To see the other types of publications on this topic, follow the link: Academic Drinking Water.

Dissertations / Theses on the topic 'Academic Drinking Water'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 dissertations / theses for your research on the topic 'Academic Drinking Water.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Webb, David W. "WATER QUALITY VARIATIONS DURING NITRIFICATION IN DRINKING WATER DISTRIBUTION SYSTEMS." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4492.

Full text
Abstract:
This thesis documents the relationship among the major water quality parametersduring a nitrification episode. Nitrification unexpectedly occurred in a chloraminated pilotdrinking water distribution system practicing with a 4.0 mg/L as Cl[subscript 2] residual dosed at 4.5:1Cl[subscript 2]:NH[subscript 3]-N. Surface, ground and sea water were treated and disinfected withmonochloramines to produce finished water quality similar to regional utility water quality.PVC, galvanized, unlined cast iron and lined iron pipes were harvested from regionaldistribution systems and used to build eighteen pilot distribution systems (PDSs). The PDSswere operated at a 5-day hydraulic residence time (HRT) and ambient temperatures.As seasonal temperatures increased the rate of monochloramine dissipation increaseduntil effluent PDS residuals were zero. PDSs effluent water quality parameters chloraminesresidual, dissolved oxygen, heterotrophic plate counts (HPCs), pH, alkalinity, and nitrogenspecies were monitored and found to vary as expected by stoichiometry associated withtheoretical biological reactions excepting alkalinity. Nitrification was confirmed in thePDSs. The occurrence in the PDSs was not isolated to any particular source water.Ammonia for nitrification came from degraded chloramines, which was common among allfinished waters. Consistent with nitrification trends of dissolved oxygen consumption,ammonia consumption, nitrite and nitrate production were clearly observed in the PDSs bulkwater quality profiles. Trends of pH and alkalinity were less apparent. To controlnitrification: residual was increased to 4.5 mg/L as Cl[subscript 2] at 5:1 Cl[subscript 2]:NH[subscript 3]-N dosing ratio, and theHRT was reduced from 5 to 2 days. Elimination of the nitrification episode was achieved after a 1 week free chlorine burn.<br>M.S.<br>Department of Civil and Environmental Engineering<br>Engineering and Computer Science<br>Civil and Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
2

Heitz, Anna. "Malodorous dimethylpolysulfides in Perth drinking water." Curtin University of Technology, Department of Applied Chemistry, 2002. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=12576.

Full text
Abstract:
The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; Wajon et al, 1988). These authors established that the odour, variously described as "swampy", "sewage" or "cooked vegetable" was caused by dimethyltrisulfide (DMTS) which has an odour threshold concentration of 10 nanograms per litre (ng/L). Investigations described in the present Thesis extend the work of Wajon and co-workers in attempting to establish the origin and cause of DMTS formation in Perth drinking water distribution systems.The DMTS problem appeared to be confined to water originating from a particular type of groundwater, specifically groundwater sourced from shallow, unconfined aquifers, which contain relatively high concentrations of sulfide, dissolved natural organic matter (NOM) and dissolved iron. DMTS was not present in the groundwater, but only formed in the distribution system, after treatment of groundwater via alum coagulation-filtration and oxidation processes. One objective of the present work was to determine the reasons for the observed association between DMTS formation and this specific groundwater type. A primary focus was to investigate the chemistry and biochemistry of sulfur species and NOM which might act as precursors to DMTS. The work was driven by the view that increased understanding of the problem might lead to more effective and acceptable treatment solutions than those presently in use.The observation that DMTS forms in distributed water that originates from groundwater, but not in water from surface sources has led to the hypothesis that groundwater NOM may contain precursor(s) to DMTS For example, it was proposed that methyl esters and ethers within humic substances might be a source of methyl groups that ++<br>could participate in DMTS formation in distributed water (Wajon and Heitz, 1995; Wajon and Wilmot, 1992). Further, comparison of levels of reduced sulfur with levels of dissolved organic carbon (DOC) in groundwaters feeding Wanneroo GWTP revealed that a positive correlation between these two parameters existed. This observation provided further impetus to examine the nature of NOM in these groundwater systems. In the present study (discussed in Chapter 3), NOM from two Perth drinking water sources was isolated and characterised, with the aim of identifying major differences in structure and/or functional groups that might influence DMTS formation. NOM was isolated from water samples using ultrafiltration, and characterised using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and offline- thermochemolysis/methylation (TCM). Pyrolysis of groundwater NOM yielded a high proportion of organosulfur compounds, primarily methyl thiophenes and sulfur gases, but did not yield detectable amounts of methoxy-aromatic compounds. Analysis by TCM yielded sulfur compounds tentatively identified as the methyl esters of methylthiopropanoate and methylthiobutanoate, compounds that may arise as degradation products of dimethylsulfoniopropionate (DMSP), an algal odmoregulator Compounds such as DMPS could potentially undergo reactions to form DMTS in distributed water.The task of investigating the formation of nanogram-per-litre concentrations of DMTS demanded the development of new analytical procedures that could be used to determine similarly low concentrations of DMTS precursors. Evidence existed to suggest that inorganic polysulfides could be plausible precursor compounds, and since no technique existed to analyse and quantify individual polysulfide homologues a new technique needed to be developed and verified. The technique, first used in a semiquantitative manner by ++<br>Wajon and Heitz (1995), utilizes methyl iodide to derivatise polysulfides in-situ. The technique was developed further and shown to be quantitative and specific for inorganic polysulfides. Further, a new procedure for the determination of d i methyl polysulfides (DMPSs; CH3SnCH3, where n = 2-5), based on purge and trap was developed. In this new procedure analytes were trapped on a "Grob" activated charcoal tube, which was integrated into a commercially available, automated purge and trap instrument. Perdeuterated analogues of the DMPS analytes were synthesized and used as internal standards. These modifications resulted in a more rapid and robust procedure than the previously used procedures, vii which were based on closed loop stripping analysis (CLSA). Validation of the precision, accuracy, linearity and robustness of the new procedures for both inorganic polysulfides and dimethylpolysulfides is described in Chapter 4.Previous authors (Wajon and Heitz, 1995; Wajon and Wilmot, 1992; Wilmot and Wajon, 1997) hypothesized that DMTS could arise in the distribution system from residual polysulfides or other reduced sulfur compounds originating from groundwater. The latter authors showed that a small proportion of sulfide in the groundwater was not completely oxidised to sulfate during the water treatment process and proposed that this residual reduced sulfur fraction, which they referred to as non-sulfide reduced sulfur (NSRS) could contain precursors to DMTS. In a review of the chemistry of sulfide oxidation (Chapter 2) it was shown that the most likely forms of sulfur comprising the NSRS that enters the Wanneroo distribution system are organosulfur compounds and elemental sulfur, probably associated with organic matter in the form of a sulfur sol.Analysis of inorganic polysulfides in treated water, using the newly described method in Chapter 4, revealed that small ++<br>amounts of these compounds (20-80 ng/L) were occasionally present in some samples. However, it was concluded that, since inorganic polysulfides could not survive water treatment processes, these compounds probably arose from traces of biofilm or pipe sediment that may have entered the water during sampling. It was proposed that the presence of biofilm particulates in water samples probably also accounted for observations that DMTS appeared to form in some water samples during storage of the sample. These studies are discussed in Chapter 5.The primary method of control of DMTS formation in the distribution system has been to maintain free chlorine residuals. However, the mechanisms by which this occurs have not been studied; the effectiveness of DMTS oxidation by chlorine, or how chlorine affects microbial processes that might form DMTS is not known. These issues are addressed in the final section of Chapter 5. Experiments to determine the effectiveness of oxidation of dimethyldisulfide (DMDS) and DIVITS (5 mu g/L) by free chlorine (0.2 to 0.6 mg/L) in distributed water showed that these substances are rapidly and completely oxidised in water containing a chlorine residual of more than 0.4 mg/L. However, slow regeneration of traces of DMDS and DIVITS after dissipation of free chlorine to non-detectable levels showed that these compounds were incompletely oxidised at the lower chlorine concentrations~ This provides some rationale for field observations that DIVITS occurs even where low, but measurable, chlorine residuals appear to exist (<0.2 mg/L).As was established in a review of the chemistry of reduced sulfur compounds Chapter 2), reducing conditions not present in the oxic bulk water are required for DMTS to form and to persist. It was therefore proposed that microbial reduction processes could generate anoxic microniches in the distribution system, within which ++<br>DMTS production could occur. This hypothesis was investigated in Chapter 6; the new methods for analysis of organic and inorganic polysulfides were applied to the study of biofilms and deposits of colloidal material found in distribution pipes and storage reservoirs. The study demonstrated that these materials contained concentrations of methylated and inorganic polysulfides four to six orders of magnitude higher than those ever found in the bulk water phase. The results indicated that reducing conditions most probably exist within the biofilms and pipewall deposits, where these polysulfides were formed. The iron-rich pipe slimes appeared to protect the sulfur compounds against the oxidative effects of chlorine and dissolved oxygen. It was concluded that the organic and inorganic polysulfides most probably arise through microbial sulfate reduction processes that occur in anoxic microenvironments within the slimes and deposits.Microbial processes that lead to the formation of polysulfides and dimethylpolysuifides under conditions approximately representative of those in distribution systems were investigated in work described in Chapter 7. The aim of this work was to investigate the role of biofilms in the formation of DMTS and to determine the nature of chemical precursors which might stimulate these processes. Biofilms, artificially generated on synthetic supports within chambers filled with water from Wanneroo GWTP, were exposed to compounds thought to be potential DMTS precursors. The response of the systems in terms of production of methylated sulfur compounds was monitored. Conclusions of the study were that, under the test conditions, production of DMDS and DMTS could occur via several mechanisms and that these dimethyloligosulfides could be formed even without the addition of compounds containing sulfur or methyl moieties. DMTS did not form in the absence of ++<br>biofilms and it was therefore concluded that minimisation of biofilm activity was a key in preventing DMTS formation. Outcomes of the work imply that environments within distribution systems are complex and dynamic, as perhaps manifested by the intermittent nature of the DMTS problem.Finally, in Chapter 8 the conclusions to the present studies are summarised. It is shown how they underpin the rationale for proposed new treatment solutions aimed at preventing DMTS problems in the Wanneroo zone, primarily by minimising microbial activity and biofilm formation within distribution systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Heitz, Anna. "Malodorous dimethylpolysulfides in Perth drinking water." Thesis, Curtin University, 2002. http://hdl.handle.net/20.500.11937/2162.

Full text
Abstract:
The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; Wajon et al, 1988). These authors established that the odour, variously described as "swampy", "sewage" or "cooked vegetable" was caused by dimethyltrisulfide (DMTS) which has an odour threshold concentration of 10 nanograms per litre (ng/L). Investigations described in the present Thesis extend the work of Wajon and co-workers in attempting to establish the origin and cause of DMTS formation in Perth drinking water distribution systems.The DMTS problem appeared to be confined to water originating from a particular type of groundwater, specifically groundwater sourced from shallow, unconfined aquifers, which contain relatively high concentrations of sulfide, dissolved natural organic matter (NOM) and dissolved iron. DMTS was not present in the groundwater, but only formed in the distribution system, after treatment of groundwater via alum coagulation-filtration and oxidation processes. One objective of the present work was to determine the reasons for the observed association between DMTS formation and this specific groundwater type. A primary focus was to investigate the chemistry and biochemistry of sulfur species and NOM which might act as precursors to DMTS. The work was driven by the view that increased understanding of the problem might lead to more effective and acceptable treatment solutions than those presently in use.The observation that DMTS forms in distributed water that originates from groundwater, but not in water from surface sources has led to the hypothesis that groundwater NOM may contain precursor(s) to DMTS For example, it was proposed that methyl esters and ethers within humic substances might be a source of methyl groups that could participate in DMTS formation in distributed water (Wajon and Heitz, 1995; Wajon and Wilmot, 1992). Further, comparison of levels of reduced sulfur with levels of dissolved organic carbon (DOC) in groundwaters feeding Wanneroo GWTP revealed that a positive correlation between these two parameters existed. This observation provided further impetus to examine the nature of NOM in these groundwater systems. In the present study (discussed in Chapter 3), NOM from two Perth drinking water sources was isolated and characterised, with the aim of identifying major differences in structure and/or functional groups that might influence DMTS formation. NOM was isolated from water samples using ultrafiltration, and characterised using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and offline- thermochemolysis/methylation (TCM). Pyrolysis of groundwater NOM yielded a high proportion of organosulfur compounds, primarily methyl thiophenes and sulfur gases, but did not yield detectable amounts of methoxy-aromatic compounds. Analysis by TCM yielded sulfur compounds tentatively identified as the methyl esters of methylthiopropanoate and methylthiobutanoate, compounds that may arise as degradation products of dimethylsulfoniopropionate (DMSP), an algal odmoregulator Compounds such as DMPS could potentially undergo reactions to form DMTS in distributed water.The task of investigating the formation of nanogram-per-litre concentrations of DMTS demanded the development of new analytical procedures that could be used to determine similarly low concentrations of DMTS precursors. Evidence existed to suggest that inorganic polysulfides could be plausible precursor compounds, and since no technique existed to analyse and quantify individual polysulfide homologues a new technique needed to be developed and verified. The technique, first used in a semiquantitative manner by Wajon and Heitz (1995), utilizes methyl iodide to derivatise polysulfides in-situ. The technique was developed further and shown to be quantitative and specific for inorganic polysulfides. Further, a new procedure for the determination of d i methyl polysulfides (DMPSs; CH3SnCH3, where n = 2-5), based on purge and trap was developed. In this new procedure analytes were trapped on a "Grob" activated charcoal tube, which was integrated into a commercially available, automated purge and trap instrument. Perdeuterated analogues of the DMPS analytes were synthesized and used as internal standards. These modifications resulted in a more rapid and robust procedure than the previously used procedures, vii which were based on closed loop stripping analysis (CLSA). Validation of the precision, accuracy, linearity and robustness of the new procedures for both inorganic polysulfides and dimethylpolysulfides is described in Chapter 4.Previous authors (Wajon and Heitz, 1995; Wajon and Wilmot, 1992; Wilmot and Wajon, 1997) hypothesized that DMTS could arise in the distribution system from residual polysulfides or other reduced sulfur compounds originating from groundwater. The latter authors showed that a small proportion of sulfide in the groundwater was not completely oxidised to sulfate during the water treatment process and proposed that this residual reduced sulfur fraction, which they referred to as non-sulfide reduced sulfur (NSRS) could contain precursors to DMTS. In a review of the chemistry of sulfide oxidation (Chapter 2) it was shown that the most likely forms of sulfur comprising the NSRS that enters the Wanneroo distribution system are organosulfur compounds and elemental sulfur, probably associated with organic matter in the form of a sulfur sol.Analysis of inorganic polysulfides in treated water, using the newly described method in Chapter 4, revealed that small amounts of these compounds (20-80 ng/L) were occasionally present in some samples. However, it was concluded that, since inorganic polysulfides could not survive water treatment processes, these compounds probably arose from traces of biofilm or pipe sediment that may have entered the water during sampling. It was proposed that the presence of biofilm particulates in water samples probably also accounted for observations that DMTS appeared to form in some water samples during storage of the sample. These studies are discussed in Chapter 5.The primary method of control of DMTS formation in the distribution system has been to maintain free chlorine residuals. However, the mechanisms by which this occurs have not been studied; the effectiveness of DMTS oxidation by chlorine, or how chlorine affects microbial processes that might form DMTS is not known. These issues are addressed in the final section of Chapter 5. Experiments to determine the effectiveness of oxidation of dimethyldisulfide (DMDS) and DIVITS (5 mu g/L) by free chlorine (0.2 to 0.6 mg/L) in distributed water showed that these substances are rapidly and completely oxidised in water containing a chlorine residual of more than 0.4 mg/L. However, slow regeneration of traces of DMDS and DIVITS after dissipation of free chlorine to non-detectable levels showed that these compounds were incompletely oxidised at the lower chlorine concentrations~ This provides some rationale for field observations that DIVITS occurs even where low, but measurable, chlorine residuals appear to exist (<0.2 mg/L).As was established in a review of the chemistry of reduced sulfur compounds Chapter 2), reducing conditions not present in the oxic bulk water are required for DMTS to form and to persist. It was therefore proposed that microbial reduction processes could generate anoxic microniches in the distribution system, within which DMTS production could occur. This hypothesis was investigated in Chapter 6; the new methods for analysis of organic and inorganic polysulfides were applied to the study of biofilms and deposits of colloidal material found in distribution pipes and storage reservoirs. The study demonstrated that these materials contained concentrations of methylated and inorganic polysulfides four to six orders of magnitude higher than those ever found in the bulk water phase. The results indicated that reducing conditions most probably exist within the biofilms and pipewall deposits, where these polysulfides were formed. The iron-rich pipe slimes appeared to protect the sulfur compounds against the oxidative effects of chlorine and dissolved oxygen. It was concluded that the organic and inorganic polysulfides most probably arise through microbial sulfate reduction processes that occur in anoxic microenvironments within the slimes and deposits.Microbial processes that lead to the formation of polysulfides and dimethylpolysuifides under conditions approximately representative of those in distribution systems were investigated in work described in Chapter 7. The aim of this work was to investigate the role of biofilms in the formation of DMTS and to determine the nature of chemical precursors which might stimulate these processes. Biofilms, artificially generated on synthetic supports within chambers filled with water from Wanneroo GWTP, were exposed to compounds thought to be potential DMTS precursors. The response of the systems in terms of production of methylated sulfur compounds was monitored. Conclusions of the study were that, under the test conditions, production of DMDS and DMTS could occur via several mechanisms and that these dimethyloligosulfides could be formed even without the addition of compounds containing sulfur or methyl moieties. DMTS did not form in the absence of biofilms and it was therefore concluded that minimisation of biofilm activity was a key in preventing DMTS formation. Outcomes of the work imply that environments within distribution systems are complex and dynamic, as perhaps manifested by the intermittent nature of the DMTS problem.Finally, in Chapter 8 the conclusions to the present studies are summarised. It is shown how they underpin the rationale for proposed new treatment solutions aimed at preventing DMTS problems in the Wanneroo zone, primarily by minimising microbial activity and biofilm formation within distribution systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Puil Michael. "BIOSTABILITY IN DRINKING WATER DISTRIBUTION SYSTEMS STUDY AT PILOT-SCALE." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4388.

Full text
Abstract:
Biostability and related issues (e.g. nitrification) were investigated for 18 months in 18 pilot distribution systems, under various water quality scenarios. This study specifically investigated the impact of steady-state water changes on HPC levels in chlorinated and chloraminated distribution systems. Chlorination was more effective than chloramination in reducing HPC levels (1-2 log difference). There was a rapid increase in HPC corresponding to the change in steady-state water quality, which was observed in all PDS. Modeling effort demonstrated that HPC levels reached a maximum within five days after water quality change and return to initial level ten days after the change. Since alkalinity was used as a tracer of the steady-state water quality change, time to reach maximum HPC was related to a mixing model using alkalinity as a surrogate that confirmed alkalinity transition was complete in approximately eight days. Biostability was assessed by HPC levels, since no coliform were ever detected. It was observed that HPC levels would be above four logs if residual droped below 0.1-0.2 mg/L as Cl?, which is below the regulatory minimum of 0.6 mg/L as Cl?. Therefore bacterial proliferation is more likely to be controlled in distribution systems as long as residual regulatory requirements are met. An empirical modeling effort showed that residual, pipe material and temperature were the most important parameters in controlling HPC levels in distribution systems, residual being the only parameter that can be practically used by utilities to control biological stability in their distribution systems. Use of less reactive (i.e. with less chlorine demand) pipes is recommended in order to prevent residual depletion and subsequent bacterial proliferation.This study is investigated biofilm growth simultaneously with suspended growth under a wide range of water quality scenarios and pipe materials. It was found that increasing the degree of treatment led to reduction of biofilm density, except for reverse osmosis treated groundwater, which exerted the highest biofilm density of all waters. Biofilm densities on corrodible, highly reactive materials (e.g. unlined cast iron and galvanized steel) were significantly greater than on PVC and lined cast iron. Biofilm modeling showed that attached bacteria were most affected by temperature and much less by HRT, bulk HPC and residual. The model predicts biofilms will always be active for environments common to drinking water distribution systems. As American utilities do not control biofilms with extensive and costly AOC reduction, American utilities must maintain a strong residual to maintain biological integrity and stability in drinking water distribution systems.Nitrite and nitrate were considered the most suitable indicators for utilities to predict onset of a nitrification episode in the distribution system bulk liquid. DO and ammonia were correlated to production of nitrite and nitrate and therefore could be related to nitrification. However since ammonia and DO consumptions can be caused by other phenomena than nitrification (e.g. oxidation by disinfectant to nitrite and reduction at the pipe wall, respectively), these parameters are not considered indicators of nitrification.Ammonia-Oxidizing Bacteria (AOB) densities in the bulk phase correlated well with nitrite and nitrate production, reinforcing the fact that nitrite and nitrate are good monitoring tools to predict nitrification. Chloramine residual proved to be helpful in reducing nitrification in the bulk phase but has little effect on biofilm densities. As DO has been related to bacterial proliferation and nitrification, it can be a useful and inexpensive option for utilities in predicting biological instability, if monitored in conjunction with residual, nitrite and nitrate. Autotrophic (i.e. AOB) and heterotrophic (i.e. HPC) organisms were correlated in the bulk phase and biofilms.<br>Ph.D.<br>Department of Civil and Environmental Engineering<br>Engineering and Computer Science<br>Civil and Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Suibing. "NITRIFICATION INVESTIGATION AND MODELING IN THE CHLORAMINATED DRINKING WATER DISTRIBUTION SYSTEM." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4465.

Full text
Abstract:
This dissertation consists of five papers concerning nitrification in chloraminated drinking water distribution systems in a one and a half year field study. Seven finished waters were produced from different treatment processes and distributed to eighteen pilot distribution systems (PDSs) that were made pipes taken from actual distribution systems. Unlined cast iron (UCI), galvanized steel (G), lined cast iron (LCI), and PVC pipes were used to build the PDSs. All finished waters were stabilized and chloraminated before entering the PDSs. This dissertation consists of five major parts. (1) System variations of nitrates, nitrites, DO, pH, alkalinity, temperature, chloramine residuals and hydraulic residence times (HRT) during biological nitrification are interrelated and discussed relative to nitrification, which demonstrated Stoichiometric relationships associated with conventional biochemical nitrification reactions. Ammonia is always released when chloramines are used for residual maintenance in drinking water distribution systems, which practically insures the occurrence of biological nitrification to some degree. Biological nitrification was initiated by a loss of chloramine residual brought about by increasing temperatures at a five day HRT, which was accompanied by DO loss and slightly decreased pH. Ammonia increased due to chloramine decomposition and then decreased as nitrification began. Nitrites and nitrates increased initially with time after the chloramine residual was lost but decreased if denitrification began. Dissolved oxygen limited nitrifier growth and nitrification. No significant alkalinity variation was observed during nitrification. Residual and nitrites are key parameters for monitoring nitrification in drinking water distribution systems. (2) Using Monod kinetics, a steady state plug-flow kinetics model was developed to describe the variations of ammonia, nitrite and nitrate-N concentrations in a chloraminated distribution system. Active AOB and NOB biomass in the distribution system was determined using predictive equations within the model. The kinetic model used numerical analysis and was solved by C language to predict ammonia, nitrite, nitrate variation. (3) Nitrification control strategies were investigated during an unexpected episode and controlled study in a field study. Once nitrification began, increasing chloramine dose from 4.0 to 4.5 mg/L as Cl? and Cl?:N ratio from 4/1 to 5/1 did not stop nitrification. Nitrification was significantly reduced but not stopped, when the distribution system hydraulic retention time was decreased from 5 to 2 days. A free chlorine burn for one week at 5 mg/L Cl? stopped nitrification. In a controlled nitrification study, nitrification increased with increasing free ammonia and Cl?:N ratios less than 5. Flushing with increased chloramine concentration reduced nitrification, but varying flush frequency from 1 to 2 weeks had no effect on nitrification. (4) HPC variations in a chloraminated drinking water distribution system were investigated. Results showed average residual and temperature were the only water quality variables shown to affect HPC change at a five day distribution system hydraulic residence time was five days. Once nitrification began, HPC change was correlated to HRT, average residual and generated nitrite-N in the distribution system. (5) Biostability was assessed for water treatment processes and distribution system pipe by AOCs, BDOCs, and HPCs of the bulk water, and by PEPAs of the attached biofilms. All membrane finished waters were more likely to be biologically stable as indicated by lower AOCs. RO produced the lowest AOC. The order of biofilm growth by pipe material was UCI > G > LCI > PVC. Biostability decreased as temperature increased.<br>Ph.D.<br>Department of Civil and Environmental Engineering<br>Engineering and Computer Science<br>Civil and Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
6

Schiffman, Sara. "Sodium (Na) Levels in Drinking Water (H20) and Development of Hypertension in Children." Honors in the Major Thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/962.

Full text
Abstract:
This integrative review of the literature focused on sodium (Na) content in drinking water (H?O) supplies and the subsequent effect on blood pressure levels in children. Studies for this review were drawn from the Cumulative Index of Nursing and Allied Health, PubMED, Science and Technology Databases, PsychInfo, United States (US) Environmental Protection Agency (EPA) and EPA in Florida websites. Criterion for inclusion in the data base searches were hypertension, high blood pressure, sodium in drinking water, drinking water salinity, children or preg'. Subsequently, further article selection criteria included children (under 18 years of age) and published in the English language (N=59). Findings of the review as summarized in this thesis could guide nursing research, education, policy and practice related to primary, secondary and tertiary interventions associated with sodium levels in drinking as a contributing factor to blood pressure levels in children.<br>B.S.N.<br>Bachelors<br>Nursing<br>Nursing
APA, Harvard, Vancouver, ISO, and other styles
7

Prapinpongsanone, Natthaphon. "Rule-based decision support system for sensor deployment in drinking water networks." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5020.

Full text
Abstract:
Drinking water distribution systems are inherently vulnerable to malicious contaminant events with environmental health concerns such as total trihalomethanes (TTHMs), lead, and chlorine residual. In response to the needs for long-term monitoring, one of the most significant challenges currently facing the water industry is to investigate the sensor placement strategies with modern concepts of and approaches to risk management. This study develops a Rule-based Decision Support System (RBDSS) to generate sensor deployment strategies with no computational burden as we oftentimes encountered via large-scale optimization analyses. Three rules were derived to address the efficacy and efficiency characteristics and they include: 1) intensity, 2) accessibility, and 3) complexity rules. To retrieve the information of population exposure, the well-calibrated EPANET model was applied for the purpose of demonstration of vulnerability assessment. Graph theory was applied to retrieve the implication of complexity rule eliminating the need to deal with temporal variability. In case study 1, implementation potential was assessed by using a small-scale drinking water network in rural Kentucky, the United States with the sensitivity analysis. The RBDSS was also applied to two networks, a small-scale and large-scale network, in "The Battle of the Water Sensor Network" (BWSN) in order to compare its performances with the other models. In case study 2, the RBDSS has been modified by implementing four objective indexes, the expected time of detection (Z1), the expected population affected prior to detection (Z2), the expected consumption of contaminant water prior to detection, and the detection likelihood (Z4), are being used to evaluate RBDSS's performance and compare to other models in Network 1 analysis in BWSN. Lastly, the implementation of weighted optimization is applied to the large water distribution analysis in case study 3, Network 2 in BWSN.<br>ID: 029809979; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Errors in paging: p. 46 followed by 57-84; page number 64 repeats.; Thesis (M.S.Env.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 80-84).<br>M.S.Env.E.<br>Masters<br>Civil, Environmental and Construction Engineering<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
8

Stone, Erica. "Development of a Novel Membrane Process for the Immediate Production of Drinking Water from Varying Quality Aqueous Sources." Honors in the Major Thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1002.

Full text
Abstract:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf.edu/Systems/DigitalInitiatives/DigitalCollections/InternetDistributionConsentAgreementForm.pdf You may also contact the project coordinator, Kerri Bottorff, at kerri.bottorff@ucf.edu for more information.<br>Bachelors<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
9

Booi, Xolelwa. "Perfluorinated compounds and trihalomethanes in drinking water sources of the Western Cape, South Africa." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/863.

Full text
Abstract:
Thesis submitted in partial fulfilment of the requirements for the degree of MAGISTER TECHNOLOGIAE: CHEMICAL ENGINEERING in the FACULTY OF ENGINEERING at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY 2013<br>This study focused on quantifying two types of internationally regulated contaminants found in drinking water: 1) Trihalomethanes (THMs) and 2) Perfluorinated compounds (PFCs). The first contaminants monitored were THMs, classified as a group of chemicals that are formed along with others during the disinfection of water using liquid chlorine, chlorine dioxide or chlorine gas. Hence, the resulting compounds are called disinfection by-products (DBPs). The disinfectant reacts with natural organic matter in water to form common THMs, which include chloroform (CHCl3 or CF), bromodichloromethane (CHCl2Br or BDCM), dibromochloromethane (CHClBr2 or DBCM) and bromoform (CHBr3 or BF), with chloroform being the most common in chlorinated water systems. The current study has focused on THMs for two primary reasons: 1) THMs have raised significant concern as a result of evidence that associate their presence in drinking water with potential adverse human health effects, including cancer and 2) the levels of THMs in drinking water post-treatment is not monitored regularly in South Africa and thus far, there is inadequate and limited information about their concentration levels for drinking water treatment plants (DWTPs) and distribution stations (DWDSs) of the Western Cape, South Africa before, distribution to various suburbs, including townships. THMs normally occur at higher levels than any other known DBPs and their presence in treated water is a representative of the occurrence of many other DBPs. THMs were quantified in chlorinated drinking water obtained from seven (7) DWTPs, namely; Atlantis, Blackheath, Faure, Brooklands, Steenbras, Voelvlei and Wemmershoek, and one DWDS in Plattekloof. This included determining THMs concentration in tap water collected from various suburbs including townships, to assist local authorities in obtaining information on their concentration and whether or not the presence of residual chlorine and organic matter on post-treatment results has increased THMs at the point of use. THM analysis was performed using liquid-liquid extraction/gas chromatography with electron capture detector (LLE-GC-ECD) analytical process according to the EPA method 501.2, which was used with minor modifications. The instrument operational conditions were as follows: Column → DB5-26, 30 mm, 0.53 mm, 1.0 μm df HP-1 (Agilent Technologies, USA); Carrier gas → Helium at a constant inlet pressure of 15 kPa; Make-up gas → 99.9% Nitrogen gas at 60 L/min; Injector temperature → 40°C; Oven temperature → 270°C and Detector temperature → 300°C. Since natural organic matter (NOM) in raw water is a precursor for THM formation, NOM analysis was performed as total organic carbon (TOC) using Spectroquant TOC test kits. Other drinking water quality parameters analysed were pH, residual free chlorine, conductivity and total dissolved solids (TDS). The average Total THM concentrations detected from seven of the DWTPs, including the DWDS, ranged from 26.52 μg/L (for Plattekloof) to 32.82 μg/L (for Brooklands), with the observed concentrations being comparable. The average chloroform concentrations were the highest in all the water samples, ranging from 11.74 μg/L (for Plattekloof) to 22.29 μg/L (for Voelvlei), while DBCM had the lowest concentration. The only DWTP that was not comparable with the seven DWTPs was Atlantis, with the highest average TTHM concentration of 83.48 μg/L and a chloroform concentration of 46.06 μg/L. From the tap water samples collected from 14 Western Cape suburbs, the average TTHM concentrations ranged from 5.30 ug/L (for Mandalay) to 13.12 μg/L (for Browns Farm, Philippi), and all these concentrations were lower than the TTHM concentrations detected in the water samples from the DWTP. Overall, the average total THM and individual THM species concentrations were below the recommended SANS 241:2011 and WHO drinking water guideline limits. This included the observed pH (6.39 to 7.73), residual free chlorine (0.22 to 1.06 mg/L), conductivity (121 to 444 μS/cm), TDS (93.93 to 344.35 mg/L) and TOC (0.38 to 1.20 mg/L). All these water quality parameters were within the specification limits stipulated in SANS 241. However, the average residual free chlorine concentration for Atlantis was very low (0.06 mg/L), which was below the WHO minimum residual free chlorine concentration guideline value of 0.2 mg/L for a distribution network – an indication that suggested the need for a re-chlorination station prior to distribution to households. Low chlorine content might result in the formation of unwanted biofilms in the distribution network, thus reducing the organoleptic properties of the water. Additionally, there was no direct link between several water quality parameters quantified (i.e. pH, TOC and water temperature) to TTHM formation. However, a high chlorine dose was observed to result directly in a higher concentration of chloroform in treated water prior to distribution. The second contaminants monitored were Perfluorinated compounds (PFCs), which are non-biodegradable, persistent and toxic organic chemicals known for their ability to contaminate environmental matrices, including drinking water sources. In recent years, many researchers considered it essential to identify and quantify PFC levels in drinking water worldwide with the main focus being on the two most abundant PFCs; namely Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS). Their toxic effects to human health, plants and wildlife were also evaluated, classifying them as possible carcinogens. We know from the literature reviewed that, although the presence of PFCs in drinking water has been documented worldwide, there is limited information about their presence specifically in South African drinking water sources, even about less studied PFCs such as Perfluoroheptanoic acid (PFHpA), Perfluorododecanoic acid (PFDoA), Perfluorononanoic acid (PFNA), Perfluoroundecanoic acid (PFUA), Perfluorodecanoic acid (PFDeA) and the well-known PFOA including PFOS. Although several other PFCs have been detected in water sources and reported in various studies, the USEPA only issued drinking water guideline limits for Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) of 400 ng/L and 200 ng/L, respectively, with no mention of the other PFCs. However, these PFCs have similar properties to those of PFOA and PFOS as they have been shown to impose similar detrimental health effects on human health. This study thus focused on the detection of PFCs in both raw and treated drinking water in the Western Cape DWTPs such as Atlantis, Blackheath, Faure, Brooklands, Steenbras, Voelvlei and Wemmershoek, and one DWDS in Plattekloof. Water samples (raw and treated water) used in this study for PFC analysis were collected in 2L polypropylene screw capped bottles. PFC analysis was performed in four sample batches for each location collected through the period of October to December 2012 (summer). PFCs were analysed in accordance with a modified EPA method 537, which entails solid phase extraction (SPE) followed by analysis using a liquid chromatography/tandem mass spectrometer (LC/MS/MS). The slight modification was with the water sample volume used for extraction, which was increased from 250 mL to 500 mL. The instrument used was an HPLC - Ultimate 3000 Dionex HPLC system and MS model - Amazon SL Ion Trap, with the following MS/MS operational conditions and Ion mode: MS Interface → ESI; Dry temp → 350C; Nebulizing pressure → 60 psi; Dry gas flow → 10 L/min; Ionisation mode → negative; capillary voltage → +4500V; End plate offset → −500V while the separation column was a Waters Sunfire C18, 5 μm, 4.6 × 150 mm column (Supplier: Waters, Dublin, Ireland) with an operational temperature of 30C. From the results obtained in this study, seven different PFCs (i.e. PFHpA, PFDoA, PFNA, PFUA, PFDeA, PFOA and PFOS), were detected in raw and treated water with PFOA and PFOS being the least detected PFCs as they were detected only in raw water (PFOA) from Faure, as well as raw and treated water (PFOS) from Brooklands. The highest concentration observed in treated water was for PFHpA, which was quantified at a maximum average concentration of 43.80 ng/L (Plattekloof). The maximum average concentrations of other PFCs detected were as follows: PFDoA - 4.415 ng/L for Faure raw water; PFNA - 2.922 ng/L for Plattekloof outlet; PFUA - 7.965 ng/L for Brooklands treated water and PFDeA - 2.744 ng/L for Faure raw water. Another observation from the results was that the concentration of the majority of the PFCs detected in treated water was higher than that quantified in raw water, suggesting possible contamination by materials used during water treatment. In conclusion, THMs detected in treated water from various DWTPs and one DWDS in the Western Cape met the required local and international drinking water quality guidelines, while the presence of PFOS, PFOA, PFHpA, PFDoA, PFNA, PFUA and PFDeA in treated water requires that local water professionals continue to monitor their presence to ensure that measures for their reduction are in place. Furthermore, the National standards (SANS 241) for municipal drinking water guidelines must be updated to include the monitoring of PFCs, including the lesser known and less studied PFCs such as PFHpA, PFDoA, PFNA, PFUA and PFDeA.
APA, Harvard, Vancouver, ISO, and other styles
10

Ratikane, Mosepeli. "Quality of drinking water sources in the Bloemfontein area of the Mangaung Metropolitan Municipality." Thesis, Bloemfontein : Central University of Technology, Free State, 2013. http://hdl.handle.net/11462/210.

Full text
Abstract:
Thesis (M. Tech. (Environmental Health)) -- Central University of technology, Free State, 2013<br>Introduction: Drinking water of poor quality can cause a variety of diseases and may even result in death. The impact of poor drinking water is a course for concern even in South Africa. Therefore, the physical, chemical and microbiological drinking water quality was investigated in the peri-urban area of Bainsvlei and the Woodlands Hills Estate in Bloemfontein, Free State. Materials and Methods: The water quality was assessed in 20 identified sampling sites for three series with ten weeks apart. These sites use treated municipal and untreated borehole water for drinking. The determinants analysed for were pH, electrical conductivity (EC), turbidity, temperature, Ca, Mg, Na, F, Cl, N, SO₄,N, Free chlorine, Al, As, CN, Fe, Mn, Pb, Hg, total coliforms and E. coli. The water samples were collected and analysed on site and in the laboratory. Both the physical and chemical determinants were measured using standard methods whereas the microbiological determinants were measured using the Defined Substrate Technology (DST) method. The measurements were first compared to the SANS 241 (2011) for compliance. The ANOVA tests were used to investigate if any seasonal variations existed in the water quality as well as to compare the levels of the determinants between borehole and municipal water. In the assessment of the overall drinking water quality of different water sampling sites the water quality index (WQI) was used. Results and Discussions: Significant effects were believed to exist if the p-values of the ANOVA and Scheffe tests were at a significance level of 5% (p < 0.05). The study results revealed that of the four physical determinants that were measured turbidity exceeded the standard in many sampling sites in the three series. Of all the chemical determinants, nitrates exceeded the standard. In the same way coliforms exceeded the standard in a number of sampling sites while E. coli was found in a few sampling sites in the first series. ANOVA tests revealed that seasonal variations existed between pH, EC, temperature, cyanide and iron at a significant level of 5% (p < 0.05) while the Post-hoc Scheffe test further revealed the series in which the effect existed. Similarly, the ANOVA tests revealed that the levels of the determinants between municipal versus borehole varied in pH, EC, Ca, Mg, Na, F, Cl, N, and SO₄ at a significant level of 5% (p < 0.05). The WQI showed that in all the series when combining the good and excellent category season 2 had the highest percentage of 80%, followed by season 3 with 79% and season 1 with 70%. Only borehole sampling sites were found in the poor, very poor and unsuitable categories. Similarly all the highest WQI values were found in borehole sampling sites. Conclusion: This study revealed that the water quality is of good quality in the Bainsvlei and Woodlands Hills Estate of the Mangaung metropolitan municipality in Bloemfontein, in the Free State, South Africa. The presence of E. coli, though found in a few sampling sites and the high levels of turbidity, nitrates and coliforms are of concern to public health.
APA, Harvard, Vancouver, ISO, and other styles
11

Sharek, Robert Christopher. "Well characteristics influencing microscopic particulate analysis risk index." Master's thesis, University of Central Florida, 1998. http://digital.library.ucf.edu/cdm/ref/collection/RTD/id/57933.

Full text
Abstract:
University of Central Florida College of Engineering Thesis<br>Cryptosporidium parvum is a common surface water contaminant that can cause illness in human beings. The presence of this etiological agent in groundwater identifies the groundwater as under the direct influence (GWUDI) of surface water. Currently the determination of SWUDI water sources requires an expensive, labor-intensive laboratory procedure call the Microscopic Particulate Analysis (MPA). The results of the MPA provide a risk index that rates the degree of surface water contamination. The objective of this study is to identify other methods of identifying GWUDI of surface waters, such as well characteristics and hydrogeologic factors which may contribute to higher MPA risk indices. In order to determine which public water systems that are GWUDI, a total of sixty-two wells a water treatment systems suspected of bein GWUDI were investigated. The wells sampled were distributed across seven countried in the Central Florida region. Water samples were collected and analyzed at the Department of Health Laboratory in Tampa, Florida using the MPA. The study also investigated the well characteristics and the hydrogeology of the well locations. The results also showed that 13% of the wells sampled were in the high risk range while 29% and 58% of the wells sampled were within the moderate and low risk ranges, respectively. It was also observed that some well characteristics and the hydrogeology of an area generally influence the MPA risk index. The results also suggested that older well tend to have higher risk. Karst regions were observed to be susceptible to a higher risk than sandy areas.<br>M.S.<br>Masters<br>Civil and Environmental Engineering<br>Engineering<br>Water Resources Engineering<br>186 p.<br>xi, 186 leaves, bound : ill. ; 28 cm.
APA, Harvard, Vancouver, ISO, and other styles
12

Mamuse, Antony. "Fluoride contaminated drinking water in Gokwe District (NW Zimbabwe) : spatial distribution, lithostratigraphic controls and implications for human health /." Curtin University of Technology, Department of Applied Geology, 2003. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=15235.

Full text
Abstract:
The supply of drinking water in Gokwe District (NW Zimbabwe) is almost entirely based on groundwater drawn from boreholes and open dug wells. In certain areas of the district, the occurrence of dental fluorosis has been linked to excessive fluoride in the water supplies. A high prevalence of dental fluorosis (about 62%) was previously recorded among school children in the district. The aim of this study was to determine relationships between the spatial distribution of fluoride content in drinking water supplies in Gokwe, and lateral and vertical geological variation. A total of 224 water samples were collected from 196 water sources in the study area (a further 18 water sources just outside the study area were also sampled). All the samples were analysed for fluoride in the field using the fluoride ion selective electrode method (FISE). One hundred and fifty nine duplicate samples were analysed for fluoride and common anions and cations using High Performance Ion Chromatography (HPIC) in the laboratory. Two main groups of computer programmes were employed: (1) Geographic Information System (ArcView® GIS) was used to store, analyse and display multiple layers of surface geologic and geographic information, and (2) a three-dimensional visualisation programme (Rockworks) was used to interpret and illustrate site stratigraphy based on borehole information. Results indicated that the fluoride content of drinking water in the study area ranges from 0 to 9.65 mg/L. Forty-seven water sources (24%) yielded water containing fluoride in excess of the World Health Organisation's (WHO) health limit of 1.5 mg/L F. Of the 47 high fluoride water sources, 43 were boreholes (pumped or artesian). The shallower water sources (dug wells, streams and dams) largely yielded low-fluoride water.<br>The groundwater fluoride contamination is stratigraphically controlled and originates from carbonaceous material (carbonaceous shales, carbonaceous mudstones and coaly material) within the Lower Madumabisa and Middle Wankie Members of the Lower Karoo Group. It has been shown that in general the greater the proportion of carbonaceous material intersected by a borehole, the greater the fluoride concentration of the water. Probable mineral sources of fluoride within the carbonaceous material include fluorapatite, kaolinite and trona. Chemical parameters that appear to influence the concentration of dissolved F in the water supplies include total dissolved solids (TDS), NaCl and pH. In relatively low fluoride waters, F concentrations generally increase with TDS and NaCl concentrations, whereas the highest F concentrations are found in moderately alkaline (pH 7.8-9) waters. Based on ranges of fluoride concentration in drinking water, fluorosis-risk zones were identified and have been illustrated on a fluorosis-risk map. The zones are: No Risk Zone (0-1.5 mg/L F), Moderate Risk Zone (1.5-3.0 mg/L F), High Risk Zone (3.0-6.0 mg/L F) and the Very High Risk Zone (6.0-10.0 mg/L F). The map suggests that groundwater available to people occupying 3650 km z (60.8%) of the study area potentially contains excessive fluoride (F>1.5 mg/L), presaging the occurrence of dental fluorosis, skeletal fluorosis and crippling skeletal fluorosis in the area. Different strategies may be employed to ameliorate the fluoride problem in Gokwe.<br>These include sinking new boreholes to optimal depths and in appropriate locations, promoting the use of surface water and shallow groundwater, resettlement and defluoridation. However in order to fully understand the problem and to prescribe these or other solutions more comprehensively, multi-disciplinary studies may be required. Such studies may consider isotopic dating of water to investigate any relationships between fluoride concentration and residence time of water, geochemical analyses of rocks and soils, detailed fluorosis epidemiology studies and test-scale defluoridation investigations.
APA, Harvard, Vancouver, ISO, and other styles
13

Mamuse, Antony. "Fluoride contaminated drinking water in Gokwe District (NW Zimbabwe): spatial distribution, lithostratigraphic controls and implications for human health." Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/1266.

Full text
Abstract:
The supply of drinking water in Gokwe District (NW Zimbabwe) is almost entirely based on groundwater drawn from boreholes and open dug wells. In certain areas of the district, the occurrence of dental fluorosis has been linked to excessive fluoride in the water supplies. A high prevalence of dental fluorosis (about 62%) was previously recorded among school children in the district. The aim of this study was to determine relationships between the spatial distribution of fluoride content in drinking water supplies in Gokwe, and lateral and vertical geological variation. A total of 224 water samples were collected from 196 water sources in the study area (a further 18 water sources just outside the study area were also sampled). All the samples were analysed for fluoride in the field using the fluoride ion selective electrode method (FISE). One hundred and fifty nine duplicate samples were analysed for fluoride and common anions and cations using High Performance Ion Chromatography (HPIC) in the laboratory. Two main groups of computer programmes were employed: (1) Geographic Information System (ArcView® GIS) was used to store, analyse and display multiple layers of surface geologic and geographic information, and (2) a three-dimensional visualisation programme (Rockworks) was used to interpret and illustrate site stratigraphy based on borehole information. Results indicated that the fluoride content of drinking water in the study area ranges from 0 to 9.65 mg/L. Forty-seven water sources (24%) yielded water containing fluoride in excess of the World Health Organisation's (WHO) health limit of 1.5 mg/L F. Of the 47 high fluoride water sources, 43 were boreholes (pumped or artesian). The shallower water sources (dug wells, streams and dams) largely yielded low-fluoride water.The groundwater fluoride contamination is stratigraphically controlled and originates from carbonaceous material (carbonaceous shales, carbonaceous mudstones and coaly material) within the Lower Madumabisa and Middle Wankie Members of the Lower Karoo Group. It has been shown that in general the greater the proportion of carbonaceous material intersected by a borehole, the greater the fluoride concentration of the water. Probable mineral sources of fluoride within the carbonaceous material include fluorapatite, kaolinite and trona. Chemical parameters that appear to influence the concentration of dissolved F in the water supplies include total dissolved solids (TDS), NaCl and pH. In relatively low fluoride waters, F concentrations generally increase with TDS and NaCl concentrations, whereas the highest F concentrations are found in moderately alkaline (pH 7.8-9) waters. Based on ranges of fluoride concentration in drinking water, fluorosis-risk zones were identified and have been illustrated on a fluorosis-risk map. The zones are: No Risk Zone (0-1.5 mg/L F), Moderate Risk Zone (1.5-3.0 mg/L F), High Risk Zone (3.0-6.0 mg/L F) and the Very High Risk Zone (6.0-10.0 mg/L F). The map suggests that groundwater available to people occupying 3650 km z (60.8%) of the study area potentially contains excessive fluoride (F>1.5 mg/L), presaging the occurrence of dental fluorosis, skeletal fluorosis and crippling skeletal fluorosis in the area. Different strategies may be employed to ameliorate the fluoride problem in Gokwe.These include sinking new boreholes to optimal depths and in appropriate locations, promoting the use of surface water and shallow groundwater, resettlement and defluoridation. However in order to fully understand the problem and to prescribe these or other solutions more comprehensively, multi-disciplinary studies may be required. Such studies may consider isotopic dating of water to investigate any relationships between fluoride concentration and residence time of water, geochemical analyses of rocks and soils, detailed fluorosis epidemiology studies and test-scale defluoridation investigations.
APA, Harvard, Vancouver, ISO, and other styles
14

Jeffery, Samantha. "In-Plant and Distribution System Corrosion Control for Reverse Osmosis, Nanofiltration, and Anion Exchange Process Blends." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5951.

Full text
Abstract:
The integration of advanced technologies into existing water treatment facilities (WTFs) can improve and enhance water quality; however, these same modifications or improvements may adversely affect finished water provided to the consumer by public water systems (PWSs) that embrace these advanced technologies. Process modification or improvements may unintentionally impact compliance with the provisions of the United States Environmental Protection Agency's (USEPA's) Safe Drinking Water Act (SDWA). This is especially true with respect to corrosion control, since minor changes in water quality can affect metal release. Changes in metal release can have a direct impact on a water purveyor's compliance with the SDWA's Lead and Copper Rule (LCR). In 2010, the Town of Jupiter (Town) decommissioned its ageing lime softening (LS) plant and integrated a nanofiltration (NF) plant into their WTF. The removal of the LS process subsequently decreased the pH in the existing reverse osmosis (RO) clearwell, leaving only RO permeate and anion exchange (AX) effluent to blend. The Town believed that the RO-AX blend was corrosive in nature and that blending with NF permeate would alleviate their concern. Consequently, a portion of the NF permeate stream was to be split between the existing RO-AX clearwell and a newly constructed NF primary clearwell. The Town requested that the University of Central Florida (UCF) conduct research evaluating how to mitigate negative impacts that may result from changing water quality, should the Town place its AX into ready-reserve. The research presented in this document was focused on the evaluation of corrosion control alternatives for the Town, and was segmented into two major components: 1. The first component of the research studied internal corrosion within the existing RO clearwell and appurtenances of the Town's WTF, should the Town place the AX process on standby. Research related to WTF in-plant corrosion control focused on blending NF and RO permeate, forming a new intermediate blend, and pH-adjusting the resulting mixture to reduce corrosion in the RO clearwell. 2. The second component was implemented with respect to the Town's potable water distribution system. The distribution system corrosion control research evaluated various phosphate-based corrosion inhibitors to determine their effectiveness in reducing mild steel, lead and copper release in order to maintain the Town's continual compliance with the LCR. The primary objective of the in-plant corrosion control research was to determine the appropriate ratio of RO to NF permeate and the pH necessary to reduce corrosion in the RO clearwell. In this research, the Langelier saturation index (LSI) was the corrosion index used to evaluate the stability of RO:NF blends. Results indicated that a pH-adjusted blend consisting of 70% RO and 30% NF permeate at 8.8-8.9 pH units would produce an LSI of +0.1, theoretically protecting the RO clearwell from corrosion. The primary objective of the distribution system corrosion control component of the research was to identify a corrosion control inhibitor that would further reduce lead and copper metal release observed in the Town's distribution system to below their respective action limits (ALs) as defined in the LCR. Six alternative inhibitors composed of various orthophosphate and polyphosphate (ortho:poly) ratios were evaluated sequentially using a corrosion control test apparatus. The apparatus was designed to house mild steel, lead and copper coupons used for weight loss analysis, as well as mild steel, lead solder and copper electrodes used for linear polarization analysis. One side of the apparatus, referred to as the “control condition,” was fed potable water that did not contain the corrosion inhibitor, while the other side of the corrosion apparatus, termed the “test condition,” was fed potable water that had been dosed with a corrosion inhibitor. Corrosion rate measurements were taken twice per weekday, and water quality was measured twice per week. Inhibitor evaluations were conducted over a span of 55 to 56 days, varying with each inhibitor. Coupons and electrodes were pre-corroded to simulate existing distribution system conditions. Water flow to the apparatus was controlled with an on/off timer to represent variations in the system and homes. Inhibitor comparisons were made based on their effectiveness at reducing lead and copper release after chemical addition. Based on the results obtained from the assessment of corrosion inhibitors for distribution system corrosion control, it appears that Inhibitors 1 and 3 were more successful in reducing lead corrosion rates, and each of these inhibitors reduced copper corrosion rates. Also, it is recommended that consideration be given to use of a redundant single-loop duplicate test apparatus in lieu of a double rack corrosion control test apparatus in experiments where pre-corrosion phases are implemented. This recommendation is offered because statistically, the control versus test double loop may not provide relevance in data analysis. The use of the Wilcoxon signed ranks test comparing the initial pre-corroding phase to the inhibitor effectiveness phase has proven to be a more useful analytical method for corrosion studies.<br>M.S.Env.E.<br>Masters<br>Civil, Environmental, and Construction Engineering<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
15

Roque, Jennifer C. "Evaluation of an On-Line Device to Monitor Scale Formation in a Brackish Water Reverse Osmosis Membrane Process." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5470.

Full text
Abstract:
A modified two-element membrane pressure vessel assembly has been used to monitor process operational changes in a full-scale reverse osmosis (RO) water treatment plant (WTP). This study evaluated the effectiveness of the assembly as an on-line monitoring device intended to detect scale formation conditions when connected to an operating RO process train. This study was implemented to support the requirements of a larger University of Central Florida (UCF) research project ongoing at the city of Sarasota's Public Works and Utilities (City) water treatment facilities located in Sarasota, Florida. During the time-frame of this study, the City was in the process of eliminating their sulfuric acid feed from the pretreatment system of their existing 4.5 million gallon per day (MGD) RO membrane process. The City was motivated to eliminate its dependence on sulfuric acid to reduce operating costs as well as reduce operation health and safety risks associated with the use of the acid as a pretreatment chemical. Because the City was concerned with secondary process impacts associated with acid elimination, additional measures were desired in order to protect the full-scale process. This thesis reports on the design, fabrication and installation of a third-stage two membrane element pressure vessel “canary” sentinel monitoring device (Canary), its effectiveness as an on-line scaling monitor during full-scale acid elimination, and presents the results of the study. The Canary sentinel device was controlled using the normalized specific flux of the two membrane elements fed by a portion of the second stage concentrate of one of the City's full-scale RO process skids. Although the Canary demonstrated the ability to detect changes in an RO process operation, scaling did not occur under the conditions evaluated in this study. An autopsy of one of the Canary elements revealed that no scaling had occurred during the acid elimination process. Therefore, the Canary was found to be useful in its function as a sentinel, even though no scaling was detected by the device after acid elimination at the City's full-scale plant had been accomplished.<br>ID: 031001503; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Adviser: Steven J. Duranceau.; Title from PDF title page (viewed July 26, 2013).; Thesis (M.S.Env.E.)--University of Central Florida, 2012.; Includes bibliographical references (p. 70-73).<br>M.S.Env.E.<br>Masters<br>Civil, Environmental, and Construction Engineering<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
16

Boyd, Christopher C. "Effect of acetic or citric acid ultrafiltration recycle streams on coagulation processes." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4853.

Full text
Abstract:
Integrating ultrafiltration (UF) membranes in lieu of traditional media filters within conventional surface water coagulation-flocculation-sedimentation processes is growing in popularity. UF systems are able to produce low turbidity filtered water that meets newer drinking water standards. For typical drinking water applications, UF membranes require periodic chemically enhanced backwashes (CEBs) to maintain production; and citric acid is a common chemical used for this purpose. Problems may arise when the backwash recycle stream from a citric acid CEB is blended with raw water entering the coagulation basin, a common practice for conventional surface water plants. Citric acid is a chelating agent capable of forming complexes that interfere with alum or ferric chloride coagulation. Interference with coagulation negatively affects settled water quality. Acetic acid was investigated as a potential substitute for citric acid in CEB applications. A jar testing study was conducted to compare the impacts of both citric acid and acetic acid on the effectiveness of aluminum sulfate (alum) and ferric chloride coagulants. Citric acid was found to adversely affect coagulation at lower acid to coagulant (A/C) molar ratios than acetic acid, and a coagulation interference threshold was identified for both acids based on settled water turbidity goals recommended by the U.S. Environmental Protection Agency (EPA). Pilot testing was conducted to assess the viability of acetic acid as a UF CEB chemical. Acetic acid CEBs maintained pilot performance in combination with sodium hypochlorite CEBs for filtering a raw California surface water. It is believed that this is the first ultrafiltration membrane process application of acetic acid CEBs for municipal potable water production in the United States.<br>ID: 029810322; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.)--University of Central Florida, 2011.; Includes bibliographical references (p. 69-72).<br>M.S.<br>Masters<br>Civil, Environmental and Construction Engineering<br>Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
17

Yonge, David. "A Comparison of Aluminum and Iron-based Coagulants for Treatment of Surface Water in Sarasota County, Florida." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5584.

Full text
Abstract:
In this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were used to treat a highly organic surface water supply (DOC ranging between 10 and 30 mg/L), known as the Cow Pen Slough, located within central Sarasota County, Florida. Isopleths depicting DOC and color removal efficiencies as a function of both pH and coagulant dose were developed and evaluated. Ferric chloride and ACH were observed to obtain the highest DOC (85% and 70%, respectively) and color (98% and 97%, respectively) removals at the lowest dose concentrations (120 mg/L and 100 mg/L, respectively). Ferric sulfate was effective at DOC removal but required a higher concentration of coagulant and was the least effective coagulant at removing color. The traditional iron-based coagulants and alum had low turbidity removals and they were often observed to add turbidity to the water. PACl and ACH had similar percent removals for color and turbidity achieving consistent percent removals of 95% and 45%, respectively, but PACl was less effective than ACH at removing organics. Sludge settling curves, dose-sludge production ratios, and settling velocities were determined at optimum DOC removal conditions for each coagulant. Ferric chloride was found to have the highest sludge settling rate but also produced the largest sludge quantities. Total trihalomethane formation potential (THMFP) was measured for the water treated with ferric chloride and ACH. As with DOC removal, ferric chloride yielded a higher percent reduction with respect to THMFP.<br>M.S.Env.E.<br>Masters<br>Civil, Environmental, and Construction Engineering<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
18

Lamoureux, Tara. "Ozone and GAC Treatment of a Central Florida Groundwater for Sulfide and Disinfectant By-Product Control." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5656.

Full text
Abstract:
This study evaluated the combination of ozone and granular activated carbon (GAC) treatment for the removal of sulfide and disinfection byproduct (DBP) precursors in drinking water at the pilot-scale. The research conducted was performed at the Auxiliary (Aux) and Main Water Treatment Plants (WTPs) in Sanford, Florida. Both WTPs rely upon groundwater sources that contain total sulfide ranging from 0.02 to 2.35 mg/L and total organic carbon (TOC) ranging from 0.61 to 2.20 mg/L. The Aux WTP’s raw water contains, on average, 88% more sulfide and 24% more TOC than the Main WTP. Haloacetic acids (HAA5) and total trihalomethanes (TTHMs) comprise the regulated forms of DBPs. HAA5 are consistently below the maximum contaminant level (MCL) of 60 μg/L, while TTHM ranges from 70 to 110 μg/L, at times exceeding the MCL of 80 μg/L in the distribution system. Ozone alone removed total sulfide and reduced UV-254 by about 60% at the Aux Plant and 35% at the Main Plant. Producing an ozone residual of 0.50 mg/L prevented the formation of bromate while removing approximately 35 to 60% concentration of DBP precursors as measured by UV-254. Operating the GAC unit at an empty bed contact time (EBCT) of 10 minutes for the Aux Plant and 5.5 minutes for the Main Plant resulted in 75% and 53% of UV-254 reduction, respectively. The average 120 hour TTHM formation potential for the Aux and Main Plants were 66 μg/L and 52 μg/L, respectively, after treatment by ozone and GAC. GAC exhaustion was deemed to have occurred after seven weeks for the Aux Plant and eleven weeks for the Main Plant. The GAC columns operated in three phases: an adsorption phase, a transitional phase, and a biologically activated carbon (BAC) phase. The GAC adsorption phase was found to produce the lowest TTHMs; however, TTHMs remained less than 80 μg/L during the BAC stage at each plant. BAC exhaustion did not occur during the course of this study. Ozone-GAC reduced chlorine demand by 73% for the Aux Plant and 10% for the Main Plant.<br>M.S.Env.E.<br>Masters<br>Civil, Environmental and Construction Engineering<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
19

Masukume, Mike. "Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate." Thesis, 2010. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Okeyo, Allisen. "Management of small water treatment plants for the production of safe drinking water in the Gauteng Province." 2011. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Adeyemo, Folasade Esther. "Comparison of various home water treatment systems and devices for the removal of viral indicators and protozoan parasites." Thesis, 2012. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000193.

Full text
Abstract:
M. Tech. Water Care.<br>Aims to evaluate promising technologies for local application in the removal of viruses and protozoan parasites and to provide guidelines for the selection and use of appropriate home water treatment systems that could be used in rural households.
APA, Harvard, Vancouver, ISO, and other styles
22

Hall, Christine. "Evaluation of Iron and Manganese Control for a Volcanic Surface Water Supply Treated with Conventional Coagulation, Sedimentation and Filtration Processes." Master's thesis, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6108.

Full text
Abstract:
A research project assessing the effectiveness of potassium permanganate (KMnO4) for the treatment of iron (Fe) and manganese (Mn) has been conducted by the University of Central Florida (UCF) on behalf of the United States Navy with regards to the water supply on the island of Guam, located in the Marianas Islands. The study consisted of three basic investigative components: one that examined the use of potassium permanganate for iron and manganese control for Fena Lake, a second that examined the existing unit operations that comprised the Navy's water treatment plant (NWTP), and a third that examined iron and manganese field sampling analytical procedures. In the first and primary component of the research, surface water from Fena Lake located within the Naval Magazine in proximity of Santa Rita, Guam was collected at several different lake depths and initially analyzed for iron and manganese using inductively coupled plasma. Subsequent aliquots of Fena Lake collected at the various water depths were transferred to jars then dosed with varying amounts of potassium permanganate after which iron and manganese content was determined. The jars were covered to simulate actual lake to plant transfer conditions experienced at the Navy's on-island facilities. A portion of the jars was dosed with potassium permanganate prior to metals analysis in order to allow for comparisons of baseline conditions. To represent conventional treatment processes, the water samples were then coagulated with aluminum sulfate prior to filtration to remove the oxidized manganese and iron formed from the addition of the potassium permanganate. Coagulated aliquots were filtered and collected to evaluate residual dissolved iron and manganese content. Based on the results of the jar tests it was determined that manganese was reduced by 95% or greater and that iron was completely removed to below the analytical detection limit (0.001 mg/L). It was determined that the potassium permanganate dose required for oxidation of iron was 0.94 mg/mg iron and for manganese was 1.92 mg/mg manganese. It was also observed that when the jars containing aliquots that turned brown in color after potassium permanganate dosing meant that iron and manganese were present and were being oxidized; however, water samples that turned pink were found to be over-dosed with potassium permanganate. The pink water is an undesired characteristic and could result in customer complaints when distributed to the system. The second component of research focused on NWTP existing conditions. Water samples were collected after each key unit operation within the NWTP and analyzed for iron and manganese. This was to determine if pre-chlorination at Fena Lake was effective at removing iron and manganese that could be present in the source water. Analysis was conducted where pre-chlorination at Fena Lake was practiced as well as when no pretreatment was practiced prior to the NWTP. It was determined that the iron and manganese were not detected downstream of the coagulation unit operation within the NWTP even when pre-chlorination was not practiced. Consequently pre-chlorination of Fena Lake source water was not required for controlling iron and manganese under the conditions experienced in this study. A third study was also implemented to confirm that 0.1-micron filters are appropriate for use in preparing samples for analytical determination of iron and manganese analysis at various points within the NWTP. The filtration step is important to delineate between dissolved and suspended iron and manganese forms. Standard Methods 3120B recommends the use of 0.45-micron filters, although based on literature it has been shown that oxidized manganese particles may be smaller than a 0.45-micron pore size. Unless a coagulant was used, the oxidized manganese may not be fully removed via the 0.45-micron filter. To verify the effectiveness of using a 0.1-micron filter, a jar test was conducted to compare the use of a 0.1-micron filter, a 0.45-micron filter, and a 0.45-micron filter after the sample has been coagulated. It was found that the use of a 0.1-micron filter was superior to the use of 0.45-micron filters even with coagulant addition when directly comparing between dissolved and suspended iron and manganese forms. It is recommended that 0.1-microns be utilized in lieu of historically recommended 0.45-micron filters for sample preparation procedures.<br>M.S.Env.E.<br>Masters<br>Civil, Environmental and Construction Engineering<br>Engineering and Computer Science<br>Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography