Academic literature on the topic 'Acid etching'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acid etching.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Acid etching"

1

Çakır, Orhan. "Study of Etch Rate and Surface Roughness in Chemical Etching of Stainless Steel." Key Engineering Materials 364-366 (December 2007): 837–42. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.837.

Full text
Abstract:
In this study, stainless steel material (X5CrNi1810) was micromachined by chemical etching method. Ferric chloride was selected as etchant which is the most widely used etchant for iron-based materials. Four different etchant concentrations (32 °Bé, 36 °Bé, 40 °Bé and 44 °Bé) were used at various etching temperature. Moreover, the influence of the addition of hydrochloric acid to main etchant on etching performance was examined. The aim of this study was to investigate the depth of etch and surface roughness affected by etchant concentration, hydrochloric acid addition and etching temperature. It was observed that etching temperature for any etchant concentration is important factor in case of depth of etch and surface roughness. It was also noticed that the addition of hydrochloric acid to main etchant increased depth of etch value at any etching temperature. The optimum etching parameters were obtained for the chemical etching of stainless steel.
APA, Harvard, Vancouver, ISO, and other styles
2

Barjaktarova-Valjakova, Emilija, Anita Grozdanov, Ljuben Guguvcevski, et al. "Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, part 1: Acids, Application Protocol and Etching Effectiveness." Open Access Macedonian Journal of Medical Sciences 6, no. 3 (2018): 568–73. http://dx.doi.org/10.3889/oamjms.2018.147.

Full text
Abstract:
AIM: The purpose of this review is to represent acids that can be used as surface etchant before adhesive luting of ceramic restorations, placement of orthodontic brackets or repair of chipped porcelain restorations. Chemical reactions, application protocol, and etching effect are presented as well.STUDY SELECTION: Available scientific articles published in PubMed and Scopus literature databases, scientific reports and manufacturers' instructions and product information from internet websites, written in English, using following search terms: “acid etching, ceramic surface treatment, hydrofluoric acid, acidulated phosphate fluoride, ammonium hydrogen bifluoride”, have been reviewed.RESULTS: There are several acids with fluoride ion in their composition that can be used as ceramic surface etchants. The etching effect depends on the acid type and its concentration, etching time, as well as ceramic type. The most effective etching pattern is achieved when using hydrofluoric acid; the numerous micropores and channels of different sizes, honeycomb-like appearance, extruded crystals or scattered irregular ceramic particles, depending on the ceramic type, have been detected on the etched surfaces.CONCLUSION: Acid etching of the bonding surface of glass - ceramic restorations is considered as the most effective treatment method that provides a reliable bond with composite cement. Selective removing of the glassy matrix of silicate ceramics results in a micromorphological three-dimensional porous surface that allows micromechanical interlocking of the luting composite.
APA, Harvard, Vancouver, ISO, and other styles
3

Gawlik, Marcjanna Maria, Björn Wiese, Alexander Welle, et al. "Acetic Acid Etching of Mg-xGd Alloys." Metals 9, no. 2 (2019): 117. http://dx.doi.org/10.3390/met9020117.

Full text
Abstract:
Mg-xGd alloys show potential to be used for degradable implants. As rare earth containing alloys, they are also of special interest for wrought products. All applications from medical to engineering uses require a low and controlled degradation or corrosion rate without pitting. Impurities from fabrication or machining, like Fe inclusions, encourage pitting, which inhibits uniform material degradation. This work investigates a suitable etching method to remove surface contamination and to understand the influence of etching on surface morphology. Acetic acid (HAc) etching as chemical surface treatment has been used to remove contamination from the surface. Extruded Mg-xGd (x = 2, 5 and 10) discs were etched with 250 g/L HAc solution in a volume of 5 mL or 10 mL for different times. The microstructure in the near surface region was characterized. Surface characterization was done by SEM, EDS, interferometry, and ToF-SIMS (time-of-flight secondary ion mass spectrometry) analysis. Different etching kinetics were observed due to microstructure and the volume of etching solution. Gd rich particles and higher etching temperatures due to smaller etchant volumes promote the formation of pits. Removal of 2–9 µm of material from the surface was sufficient to remove surface Fe contamination and to result in a plain surface morphology.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Zhuang, Lin Zhu, Jing Lin, and Zhi Hui Sun. "Study of Super Hydrophobic Films on Pre-Sensitized Plate Aluminium Substrate." Applied Mechanics and Materials 200 (October 2012): 427–29. http://dx.doi.org/10.4028/www.scientific.net/amm.200.427.

Full text
Abstract:
A simple chemical etching method was developed for corrosion of the pre-sensitized plate aluminium substrate in order to be a rough surface. After the chemical etched surface was treated with fluorination, the pre-sensitized (PS) plate aluminium (Al) substrate surface exhibits a super-hydrophobic property. The effects of the etching time and the etchant concentration on the super-hydrophobici were investigated, and the results show the contact angle of hydrofluoric firstly increases then reduce with acid etching time increasing, and the optimum etching time is 12 min; the contact angle of hydrofluoric firstly increases then reduce with acid etchant concentration increasing, and the optimum etchant concentration is 3 mol /L. When the contact angle increases, the droplet and solid surface tension increases. Film base fine structure of the rough surface is the key to the formation of hydrophobic.
APA, Harvard, Vancouver, ISO, and other styles
5

Wilson, Sara M., Wen Lien, David P. Lee, and William J. Dunn. "Confocal microscope analysis of depth of etch between self-limiting and traditional etchant systems." Angle Orthodontist 87, no. 5 (2017): 766–73. http://dx.doi.org/10.2319/120816-880.1.

Full text
Abstract:
ABSTRACT Objective: To see whether there is an advantage to using a self-limiting phosphoric acid etchant versus a traditional 34% phosphoric acid etchant for bonding by measuring the depth of etch at multiple time intervals. Materials and Methods: A total of 25 bovine teeth were mounted and etched on the facial surface with two different etchants: standard 34% phosphoric acid and a self-limiting 35% phosphoric acid etchant at varied time intervals of 15, 30, 60, 90, and 120 seconds. Teeth were scanned using a three-dimensional laser confocal scanning microscope prior to etching and scanned again after etching to determine the depth of enamel etched compared to the baseline enamel surface prior to etching. Results: The 34% phosphoric acid etchant etched significantly deeper than the self-limiting etch. Etch times exceeding 30 seconds also etched significantly deeper for both types of etchant. Conclusion: The etch depth of the self-limiting etchant was consistently less than the standard etchant. Both types of etchant etched deeper after 30 seconds, but the depth of etch at 120 seconds was not different than at 60 seconds, indicating that both etchants are somewhat self-limiting in depth. Therefore, there is no advantage to using the self-limiting etchant.
APA, Harvard, Vancouver, ISO, and other styles
6

Jemat, Afida, Mariyam Jameelah Ghazali, Masfueh Razali, and Yuichi Otsuka. "Effects of Surface Treatment on Titanium Alloys Substrate by Acid Etching for Dental Implant." Materials Science Forum 819 (June 2015): 347–52. http://dx.doi.org/10.4028/www.scientific.net/msf.819.347.

Full text
Abstract:
Many studies were carried out to investigate the ability of titanium alloys for dental implant. Surface treatment is one of the famous methods to increase the titanium surface properties. The purpose of this paper is to investigate the effects of acid etching on the surface topography and roughness of titanium alloys (Ti6Al4V ASTM 1472-99). Acid etchings were carried out by using different type of acids with same time exposures. All etched surface were characterized by using an X-ray diffraction (XRD), a scanning electron microscope (SEM) and a roughness tester. Acid etched and pure surface were comparatively analysed. Results obtained show that the type of acids influenced the surface topography as well as roughness properties. The microstructure of the surface is highly modified after acid etching. Further we can confirm that, the experimental etched titanium alloys had features of a roughened surface with micro-roughness. In general, the experimental surface (0.137 μm – 3.986 μm) was significantly rougher than control surface (0.124 μm).
APA, Harvard, Vancouver, ISO, and other styles
7

Cecchin, D., AP Farina, CMP Vidal та AK Bedran-Russo. "A Novel Enamel and Dentin Etching Protocol Using α-hydroxy Glycolic Acid: Surface Property, Etching Pattern, and Bond Strength Studies". Operative Dentistry 43, № 1 (2018): 101–10. http://dx.doi.org/10.2341/16-136-l.

Full text
Abstract:
SUMMARY Objectives: To determine the use of α-hydroxy glycolic acid (GA) as a surface pretreatment for dental restorative applications. The etching pattern of GA pretreatment of dental hard tissues was assessed by surface microhardness and scanning electron microscopy (SEM). The effectiveness of GA surface etching on the enamel and dentin resin bond strengths was assessed using two etchant application modes (rubbing and no rubbing) and three adhesive systems (Single Bond [SB], One Step Plus [OSP], and Scotchbond Universal [SBU]). Methods: Knoop microhardness measurements were carried out on polished enamel and dentin surfaces before and after treatment with 35% GA, 35% phosphoric acid (PA), or distilled water (control group) for 30 seconds. The microtensile bond strength test was carried out on enamel and dentin. Ultrastructural analysis of the surface and interfacial interaction was qualitatively accomplished using SEM. Results: Etching with either PA or GA significantly decreased the enamel microhardness, with GA being significantly less aggressive than PA (p<0.001), while both acids showed similar decreases in dentin microhardness (p=0.810). SEM revealed similar etching patterns of GA and PA, while apparently a thinner hybrid layer was observed for GA groups. In dentin, the bond strengths were statistically similar between PA and GA groups, regardless of the etchant application mode (p>0.05). However, rubbing of GA enhanced the bond strength to enamel. PA and GA significantly increased the SBU bond strength to enamel when compared to SB and OSP (p<0.05). Conclusions: GA effectively etched enamel and dentin surfaces, resulting in bond strength values similar to those associated with traditional PA. GA is a suitable enamel and dentin surface etchant for adhesive restorative procedures.
APA, Harvard, Vancouver, ISO, and other styles
8

OBAIDI, Hussain, and Issam AL-KHAYAT. "Viscous acid etching agent." Al-Rafidain Dental Journal 1, no. 1 (2020): 40–43. http://dx.doi.org/10.33899/rden.2020.165828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Son, Chang Jin, Taeh Yeon Kim, Tae Gun Park, and Sang Woo Lim. "Is Highly Selective Si3N4/SiO2 Etching Feasible without Phosphoric Acid?" Solid State Phenomena 282 (August 2018): 147–51. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.147.

Full text
Abstract:
Si3N4 film could be selectively removed by a special H3PO4-free etchant. In order to increase Si3N4 etching rate and Si3N4/SiO2 etch selectivity, various additives were added to H3PO4-free etchant. The optimization of additives into H3PO4-free solution, a comparable Si3N4 etching rate with 50 times increased Si3N4/SiO2 etch selectivity was obtained as compared to the conventional H3PO4 process.
APA, Harvard, Vancouver, ISO, and other styles
10

Sarkar, Amrita, and Morgan Stefik. "Robust porous polymers enabled by a fast trifluoroacetic acid etch with improved selectivity for polylactide." Materials Chemistry Frontiers 1, no. 8 (2017): 1526–33. http://dx.doi.org/10.1039/c6qm00266h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography