characterization of regular morphisms in terms of consecutive pairs of morphisms, and a description of certain equivalent morphisms. We also generalize Ehrlich’s Theorem on one-sided unit regular morphisms by showing that if [Formula: see text] is an [Formula: see text]-regular object, then a morphism [Formula: see text] is left (right) unit regular if and only if there exists a split monomorphism (epimorphism) [Formula: see text]. We also study regular morphisms determined by generalized inverses in additive categories.
APA, Harvard, Vancouver, ISO, and other styles
22

Xu, Jinde, Panyue Zhou, and Baiyu Ouyang. "Mutation Pairs in Abelian Categories." Communications in Algebra 44, no. 7 (June 2016): 2732–46. http://dx.doi.org/10.1080/00927872.2015.1053900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lowen, Wendy, and Michel Van den Bergh. "Deformation theory of abelian categories." Transactions of the American Mathematical Society 358, no. 12 (December 1, 2006): 5441–84. http://dx.doi.org/10.1090/s0002-9947-06-03871-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mozgovoy, Sergey. "Quiver representations in abelian categories." Journal of Algebra 541 (January 2020): 35–50. http://dx.doi.org/10.1016/j.jalgebra.2019.08.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Becerril, Víctor, Octavio Mendoza, Marco A. Pérez, and Valente Santiago. "Frobenius pairs in abelian categories." Journal of Homotopy and Related Structures 14, no. 1 (May 17, 2018): 1–50. http://dx.doi.org/10.1007/s40062-018-0208-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sather-Wagstaff, Sean, Tirdad Sharif, and Diana White. "Gorenstein cohomology in abelian categories." Journal of Mathematics of Kyoto University 48, no. 3 (2008): 571–96. http://dx.doi.org/10.1215/kjm/1250271384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gentle, Ronald. "T.T.F. theories in abelian categories." Communications in Algebra 16, no. 5 (January 1988): 877–908. http://dx.doi.org/10.1080/00927878808823609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Baues, Hans-Joachim, and Mamuka Jibladze. "Classification of Abelian Track Categories." K-Theory 25, no. 3 (March 2002): 299–311. http://dx.doi.org/10.1023/a:1015607114629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Grimeland, Benedikte, and Karin Marie Jacobsen. "Abelian quotients of triangulated categories." Journal of Algebra 439 (October 2015): 110–33. http://dx.doi.org/10.1016/j.jalgebra.2015.04.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Janelidze, Tamar. "Incomplete Relative Semi-Abelian Categories." Applied Categorical Structures 19, no. 1 (March 17, 2009): 257–70. http://dx.doi.org/10.1007/s10485-009-9193-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Franjou, Vincent, and Teimuraz Pirashvili. "Comparison of abelian categories recollements." Documenta Mathematica 9 (2004): 41–56. http://dx.doi.org/10.4171/dm/156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rump, Wolfgang. "Flat covers in abelian and in non-abelian categories." Advances in Mathematics 225, no. 3 (October 2010): 1589–615. http://dx.doi.org/10.1016/j.aim.2010.03.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

der Linden, Tim Van. "Simplicial homotopy in semi-abelian categories." Journal of K-Theory 4, no. 2 (September 4, 2008): 379–90. http://dx.doi.org/10.1017/is008008022jkt070.

Full text
Abstract:
AbstractWe study Quillen's model category structure for homotopy of simplicial objects in the context of Janelidze, Márki and Tholen's semi-abelian categories. This model structure exists as soon as is regular Mal'tsev and has enough regular projectives; then the fibrations are the Kan fibrations of S. When, moreover, is semi-abelian, weak equivalences and homology isomorphisms coincide.
APA, Harvard, Vancouver, ISO, and other styles
34

Coulembier, Kevin. "Monoidal abelian envelopes." Compositio Mathematica 157, no. 7 (June 24, 2021): 1584–609. http://dx.doi.org/10.1112/s0010437x21007399.

Full text
Abstract:
We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.
APA, Harvard, Vancouver, ISO, and other styles
35

Gao, Nan, Steffen Koenig, and Chrysostomos Psaroudakis. "Ladders of recollements of abelian categories." Journal of Algebra 579 (August 2021): 256–302. http://dx.doi.org/10.1016/j.jalgebra.2021.02.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Hongxing, and Changchang Xi. "Derived decompositions of abelian categories I." Pacific Journal of Mathematics 312, no. 1 (August 4, 2021): 41–74. http://dx.doi.org/10.2140/pjm.2021.312.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rump, Wolfgang. "*-MODULES, TILTING, AND ALMOST ABELIAN CATEGORIES." Communications in Algebra 29, no. 8 (June 30, 2001): 3293–325. http://dx.doi.org/10.1081/agb-100105023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Crivei, Septimiu, and Gabriela Olteanu. "Strongly Rickart objects in abelian categories." Communications in Algebra 46, no. 10 (March 8, 2018): 4326–43. http://dx.doi.org/10.1080/00927872.2018.1439046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schäppi, Daniel. "Which abelian tensor categories are geometric?" Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 734 (January 1, 2018): 145–86. http://dx.doi.org/10.1515/crelle-2014-0053.

Full text
Abstract:
AbstractFor a large class of geometric objects, the passage to categories of quasi-coherent sheaves provides an embedding in the 2-category of abelian tensor categories. The notion of weakly Tannakian categories introduced by the author gives a characterization of tensor categories in the image of this embedding.However, this notion requires additional structure to be present, namely a fiber functor. For the case of classical Tannakian categories in characteristic zero, Deligne has found intrinsic properties—expressible entirely within the language of tensor categories—which are necessary and sufficient for the existence of a fiber functor. In this paper we generalize Deligne’s result to weakly Tannakian categories in characteristic zero. The class of geometric objects whose tensor categories of quasi-coherent sheaves can be recognized in this manner includes both the gerbes arising in classical Tannaka duality and more classical geometric objects such as projective varieties over a field of characteristic zero.Our proof uses a different perspective on fiber functors, which we formalize through the notion of geometric tensor categories. A second application of this perspective allows us to describe categories of quasi-coherent sheaves on fiber products.
APA, Harvard, Vancouver, ISO, and other styles
40

Parra, Carlos E., and Jorge Vitória. "Properties of abelian categories via recollements." Journal of Pure and Applied Algebra 223, no. 9 (September 2019): 3941–63. http://dx.doi.org/10.1016/j.jpaa.2018.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bourn, Dominique, and Marino Gran. "Central extensions in semi-abelian categories." Journal of Pure and Applied Algebra 175, no. 1-3 (November 2002): 31–44. http://dx.doi.org/10.1016/s0022-4049(02)00127-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhou, Panyue. "A note on abelian quotient categories." Journal of Algebra 551 (June 2020): 1–8. http://dx.doi.org/10.1016/j.jalgebra.2020.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

di Micco, Davide, and Tim Van der Linden. "Compatible actions in semi-abelian categories." Homology, Homotopy and Applications 22, no. 2 (2020): 221–50. http://dx.doi.org/10.4310/hha.2020.v22.n2.a14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Becerril, Victor, Octavio Mendoza, and Valente Santiago. "Relative Gorenstein objects in abelian categories." Communications in Algebra 49, no. 1 (September 10, 2020): 352–402. http://dx.doi.org/10.1080/00927872.2020.1800023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Futorny, Vyacheslav, Marcos Jardim, and Adriano A. Moura. "On Moduli Spaces for Abelian Categories." Communications in Algebra 36, no. 6 (May 27, 2008): 2171–85. http://dx.doi.org/10.1080/00927870801949708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Anh, P. N. "An Embedding Theorem for Abelian Categories." Journal of Algebra 167, no. 3 (August 1994): 627–33. http://dx.doi.org/10.1006/jabr.1994.1205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zheng, Junling, Xin Ma, and Zhaoyong Huang. "The Extension Dimension of Abelian Categories." Algebras and Representation Theory 23, no. 3 (February 19, 2019): 693–713. http://dx.doi.org/10.1007/s10468-019-09861-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gran, Marino, George Janelidze, and Aldo Ursini. "Weighted commutators in semi-abelian categories." Journal of Algebra 397 (January 2014): 643–65. http://dx.doi.org/10.1016/j.jalgebra.2013.07.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gran, Marino, and Stephen Lack. "Semi-localizations of semi-abelian categories." Journal of Algebra 454 (May 2016): 206–32. http://dx.doi.org/10.1016/j.jalgebra.2016.01.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Vallette, Bruno. "Free Monoid in Monoidal Abelian Categories." Applied Categorical Structures 17, no. 1 (March 7, 2008): 43–61. http://dx.doi.org/10.1007/s10485-008-9130-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography