To see the other types of publications on this topic, follow the link: Acceptor materials.

Journal articles on the topic 'Acceptor materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Acceptor materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guldi, Dirk M. "Fullerenes: three dimensional electron acceptor materials." Chemical Communications, no. 5 (2000): 321–27. http://dx.doi.org/10.1039/a907807j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shao, Rong, Xinbo Yang, Shiwei Yin, and Wenliang Wang. "Molecular Design of Benzothiadiazole Derivatives Electron Acceptors and Matching of Donor-Acceptor Materials." Acta Chimica Sinica 74, no. 8 (2016): 676. http://dx.doi.org/10.6023/a16050268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Yulin, Wenfa Zhou, Xiaofang Li, Li Jiang, and Yinglin Song. "Highly broadband NLO response of acceptor–donor–acceptor materials with a planar conformation." Materials Advances 2, no. 6 (2021): 2097–103. http://dx.doi.org/10.1039/d0ma00918k.

Full text
Abstract:
The third-order NLO properties of A–D–A molecules originally derived from organic photovoltaic (OPV) devices are studied. The results show that NLO performance of planar molecule (O-IDTBR) is better than that of twisted molecule (IDFBR) in solution or film state.
APA, Harvard, Vancouver, ISO, and other styles
4

Lv, Xiaojing, Weijun Li, Mi Ouyang, Yujian Zhang, Dominic S. Wright, and Cheng Zhang. "Polymeric electrochromic materials with donor–acceptor structures." Journal of Materials Chemistry C 5, no. 1 (2017): 12–28. http://dx.doi.org/10.1039/c6tc04002k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karsten, Bram P., Johan C. Bijleveld, and René A. J. Janssen. "Diketopyrrolopyrroles as Acceptor Materials in Organic Photovoltaics." Macromolecular Rapid Communications 31, no. 17 (July 8, 2010): 1554–59. http://dx.doi.org/10.1002/marc.201000133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahrens, Lukas, Julian Butscher, Victor Brosius, Frank Rominger, Jan Freudenberg, Yana Vaynzof, and Uwe H. F. Bunz. "Azaacene Dimers: Acceptor Materials with a Twist." Chemistry – A European Journal 26, no. 2 (December 19, 2019): 412–18. http://dx.doi.org/10.1002/chem.201904683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Winkel, Katie L., Jamie R. Carberry, Leslie M. Wood, Makda Araya, Zachary W. Iszard, Travis Cantu, Benjamin Martin, Xiaopeng Li, and Jennifer A. Irvin. "Donor–acceptor–donor polymers utilizing pyrimidine-based acceptors." Reactive and Functional Polymers 83 (October 2014): 113–22. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.07.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Yangyang, Ming Qin, Yufei Song, Yingying Pei, Yijie Dai, Yongjie Ma, and Ziyong Li. "Aldehyde-substituted acceptor-DTE-acceptor-type dithienylethene as a versatile building block for near-infrared photochromic materials." Journal of Chemical Research 44, no. 1-2 (November 18, 2019): 108–13. http://dx.doi.org/10.1177/1747519819888453.

Full text
Abstract:
A novel aldehyde-substituted acceptor-DTE-acceptor-type dithienylethene derivative, in which the difluoroboron β-diketonate and aldehyde groups at the termini of the dithienylethene function as electron acceptors, has been developed. The structure was confirmed by 1H NMR, 13C NMR, 19F NMR, high-resolution mass spectrometry (electrospray ionization) and infrared. The derivative displays solvent-dependent photophysical properties, visible light–triggered near-infrared photochromism, and fluorescent switching behavior in solvents of different polarity. Moreover, it can be utilized as a versatile building block to construct novel near-infrared photochromic materials.
APA, Harvard, Vancouver, ISO, and other styles
9

Sauvé, Ethan R., Jaesuk Paeng, Shigehiro Yamaguchi, and Zachary M. Hudson. "Donor–Acceptor Materials Exhibiting Thermally Activated Delayed Fluorescence Using a Planarized N-Phenylbenzimidazole Acceptor." Journal of Organic Chemistry 85, no. 1 (November 18, 2019): 108–17. http://dx.doi.org/10.1021/acs.joc.9b02283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Chien, and Wen-Chang Chen. "DiketopyrrolopyrroleThiophene-Based Acceptor-Donor-Acceptor Conjugated Materials for High-Performance Field-Effect Transistors." Chemistry - An Asian Journal 8, no. 11 (August 6, 2013): 2813–21. http://dx.doi.org/10.1002/asia.201300677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kotowicz, Sonia, Mateusz Korzec, Agnieszka Katarzyna Pająk, Sylwia Golba, Jan Grzegorz Małecki, Mariola Siwy, Justyna Grzelak, Sebastian Maćkowski, and Ewa Schab-Balcerzak. "New Acceptor–Donor–Acceptor Systems Based on Bis-(Imino-1,8-Naphthalimide)." Materials 14, no. 11 (May 21, 2021): 2714. http://dx.doi.org/10.3390/ma14112714.

Full text
Abstract:
In this paper, six novel symmetrical bis-(imino-1,8-naphthalimides) differing in core and N-substituent structure were synthesized, and their thermal (TGA, DSC), optical (UV-Vis, PL), electrochemical (DPV, CV) properties were evaluated. The compounds were stable to 280 °C and could be transferred into amorphous materials. Electrochemical investigations showed their ability to occur reductions and oxidations processes. They exhibited deep LUMO levels of about −3.22 eV and HOMO levels above −5.80 eV. The optical investigations were carried out in the solutions (polar and non-polar) and in films and blends with PVK:PBD. Bis-(imino-1,8-naphthalimides) absorbed electromagnetic radiation in the range of 243–415 nm and emitted light from blue to yellow. Their capacity for light emission under voltage was preliminarily tested in devices with an active layer consisting of a neat compound and a blend with PVK:PBD. The diodes emitted green or red light.
APA, Harvard, Vancouver, ISO, and other styles
12

Rolland, D., J. C. Brauer, L. Hartmann, L. Biniek, M. Brinkmann, N. Banerji, and H. Frauenrath. "Charge separation in an acceptor–donor–acceptor triad material with a lamellar structure." Journal of Materials Chemistry C 5, no. 6 (2017): 1383–93. http://dx.doi.org/10.1039/c6tc03786k.

Full text
Abstract:
Linking covalently flexible polymer segments to a donor-acceptor-donor triad is an efficient way to gain control over the formation of materials with well-defined lamellar mesostructure of interest for organic photovoltaics.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Guobing, Ruikun Chen, Yue Sun, Boseok Kang, Mingxiang Sun, Hongbo Lu, Longzhen Qiu, Kilwon Cho, and Yunsheng Ding. "Improved charge transport in fused-ring bridged hemi-isoindigo-based small molecules by incorporating a thiophene unit for solution-processed organic field-effect transistors." Journal of Materials Chemistry C 8, no. 4 (2020): 1398–404. http://dx.doi.org/10.1039/c9tc05374c.

Full text
Abstract:
Two acceptor–donor–acceptor small molecules based on fused ring as donor, and hemi-isoindigo units as acceptors were synthesized and characterized for solution-processed organic field-effect transistors.
APA, Harvard, Vancouver, ISO, and other styles
14

Mayorova, Julia Yu, Sergei L. Nikitenko, Pavel A. Troshin, Svetlana M. Peregudova, Alexander S. Peregudov, Mikhail G. Kaplunov, and Rimma N. Lyubovskaya. "Synthesis and investigation of fullerene-based acceptor materials." Mendeleev Communications 17, no. 3 (May 2007): 175–77. http://dx.doi.org/10.1016/j.mencom.2007.05.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Santos Silva, H., Sebastian Metz, Roger C. Hiorns, and D. Bégué. "Targeting ideal acceptor-donor materials based on hexabenzocoronene." Journal of Molecular Structure 1161 (June 2018): 442–52. http://dx.doi.org/10.1016/j.molstruc.2018.02.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Zhen, Mengyuan He, Dangdang Xu, and Zhihong Liu. "Graphene materials-based energy acceptor systems and sensors." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 18 (March 2014): 1–17. http://dx.doi.org/10.1016/j.jphotochemrev.2013.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Guldi, Dirk M. "ChemInform Abstract: Fullerenes: Three Dimensional Electron Acceptor Materials." ChemInform 31, no. 26 (June 7, 2010): no. http://dx.doi.org/10.1002/chin.200026261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kranthiraja, Kakaraparthi, Haeun Kwon, Yeong-Soon Gal, Jae Wook Lee, and Sung-Ho Jin. "Acceptor-donor-acceptor type planar hole-transporting materials for efficient dopant-free perovskite solar cells." Molecular Crystals and Liquid Crystals 660, no. 1 (January 2, 2018): 54–59. http://dx.doi.org/10.1080/15421406.2018.1456043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Skromme, B. J., and G. L. Martinez. "Optical Activation Behavior of Ion Implanted Acceptor Species in GaN." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 507–13. http://dx.doi.org/10.1557/s1092578300004701.

Full text
Abstract:
Ion implantation is used to investigate the spectroscopic properties of Mg, Be, and C acceptors in GaN. Activation of these species is studied using low temperature photoluminescence (PL). Low dose implants into high quality undoped hydride vapor phase epitaxial (HVPE) material are used in conjunction with high temperature (1300 °C) rapid thermal anneals to obtain high quality spectra. Dramatic, dose-dependent evidence of Mg acceptor activation is observed without any co-implants, including a strong, sharp neutral Mg acceptor-bound exciton and strong donor-acceptor pair peaks. Variable temperature measurements reveal a band-to-acceptor transition, whose energy yields an optical binding energy of 224 meV. Be and C implants yield only slight evidence of shallow acceptor-related features and produce dose-correlated 2.2 eV PL, attributed to residual implantation damage. Their poor optical activation is tentatively attributed to insufficient vacancy production by these lighter ions. Clear evidence is obtained for donor-Zn acceptor pair and acceptor-bound exciton peaks in Zn-doped HVPE material.
APA, Harvard, Vancouver, ISO, and other styles
20

Liang, Yuming, Ping Deng, Zhongtao Wang, Zhiyong Guo, and Yanlian Lei. "Novel perylene diimide acceptor for nonfullerene organic solar cells." Functional Materials Letters 12, no. 03 (May 16, 2019): 1950022. http://dx.doi.org/10.1142/s179360471950022x.

Full text
Abstract:
Nonfullerene electron acceptor materials have gained enormous attention due to their potential as replacements of fullerene electron acceptors in bulk heterojunction organic solar cells. A novel thiophene bridged selenophene-containing perylene diimide acceptor PDISe-T has been synthesized and applied as an acceptor in nonfullerene organic photovoltaic cells. The inverted organic photovoltaic (OPV) solar cells based on PDISe-T:PBT7-Th (acceptor:donor) blends give a power conversion efficiency (PCE) value of 2.53% with an open-circuit voltage ([Formula: see text] of 0.92[Formula: see text]V, a [Formula: see text] of 6.55[Formula: see text]mA[Formula: see text]cm[Formula: see text], and a fill factor (FF) of 0.42.
APA, Harvard, Vancouver, ISO, and other styles
21

Jiao, Cancan, Ziqi Guo, Binqiao Sun, Yuan-qiu-qiang Yi, Lingxian Meng, Xiangjian Wan, Mingtao Zhang, Hongtao Zhang, Chenxi Li, and Yongsheng Chen. "An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells." Journal of Materials Chemistry C 8, no. 18 (2020): 6293–98. http://dx.doi.org/10.1039/d0tc00981d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

CATELLANI, M. "Donor?acceptor ?double-cable? polythiophenes with tunable acceptor content." Thin Solid Films 451-452 (March 2004): 2–6. http://dx.doi.org/10.1016/j.tsf.2003.10.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cheng, Ming, Kerttu Aitola, Cheng Chen, Fuguo Zhang, Peng Liu, Kári Sveinbjörnsson, Yong Hua, Lars Kloo, Gerrit Boschloo, and Licheng Sun. "Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells." Nano Energy 30 (December 2016): 387–97. http://dx.doi.org/10.1016/j.nanoen.2016.10.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Feng, Ru, Narumi Sato, Takuma Yasuda, Hiroyuki Furuta, and Soji Shimizu. "Rational design of pyrrolopyrrole-aza-BODIPY-based acceptor–donor–acceptor triads for organic photovoltaics application." Chemical Communications 56, no. 20 (2020): 2975–78. http://dx.doi.org/10.1039/d0cc00398k.

Full text
Abstract:
Acceptor–donor–acceptor triads consisting of diketopyrrolopyrrole (DPP) or pyrrolopyrrole aza-BODIPY (PPAB) or both as acceptors and cyclopentadithiophene as a donor were rationally designed for near infrared (NIR) photovoltaics application.
APA, Harvard, Vancouver, ISO, and other styles
25

Suman, Suman, and Surya Prakash Singh. "Impact of end groups on the performance of non-fullerene acceptors for organic solar cell applications." Journal of Materials Chemistry A 7, no. 40 (2019): 22701–29. http://dx.doi.org/10.1039/c9ta08620j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tykivinski, Rik R., Martin Schreiber, Paul Seiler, François Diederich, and Volker Gramlich. "Donor-acceptor substituted tetraethynylethenes." Advanced Materials 8, no. 3 (March 1996): 226–31. http://dx.doi.org/10.1002/adma.19960080308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Klärner, Gerrit, Carsten Former, Xiaoling Yan, Ranko Richert, and Klaus Müllen. "Donor/acceptor-substituted phenylenevinylenes." Advanced Materials 8, no. 11 (November 1996): 932–35. http://dx.doi.org/10.1002/adma.19960081115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Horiuchi, Sachio, Tatsuo Hasegawa, and Yoshinori Tokura. "Molecular Donor–Acceptor Compounds as Prospective Organic Electronics Materials." Journal of the Physical Society of Japan 75, no. 5 (May 15, 2006): 051016. http://dx.doi.org/10.1143/jpsj.75.051016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Alvey, Paul M., Joseph J. Reczek, Vincent Lynch, and Brent L. Iverson. "A Systematic Study of Thermochromic Aromatic Donor−Acceptor Materials." Journal of Organic Chemistry 75, no. 22 (November 19, 2010): 7682–90. http://dx.doi.org/10.1021/jo101498b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Horiuchi, Sachio, Reiji Kumai, and Yoshinori Tokura. "Hydrogen-bonded donor–acceptor compounds for organic ferroelectric materials." Chem. Commun., no. 23 (2007): 2321–29. http://dx.doi.org/10.1039/b617881b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Scarongella, Mariateresa, Andrey Laktionov, Ursula Rothlisberger, and Natalie Banerji. "Charge transfer relaxation in donor–acceptor type conjugated materials." Journal of Materials Chemistry C 1, no. 12 (2013): 2308. http://dx.doi.org/10.1039/c3tc00829k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pu, Lyong Sun. "A new chiral electron acceptor for nonlinear optical materials." Journal of the Chemical Society, Chemical Communications, no. 6 (1991): 429. http://dx.doi.org/10.1039/c39910000429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Day, Paul N., Ruth Pachter, and Kiet A. Nguyen. "Analysis of nonlinear optical properties in donor–acceptor materials." Journal of Chemical Physics 140, no. 18 (May 14, 2014): 184308. http://dx.doi.org/10.1063/1.4874267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Oliva, María Moreno, Alberto Riaño, Iratxe Arrechea-Marcos, María M. Ramos, Rafael Gómez, Manuel Algarra, Rocío Ponce Ortiz, Juan T. López Navarrete, José L. Segura, and Juan Casado. "Extending Hexaazatriphenylene with Mono-/Bithiophenes in Acceptor–Donor Diads and Acceptor–Donor–Acceptor Triads." Journal of Physical Chemistry C 120, no. 40 (October 3, 2016): 23276–85. http://dx.doi.org/10.1021/acs.jpcc.6b08123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Schmatz, Brian, Ian Pelse, Abigail Advincula, Junxiang Zhang, Seth R. Marder, and John R. Reynolds. "Photovoltaic donor-acceptor conjugated polymers with minimally substituted acceptor moieties." Organic Electronics 68 (May 2019): 280–84. http://dx.doi.org/10.1016/j.orgel.2019.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Köse, Muhammet E. "Evaluation of Acceptor Strength in Thiophene Coupled Donor–Acceptor Chromophores for Optimal Design of Organic Photovoltaic Materials." Journal of Physical Chemistry A 116, no. 51 (December 14, 2012): 12503–9. http://dx.doi.org/10.1021/jp309950f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ie, Yutaka, and Yoshio Aso. "Development of donor–acceptor copolymers based on dioxocycloalkene-annelated thiophenes as acceptor units for organic photovoltaic materials." Polymer Journal 49, no. 1 (October 12, 2016): 13–22. http://dx.doi.org/10.1038/pj.2016.96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Catellani, Marinella, Silvia Luzzati, Natalia-O. Lupsac, Raniero Mendichi, Roberto Consonni, Antonino Famulari, Stefano Valdo Meille, Francesco Giacalone, José L. Segura, and Nazario Martín. "Donor–acceptor polythiophene copolymers with tunable acceptor content for photoelectric conversion devices." J. Mater. Chem. 14, no. 1 (2004): 67–74. http://dx.doi.org/10.1039/b311370a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bai, Huitao, Yifan Wang, Pei Cheng, Yongfang Li, Daoben Zhu, and Xiaowei Zhan. "Acceptor–Donor–Acceptor Small Molecules Based on Indacenodithiophene for Efficient Organic Solar Cells." ACS Applied Materials & Interfaces 6, no. 11 (May 15, 2014): 8426–33. http://dx.doi.org/10.1021/am501316y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Luh, Tien-Yau. "From vinylsilanes to organic/inorganic hybrid materials." Pure and Applied Chemistry 77, no. 12 (January 1, 2005): 2083–90. http://dx.doi.org/10.1351/pac200577122083.

Full text
Abstract:
Alternating regioregular silylene-spaced divinylarene copolymers [(donor-SiMe2-)n=1-3-(acceptor-SiMe2)] are synthesized by rhodium-catalyzed hydrosilylation of bis-alkynes with bisvinylic silyl hydrides. Efficient intrachain energy transfer has been observed in these copolymers. The intensities of emission profiles depend on the relative ratio of donor-to-acceptor chromophores. The corresponding inorganic/organic hybrid materials are synthesized, and their photophysical properties are described.
APA, Harvard, Vancouver, ISO, and other styles
41

Cui, Weibin, and Fred Wudl. "Dithienylbenzodipyrrolidone: New Acceptor for Donor–Acceptor Low Band Gap Polymers." Macromolecules 46, no. 18 (September 6, 2013): 7232–38. http://dx.doi.org/10.1021/ma400008h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Tao, Ruijie Ma, Hao Cheng, Yiqun Xiao, Zhenghui Luo, Yuzhong Chen, Siwei Luo, Tao Liu, Xinhui Lu, and He Yan. "A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive." Journal of Materials Chemistry A 8, no. 34 (2020): 17706–12. http://dx.doi.org/10.1039/d0ta06146h.

Full text
Abstract:
Polymer acceptors with acceptor–donor–acceptor (A–D–A) building blocks have demonstrated great potential in achieving excellent power conversion efficiency (PCE) and stability in the field of organic solar cells (OSCs).
APA, Harvard, Vancouver, ISO, and other styles
43

Wu, Hung-Chin, Jicheng Zhang, Zhishan Bo, and Wen-Chang Chen. "Well-defined star-shaped donor–acceptor conjugated molecules for organic resistive memory devices." Chemical Communications 51, no. 75 (2015): 14179–82. http://dx.doi.org/10.1039/c5cc05729a.

Full text
Abstract:
Solution processable star-shaped donor–acceptor conjugated molecules are explored for the first time as charge storage materials for resistor-type memory devices with a triphenylamine (donor) core, and three 1.8-naphthalimide (acceptors) end-groups.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Tao, Han Han, Yunlong Zou, Ying-Chi Lee, Hiroya Oshima, Ken-Tsung Wong, and Russell J. Holmes. "Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor–Acceptor–Acceptor Molecules." ACS Applied Materials & Interfaces 9, no. 30 (July 20, 2017): 25418–25. http://dx.doi.org/10.1021/acsami.7b05304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ferguson, Andrew J., Jeffrey L. Blackburn, and Nikos Kopidakis. "Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics." Materials Letters 90 (January 2013): 115–25. http://dx.doi.org/10.1016/j.matlet.2012.08.145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Balandier, Jean-Yves, Florence Quist, Noham Sebaihi, Claude Niebel, Benoît Tylleman, Pol Boudard, Saïd Bouzakraoui, et al. "Donor/acceptor-substituted anthradithiophene materials: synthesis, optical and electrochemical properties." Tetrahedron 67, no. 37 (September 2011): 7156–61. http://dx.doi.org/10.1016/j.tet.2011.06.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Dongxue, and Yongsheng Liu. "Recent progress of noncovalent interactions-based nonfullerene acceptor photovoltaic materials." SCIENTIA SINICA Chimica 49, no. 5 (February 27, 2019): 716–28. http://dx.doi.org/10.1360/n032018-00231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kautny, Paul, Dorian Bader, Berthold Stöger, Georg A. Reider, Johannes Fröhlich, and Daniel Lumpi. "Structure-Property Relationships in Click-Derived Donor-Triazole-Acceptor Materials." Chemistry - A European Journal 22, no. 52 (November 15, 2016): 18887–98. http://dx.doi.org/10.1002/chem.201603510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Masoomi-Godarzi, Saghar, Maning Liu, Yasuhiro Tachibana, Lars Goerigk, Kenneth P. Ghiggino, Trevor A. Smith, and David J. Jones. "Solution-Processable, Solid State Donor-Acceptor Materials for Singlet Fission." Advanced Energy Materials 8, no. 30 (September 14, 2018): 1801720. http://dx.doi.org/10.1002/aenm.201801720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

D Halls, Mathew, Peter J. Djurovich, David J. Giesen, Alexander Goldberg, Jonathan Sommer, Eric McAnally, and Mark E. Thompson. "Virtual screening of electron acceptor materials for organic photovoltaic applications." New Journal of Physics 15, no. 10 (October 28, 2013): 105029. http://dx.doi.org/10.1088/1367-2630/15/10/105029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography