Academic literature on the topic 'Acid base equilibrium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acid base equilibrium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acid base equilibrium"
Segstro, Edward Paul, Kerry Davie, Xiaoling Huang, and Alexander Frank Janzen. "Article." Canadian Journal of Chemistry 76, no. 5 (May 1, 1998): 518–21. http://dx.doi.org/10.1139/v98-072.
Full textGrifoni, Emanuele, GiovanniMaria Piccini, and Michele Parrinello. "Microscopic description of acid–base equilibrium." Proceedings of the National Academy of Sciences 116, no. 10 (February 14, 2019): 4054–57. http://dx.doi.org/10.1073/pnas.1819771116.
Full textPálla, Tamás, Arash Mirzahosseini, and Béla Noszál. "Species-Specific, pH-Independent, Standard Redox Potential of Selenocysteine and Selenocysteamine." Antioxidants 9, no. 6 (June 1, 2020): 465. http://dx.doi.org/10.3390/antiox9060465.
Full textPetersen, V. Posborg. "Acid-Base Equilibrium during Ether Anaesthesia." Acta Pharmacologica et Toxicologica 3, no. 4 (March 13, 2009): 385–94. http://dx.doi.org/10.1111/j.1600-0773.1947.tb02667.x.
Full textWolf, Matthew B., and Edward C. DeLand. "A mathematical model of blood-interstitial acid-base balance: application to dilution acidosis and acid-base status." Journal of Applied Physiology 110, no. 4 (April 2011): 988–1002. http://dx.doi.org/10.1152/japplphysiol.00514.2010.
Full textWEN, Yan. "Relationship between Acid-Base Titration Curve and Acid-Base Equilibrium Curve." University Chemistry 33, no. 12 (2018): 76–82. http://dx.doi.org/10.3866/pku.dxhx201804014.
Full textBoulebd, Houssem, Adam Mechler, Nguyen Thi Hoa, and Quan V. Vo. "Insights on the kinetics and mechanisms of the peroxyl radical scavenging capacity of caftaric acid: the important role of the acid–base equilibrium." New Journal of Chemistry 46, no. 16 (2022): 7403–9. http://dx.doi.org/10.1039/d2nj00377e.
Full textNguyen, Minhtri K., Liyo Kao, and Ira Kurtz. "Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula." American Journal of Physiology-Renal Physiology 296, no. 6 (June 2009): F1521—F1529. http://dx.doi.org/10.1152/ajprenal.90651.2008.
Full textKofránek, Jiří, and Filip Ježek. "ACID-BASE EQUILIBRIUM MODELING BASED ON THE BALANCE CONCEPT." Medsoft 2018 30, no. 1 (March 10, 2018): 26–43. http://dx.doi.org/10.35191/medsoft_2018_1_30_26_43.
Full textImai, Hirokazu, and Wataru Kitagawa. "2. New Approach to Acid-base Equilibrium." Nihon Naika Gakkai Zasshi 97, no. 5 (2008): 1044–47. http://dx.doi.org/10.2169/naika.97.1044.
Full textDissertations / Theses on the topic "Acid base equilibrium"
Ferrante, Pamela L. "Acid-base regulation during exercise in the horse." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-164656/.
Full textKoning, Paul Alan. "Investigation of acid/base interactions in adhesion." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53558.
Full textPh. D.
Sin, Sai-yuen. "Fetal cardiac function predicting fetal compromise : a prospective study /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21903566.
Full textOdendal, Elsabe. "Pulmonary function and acid-base balance high intensity constant-load exercise." Master's thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/27123.
Full textJuan, Capdevila Anna de. "Aplicació de metodologies quimiomètriques a l'estudi de l'efecte del solvent sobre els aspectes termodinàmics i estructurals dels equilibris àcid-base dels polinucleòtids." Doctoral thesis, Universitat de Barcelona, 1997. http://hdl.handle.net/10803/667619.
Full textThe main goal of this project is the qualitative and quantitative description of all the thermodynamical and conformational transitions related to the acid-base behaviour of several polynucleotides in biological environments of low polarity. The emulation of these special environments has been carried out by using water-dioxane mixtures that keep the aqueous nature of the biological media and present the desired low polarity due to the features of their cosolvent. Owing to the complexity associated with the macromolecular nature of the polynucleotides and with the mixed character of the solvent used, some fundamental research must be carried out before facing specifically the research about the acid-base polynucleotide behaviour in water-dioxane mixtures. These previous studies include, on one hand, the detailed characterization of the water-dioxane mixtures and the interpretation of their effect on the acid-base behaviour of single solutes and, on the other hand, the study of the monomeric units of the polynucleotidesin these mixtures. In all the work performed, the careful treatment of the experimental data has been a constant concern. Special attention has been focused on the establishment of Linear Solvation Energy Relationships (LSER), behaviour models that relate the solute behaviour to the solvent effect, and on the interpretation of the multivariate data coming from the monitoring of the macromolecular equilibria of polynucleotides. The former problem has been tackled by using different kinds of bard-modelling and soft-modelling methods, whereas the latter has been solved with the application of curve resolution methods which do not need the postulation of any chemical model to interpret the variation of the different species in solution.
Lanier, Curtis Eugene. "Characterization of NA+/H+Exchanger-3 (NHE3) in the gills of longhorn sculpin (Myoxocephalus octodecemspinosus)." Click here to access thesis, 2007. http://www.georgiasouthern.edu/etd/archive/fall2007/curtis_e_lanier/Lanier_Curtis_E_200708_MS.pdf.
Full text"A thesis submitted to the Graduate Faculty of Georgia Southern University in partial fulfillment of the requirements for the degree Master of Science." In Biology, under the direction of James B. Claiborne. ETD. Electronic version approved: December 2007. Includes bibliographical references (p. 77-85)
冼世源 and Sai-yuen Sin. "Fetal cardiac function predicting fetal compromise: a prospective study." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31969823.
Full textTaylor, Lynn Elizabeth. "Acid-base regulation during sprint exercise in horses fed lecithin." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-163251/.
Full textCollard, Marie. "Acid-base regulation, calcification and tolerance to ocean acidification in echinoderms." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209286.
Full textTolerance to ocean acidification in metazoans is linked to their acid-base regulation capacities when facing environmental hypercapnia (i.e. increased CO2 concentration in the surrounding environment). The latter may result in a hypercapnia of the internal fluids and a concomitant acidosis (i.e. reduced pH of the internal fluids due to the dissociation of CO2 in this case). Organisms have two buffer systems allowing the compensation of this acidosis: the CO2-bicarbonate and the non-bicarbonate buffers. Homeostasis of the internal fluids thanks to these systems is essential for the proper functioning of enzymes and processes. As hypometabolic calcifying osmoconformers, three of the characteristics conferring a relative vulnerability to ocean acidification, echinoderms are considered “at risk” for the near-future conditions. Nonetheless, post-metamorphic (juveniles and adults) echinoderms inhabit all environments showing naturally low pH. Furthermore, sea urchins which are highly calcified (compared to sea stars or sea cucumbers) are also found in these environments. This suggests that echinoderms have strategies to adapt or acclimate to low pH environments. Recent studies indicated that while sea urchins are able to regulate their coelomic (extracellular) fluid by accumulation of bicarbonate, sea stars seem to tolerate the acidosis linked to environmental hypercapnia. However, this information was obtained on a reduced number of species and significant interspecific differences were evidenced. Some taxa have not been investigated at all. Furthermore, several aspects of the acid-base physiology were unexplored, like the buffering capacity of the extracellular fluid and the origin of carbon within these fluids.
Accordingly, the goal of this study was to characterize the acid-base physiology in post-metamorphic echinoderms of different taxa in order to understand their response to ocean acidification.
The acid-base regulation capacities within the different echinoderm taxa were compared. A method was designed to measure the total alkalinity in small volumes (500 µl) of the main extracellular fluid (the coelomic fluid). This study showed that regular euechinoids have an increased buffer capacity in their coelomic fluid compared to seawater and the other echinoderm groups. In sea urchins, bicarbonate and non-bicarbonate buffers come into play, the former playing the major role. This buffer capacity was increased in fed individuals compared to fasted ones and increased further when seawater pH was lowered.
The acid-base regulation capacities of sea urchins from different taxa were investigated. Regular euechinoids possess an increased buffer capacity of the coelomic fluid allowing them to maintain a higher pH compared to cidaroids at current seawater pH. This pattern was found for temperate, tropical and Antarctic sea urchins. Data was also obtained for irregular echinoids which also showed a particularly low extracellular pH and a buffer capacity close to seawater like cidaroids. When exposed to reduced seawater pH (8.0, 7.7, and 7.4) for 4-6 weeks, regular euechinoids showed an increasing buffer capacity of the coelomic fluid accompanied by a homeostasis of the pH. On the contrary, cidaroids showed no changes in their acid-base status whatever the seawater pH (8.0 to 7.4). The origin of coelomic fluid carbon, investigated by stable carbon isotope analysis, also differs according to taxa. The δ13CDIC of regular euechinoids evidenced a mixing between CO2 from metabolic origin and that from the surrounding seawater. This is further supported by the correlation between the seawater signal of reduced pH conditions (modified by the addition of industrial gas, changing the δ13C to more negative values) and that of the coelomic fluid. On the other hand, cidaroids exhibit a signal reflecting principally metabolic CO2 (very negative δ13C), and the δ13C did not change under varying pH conditions (i.e. did not adapt to the seawater δ13CDIC signature). For irregular echinoids, the carbon origin is unclear as some species show signals close to that of regular euechinoids whereas others are similar to cidaroids.
The impact of acid-base regulation was investigated by testing the effect of ocean acidification on the mechanical properties of the skeleton (test plates) in the sea urchin Paracentrotus lividus. Individuals from intertidal pools, CO2 vents and a one year acidification experiment (pH 8.0, 7.9 and 7.7) were compared. Only the intertidal pool individuals showed a difference of the Young’s modulus and fracture forces of their plates. Sea urchins from the tide pool with the largest pH fluctuations showed a lower stiffness and strengthened test. On the contrary, sea urchins from CO2 vents and experimental acidification did not display any differences in the several mechanical properties tested. We suggest that the different food qualities (calcified vs. uncalcified algae) in the different tide pools significantly contributed to the observed difference.
The acid-base regulation ability of sea cucumbers was assessed in two species from contrasted habitats (mangrove intertidal vs. coral reef species). These organisms underwent acidosis of the coelomic fluid when exposed to reduced seawater pH for a short time (6 to 12 days). The δ13C signal of the coelomic fluid mirrored that of the surrounding seawater in all conditions, indicating that the CO2 accumulated (cause of the acidosis) comes also from the seawater. This is still unexplained to date. However, metabolic processes such as respiration and ammonium excretion rates were not affected. No difference was evidenced between the two species.
The results obtained in this study compiled with data from the literature indicate that post-metamorphic echinoderms have contrasted acid-base physiology with most regular euechinoids compensating the coelomic fluid pH by accumulation of bicarbonate ions (and possibly ophiuroids also), cidaroids and at least one regular euechinoid (Arbacia lixula) having a naturally low coelomic fluid pH which is not affected by acidification, and sea stars and sea cucumbers which do not compensate their coelomic fluid pH when submitted to acidified seawater. In regular euechinoids, negative effects are linked to resource allocation with growth usually being reduced in favor of acid-base regulation mechanisms. Starfish and sea cucumbers appear as resilient to acidification, with very few functions being negatively impacted. In conclusion, it seems that post-metamorphic echinoderms studied so far will not be particularly at risk when facing ocean acidification levels expected by 2100. Furthermore, tolerance to ocean acidification does not seem linked to the present day ambient pH regime. Nevertheless, more studies need to be carried out on brittle stars and sea cucumbers to confirm preliminary results, as well as crinoids which have not been investigated to date. Long-term exposure experiments to estimate energy budget changes as well as more assessments of evolutionary potential in echinoderms are crucially needed./L’augmentation actuelle de la concentration en CO2 atmosphérique a deux conséquences majeures dans l’environnement marin :une augmentation de la température des eaux de surface (0.7°C depuis l’époque préindustrielle) et une diminution du pH de l’eau de mer. Cette diminution est mesurée continuellement dans différentes régions du monde et varie de -0.0017 à -0.04 unités de pH par an en fonction du site considéré. Basé sur des modèles d’émissions de CO2 du GIEC, il a été prédit que le pH moyen de l’océan diminuerait encore de 0.4 unités d’ici 2100 et 0.8 d’ici 2300 (correspondant à une augmentation de la concentration en protons d’environ 3 fois et 6 fois). De même, les états de saturation de l’eau de mer vis-à-vis des différentes formes de carbonate de calcium, telles que la calcite, la calcite magnésienne et l’aragonite produites par les organismes calcifiants, sont en train de diminuer et par conséquent, les horizons de saturation remontent vers les eaux de surface. Aujourd’hui, certains environnements sont caractérisés par des valeurs de pH plus basses que celle de l’océan. Ceux-ci sont les mares intertidales, les zones d’upwelling, l’océan profond et les évents volcaniques. Dans ces environnements, le pH est soit constamment bas ou fluctue. Ces changements sont soit dû à une activité biologique, une fuite de CO2 géologique, ou au mouvement des masses d’eau. Dans ces environnements, il a été suggéré que les organismes pourraient être adaptés ou acclimatés à des valeurs basses de pH, telles que celles prédites pour le futur proche.
La tolérance à l’acidification des océans chez les métazoaires est liée à leur capacité de régulation acide-base lorsqu’ils sont exposés à une hypercapnie environnementale (c’est-à-dire, une augmentation de la concentration en CO2 dans l’environnement entourant l’organisme). Ce phénomène peut résulter en une hypercapnie des liquides internes et une acidose concomitante (c’est-à-dire, un pH des liquides internes réduit dû à la dissociation du CO2 dans ce cas précis). Les organismes ont deux systèmes tampons leur permettant de compenser l’acidose :les tampons CO2-bicarbonate et non-bicarbonate. L’homéostasie des liquides internes grâce à ces systèmes est essentielle pour le fonctionnement correct des enzymes et processus. En tant qu’osmoconformes calcifiant hypométaboliques, trois caractéristiques menant à une certaine vulnérabilité face à l’acidification des océans, les échinodermes sont considérés « à risque » pour les conditions du futur proche. Cependant, les échinodermes post-métamorphiques (juvéniles et adultes) occupent tous les environnements montrant un pH faible naturellement. De plus, les oursins qui sont hautement calcifiés (par rapport aux étoiles de mer ou aux concombres de mer) sont également retrouvés dans ces environnements. Ceci suggère que les échinodermes ont des stratégies d’adaptation ou d’acclimatation à ces environnements à bas pH. Alors que des études récentes montrent que les oursins sont capables de réguler le pH du liquide cœlomique (extracellulaire) par l’accumulation de bicarbonates, les étoiles semblent tolérer l’acidose liée à l’hypercapnie environnementale. Néanmoins, ces informations ont été obtenues sur un petit nombre d’espèces et des différences interspécifiques significatives ont été mises en évidence. Certains taxa n’ont pas été étudié du tout. Par ailleurs, différents aspects de la physiologie acide-base sont inexplorés, tels que la capacité tampon du liquide extracellulaire et l’origine du carbone dans ces liquides.
Par conséquent, le but de cette étude était de caractériser la physiologie acide-base chez les échinodermes post-métamorphiques de différents taxa afin de comprendre leur réponse à l’acidification des océans.
Les capacités de régulation acide-base au sein des différents groupes d’échinodermes ont été comparées. Une méthode a été mise au point afin de mesurer l’alcalinité totale dans de petits volumes (500 µl) de liquide extracellulaire (le liquide cœlomique). Cette étude démontra que la capacité tampon du liquide cœlomique des euéchinoïdes réguliers est accrue comparée à celle de l’eau de mer ainsi que celle des autres groupes d’échinodermes. Dans les oursins, les tampons bicarbonate et non-bicarbonate entrent en jeux, le premier étant majoritaire. Cette capacité tampon est augmentée chez les individus nourris par rapport à ceux à jeuns et est augmentée plus encore lorsque le pH de l’eau de mer est diminué.
Les capacités de régulation acide-base ont été étudiées plus spécifiquement dans les différents groupes d’oursins. Les euéchinoïdes réguliers possèdent une capacité tampon accrue du liquide cœlomique leur permettant de maintenir un pH élevé comparé aux oursins cidaroïdes, au pH de l’eau de mer actuel. Ce patron se retrouve dans les oursins tempérés, tropicaux et antarctiques. Des données ont également été obtenues pour les oursins irréguliers qui ont également un pH extracellulaire particulièrement bas et une capacité tampon proche de celle de l’eau de mer comme les cidaroïdes. Lorsqu’ils sont exposés à un pH de l’eau de mer réduit (7.7 et 7.4 par rapport à 8.0) pour 4 à 6 semaines, les euéchinoïdes réguliers ont montré une augmentation de la capacité tampon du liquide cœlomique accompagnée d’une homéostasie du pH de ce liquide. A l’inverse, les cidaroïdes n’ont montré aucune modification de leur statut acide-base quel que soit le pH (8.0 à 7.4). L’origine du carbone du liquide cœlomique, étudié par analyse des isotopes stables du carbone, diffère également en fonction du groupe. Le δ13CDIC des euéchinoïdes réguliers met en évidence un mélange entre du CO2 d’origine métabolique et celui de l’eau environnante. Ceci est également démontré par la corrélation entre le signal de l’eau de mer dont le pH est réduit (modifié par l’ajout de CO2 industriel, changent le δ13C vers des valeurs plus négatives) et celui du liquide cœlomique. En revanche, les cidaroïdes montrent un signal reflétant principalement celui du CO2 métabolique (δ13C très négatif), et le δ13C n’est pas influencé par des conditions de pH variées (c’est-à-dire, qu’il ne s’adapte pas à la signature du δ13CDIC de l’eau de mer). Pour les oursins irréguliers, l’origine du carbone est incertaine puisque certaines espèces montrent un signal proche de celui des euéchinoïdes réguliers et d’autres similaire à celui des cidaroïdes.
L’impact de la régulation acide-base a été étudié en testant l’effet de l’acidification des océans sur les propriétés mécaniques du squelette (plaques squelettiques) de l’oursin Paracentrotus lividus. Des individus de mares intertidales, d’évents volcaniques et d’une expérience d’acidification d’un an (pH 8.0, 7.9 et 7.7) ont été comparés. Seuls les individus des mares intertidales montrèrent une différence pour le module de Young et la force des fractures des plaques. Les oursins venant de la mare intertidale montrant les plus grandes variations de pH avaient une rigidité plus faible et un squelette renforcé. A l’inverse, les oursins des évents volcaniques et de l’expérience d’acidification n’ont montrés aucune différence dans les diverses propriétés mécaniques étudiées. Nous suggérons que les variations en termes de qualité de nourriture (algues calcifiées vs. non-calcifiées) dans les différentes mares intertidales ont contribués de manière significative à la différence observée.
L’habilité des concombres de mer à réguler leur balance acide-base a été évaluée dans deux espèces d’habitats contrastés (espèce intertidale des mangroves vs. subtidale des récifs coralliens). Ces organismes ont subis une acidose du liquide cœlomique lorsqu’ils ont été exposés à un pH réduit de l’eau de mer pour une courte durée (6 à 12 jours). Le signal δ13C du liquide cœlomique reflétait celui de l’eau environnante dans toutes les conditions, indiquant que le CO2 accumulé (cause de l’acidose) venait de l’eau. Ceci est encore inexpliqué à l’heure actuelle. Cependant, les processus métaboliques tels que la respiration ou l’excrétion d’ammonium n’ont pas été affecté. Aucune différence n’a été observée entre les deux espèces.
Les résultats obtenus dans cette étude compilés avec ceux de la littérature indiquent que les échinodermes post-métamorphiques ont une physiologie acide-base contrastée avec la plupart des euéchinoïdes réguliers qui compensent le pH du liquide cœlomique par l’accumulation d’ions bicarbonates (et peut-être les ophiures aussi), les cidaroïdes et au moins un euéchinoïde régulier (Arbacia lixula) qui ont naturellement un pH du liquide cœlomique bas et qui ne sont pas affectés par l’acidification, et les étoiles de mer et les concombres de mers qui ne compensent pas le pH du liquide cœlomique lorsqu’ils sont soumis à une eau acidifiée. Chez les euéchinoïdes réguliers, des effets négatifs sont liés à un changement de l’allocation des ressources avec souvent un taux de croissance réduit en faveur des mécanismes de régulation acide-base. Les étoiles de mer et les concombres de mer apparaissent plus tolérants à l’acidification, avec peu de fonctions négativement impactées. En conclusion, il semble que les échinodermes post-métamorphiques étudiés jusqu’à présent ne seront pas particulièrement à risque lorsqu’ils seront exposés au niveau d’acidification attendu pour 2100. De plus, la tolérance à l’acidification des océans ne semble pas liée au régime de pH subit actuellement. Cependant, plus d’études doivent être menées sur les ophiures et les concombres de mer afin de confirmer les résultats préliminaires, ainsi que sur les crinoïdes qui n’ont à l’heure actuelle pas encore été étudiés. Des expériences à long terme afin d’estimer le budget énergétique des organismes ainsi que plus d’évaluations du potentiel d’évolution chez les échinodermes sont absolument nécessaires.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Maciel, Thiago Arcoverde. "Elementos preditivos e morfológicos da urolitíase obstrutiva em ovinos Santa Inês /." Jaboticabal, 2019. http://hdl.handle.net/11449/191260.
Full textResumo: A urolitíase é enfermidade com importância econômica para a ovinocultura, que causa a saída prematura de ovinos machos destinados à reprodução, custos com tratamento e morte. A associação entre avaliação hemogasométrica, pesquisa de proteínas de fase aguda (PFA) como biomarcadores precoces e o estudo morfométrico do trato urinário pode ser empregada como método de auxílio diagnóstico precoce para a doença. Com esse objetivo, foram utilizados 14 ovinos hígidos, machos (não castrados), da raça Santa Inês com idade aproximada de 90 dias. Os ovinos receberam dieta experimental hiperfosfórica durante todo o período experimental, foram examinados semanalmente e após desenvolvimento da urolitíase, reorganizados em dois grupos experimentais distintos D1 (sem urolitíase) e D2 (com urolitíase) para análise comparada dos dados. No período pré-experimental e no dia do abate foram coletadas amostras de sangue venoso para avaliação hemogasométrica. Para mensurar as imunoglobulinas (A e G) e as PFA, analisaram-se as amostras dos ovinos que desenvolveram a urolitíase (D2). As coletas de sangue foram realizadas semanalmente até a manifestação clínica da enfermidade, totalizando 16 amostras. Ao término do experimento foi realizado o abate e necropsia dos ovinos, para descrição das alterações patológicas e a análise morfométrica. Fragmentos do trato urinário e fígado foram coletados e submetidos à rotina histológica e as lâminas histológicas foram descritas, seguindo-se a histomorfometria. Embo... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Urolithiasis is an economically important disease for male sheep production that causes the premature calving of sheep for breeding, treatment costs and death. The association between hemogasometric evaluation, acute phase protein (APP) research as early biomarkers and urinary tract morphometric study can be employed as an early diagnostic aid for the disease. For this purpose, 14 healthy male (non-castrated) Santa Inês sheep, approximately 90 days old, were used. Sheep received a hyperphosphoric experimental diet throughout the experimental period, were examined weekly and after development of urolithiasis, reorganized into two distinct experimental groups D1 (without urolithiasis) and D2 (with urolithiasis) for comparative analysis of the data. In the pre-experimental period and on the day of slaughter, venous blood samples were collected for hemogasometric evaluation. To measure immunoglobulins (A and G) and APP, samples from sheep that developed urolithiasis (D2) were analyzed. Blood samples were collected weekly until the clinical manifestation of the disease, totaling 16 samples. At the end of the experiment, sheep were slaughtered and necropsied to describe the pathological changes and the morphometric analysis. Urinary tract and liver fragments were collected and submitted to histological routine and histological slides were described, followed by histomorphometry. Although blood pH was not different (P < 0.05) between groups, sheep that developed urolithiasis had com... (Complete abstract click electronic access below)
Doutor
Books on the topic "Acid base equilibrium"
R, Hainsworth, ed. Acid-base balance. Manchester, U.K: Manchester University Press, 1986.
Find full textF, Adams J., and Cowan R. A, eds. Clinical acid-base balance. Oxford: Oxford University Press, 1997.
Find full text1920-, Seldin Donald W., and Giebisch Gerhard H, eds. The Regulation of acid-base balance. New York: Raven Press, 1989.
Find full textHolmes, Oliver. Human acid-base physiology: A student text. London: Chapman & Hall Medical, 1993.
Find full textJohn, Gennari F., ed. Acid-base disorders: Basic concepts and clinical management. Boston, Mass: Little, Brown and Co., 1987.
Find full textLongenecker, J. Craig. High-yield acid base. Baltimore, Md: Williams & Wilkins, 1998.
Find full textYoung, Robert O. The pH miracle: Balance your diet, reclaim your health. New York: Wellness Central, 2010.
Find full textMaria, Blanco. The complete idiot's guide to the pH balance diet. New York: Alphabooks, 2013.
Find full textGuerrero, Alex. In balance for life: Understanding and maxmimizng your body's Ph factor. Gary City Park, NY: SquareOne Publishers, 2005.
Find full textBook chapters on the topic "Acid base equilibrium"
Middelburg, Jack J. "Acid-Base Equilibria." In SpringerBriefs in Earth System Sciences, 59–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53407-2_6.
Full textLecoq, Raoul. "Steroids and Acid-Base Equilibrium." In Ciba Foundation Symposium - Hormonal Influences in Water Metabolism (Book II of Colloquia on Endocrinology, Vol. 4), 446–54. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470718797.ch5.
Full textAlemanno, Fernando. "Acid–Base Equilibrium(cliche paper yellow)." In Biochemistry for Anesthesiologists and Intensivists, 167–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26721-6_14.
Full textMcMahon, Patrick E., Rosemary F. McMahon, and Bohdan B. Khomtchouk. "Acid/Base Equilibrium, pH, and Buffers." In Survival Guide to General Chemistry, 473–506. Boca Raton, Florida : CRC Press, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429445828-26.
Full textPiiper, J. "Respiratory Gas Transport and Acid-Base Equilibrium in Blood." In Comprehensive Human Physiology, 2051–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60946-6_103.
Full textOhashi, Eisaku, Kohei Takeuchi, Keiji Tanino, and Kosuke Namba. "Utilizing the pKa Concept to Address Unfavorable Equilibrium Reactions in the Total Synthesis of Palau’amine." In Modern Natural Product Synthesis, 503–20. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1619-7_23.
Full textSchecher, William D., and Charles T. Driscoll. "ALCHEMI: A Chemical Equilibrium Model to Assess the Acid-Base Chemistry and Speciation of Aluminum in Dilute Solutions." In SSSA Special Publications, 325–56. Madison, WI, USA: Soil Science Society of America and American Society of Agronomy, 2015. http://dx.doi.org/10.2136/sssaspecpub42.c16.
Full textLewis, Rob, and Wynne Evans. "Acid-Base Equilibria." In Chemistry, 285–306. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1007/978-0-230-34492-1_16.
Full textScholz, Fritz, and Heike Kahlert. "Acid–Base Equilibria." In Chemical Equilibria in Analytical Chemistry, 17–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17180-3_3.
Full textLewis, Rob, and Wynne Evans. "Acid-Base Equilibria." In Chemistry, 278–96. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14045-9_16.
Full textConference papers on the topic "Acid base equilibrium"
Natsuda, Kenichiro, Takahiro Kozawa, Kazumasa Okamoto, and Seiichi Tagawa. "Acid-base equilibrium in chemically amplified resist." In SPIE Advanced Lithography, edited by Clifford L. Henderson. SPIE, 2008. http://dx.doi.org/10.1117/12.772165.
Full textRuiz-Ángel, María José, Samuel Carda-Broch, and Juan Peris-Vicente. "USE OF PROTONATION CONSTANTS TO FACILITATE MATHEMATICAL TREATMENT IN ACID-BASE EQUILIBRIUM." In 18th International Technology, Education and Development Conference. IATED, 2024. http://dx.doi.org/10.21125/inted.2024.0415.
Full textSimaremare, Sanhot, Manihar Situmorang, and Simson Tarigan. "Innovative Learning Material with Project to Improve Students Achievement on the Teaching of Acid-Base Equilibrium." In Proceedings of the 3rd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/aisteel-18.2018.93.
Full textPyrko, A. N., S. L. Bondarev, T. F. Raichenok, and A. S. Pilipovich. "NFLUENCE OF ACID-BASE PROPERTIES OF THE ENVIRONMENT ON THE SPECTRAL AND LUMINESCENT PROPERTIES OF SOME CYCLIC DIKETONES AND TRIKETONES IN SOLUTIONS." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-141-144.
Full textMeybodi, Mahdi Kalantari, Oscar Vazquez, Kenneth S. Sorbie, Eric J. Mackay, and Khosro Jarrahian. "Equilibrium Modelling of Interactions in DETPMP-Carbonate System." In SPE Oilfield Scale Symposium. SPE, 2024. http://dx.doi.org/10.2118/218704-ms.
Full textKumar, S., A. Patki, N. Padhy, S. Moningi, D. Kulkarni, and G. Ramchandran. "A comparison of the effect of 0.9% saline versus balanced salt solution (plasma-lyte a) on acid base equilibrium, serum osmolarity and serum electrolytes in supratentorial neurosurgical procedures requiring craniotomy." In 18th Annual Conference of Indian Society of Neuroanaesthesiology and Critical Care (ISNACC 2017). Thieme Medical and Scientific Publishers Private Ltd., 2017. http://dx.doi.org/10.1055/s-0038-1646232.
Full textKarlsen, Vibeke B., Gamunu Samarakoon, and Carlos Dinamarca. "A Comparative Model-Analysis on Sulphide Bio-oxidation with Different Electron Acceptors." In 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192014.
Full textGalbis, Elsa, María Violante de Paz, and Ana Alcudia. "INNOVATIVE APPROACH TO ACID-BASE EQUILIBRIUMS." In International Technology, Education and Development Conference. IATED, 2016. http://dx.doi.org/10.21125/inted.2016.0861.
Full textMAGARIO, Ivana, José SCILIPOTI, and Salvador Eduardo BRANDOLÍN. "ACTIVITY-BASED KINETIC MODELLING OF LIPASE CATALYSED SYNTHESIS OF PEROCTANOIC ACID." In SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE. DR. D. SCIENTIFIC CONSULTING, 2022. http://dx.doi.org/10.48141/sbjchem.21scon.12_abstract_brandolin.pdf.
Full textOliveira, Nuno, Inês Pires, and Miguel Machuqueiro. "New phosphorylated amino acid parametrization to correctly reproduce their acid/base equilibria, including in protein binding events." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-06082.
Full textReports on the topic "Acid base equilibrium"
Crowley, David, Yitzhak Hadar, and Yona Chen. Rhizosphere Ecology of Plant-Beneficial Microorganisms. United States Department of Agriculture, February 2000. http://dx.doi.org/10.32747/2000.7695843.bard.
Full textAngle, C. W., and R. Hewgill. The effects of carbonates on the acid/base dissociation equilibria of oil sands tailings pond water organic species. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/305301.
Full textDeGagne, Julia. Acid-Base Equilibria in Organic-Solvent/Water Mixtures and Their Relevance to Gas/Particle Partitioning in the Atmosphere and in Tobacco Smoke. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2729.
Full textShenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen, and Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, June 2011. http://dx.doi.org/10.32747/2011.7697103.bard.
Full text