Journal articles on the topic 'Ack1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ack1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lin, Qiong, Jian Wang, Chandra Childress, and Wannian Yang. "The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1)." Biochemical Journal 445, no. 2 (June 27, 2012): 255–64. http://dx.doi.org/10.1042/bj20111575.
Full textShen, Feng, Qiong Lin, Yan Gu, Chandra Childress, and Wannian Yang. "Activated Cdc42-associated Kinase 1 Is a Component of EGF Receptor Signaling Complex and Regulates EGF Receptor Degradation." Molecular Biology of the Cell 18, no. 3 (March 2007): 732–42. http://dx.doi.org/10.1091/mbc.e06-02-0142.
Full textPrieto-Echagüe, Victoria, and W. Todd Miller. "Regulation of Ack-Family Nonreceptor Tyrosine Kinases." Journal of Signal Transduction 2011 (February 17, 2011): 1–9. http://dx.doi.org/10.1155/2011/742372.
Full textChan, Wing, Soon-Tuck Sit, and Ed Manser. "The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation." Biochemical Journal 435, no. 2 (March 29, 2011): 355–64. http://dx.doi.org/10.1042/bj20102156.
Full textLiu, Xia, Xuan Wang, Lifang Li, and Baolin Han. "Research Progress of the Functional Role of ACK1 in Breast Cancer." BioMed Research International 2019 (October 20, 2019): 1–6. http://dx.doi.org/10.1155/2019/1018034.
Full textWu, Sijia, Karl D. Bellve, Kevin E. Fogarty, and Haley E. Melikian. "Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant." Proceedings of the National Academy of Sciences 112, no. 50 (November 30, 2015): 15480–85. http://dx.doi.org/10.1073/pnas.1512957112.
Full textGajiwala, Ketan S., Karen Maegley, RoseAnn Ferre, You-Ai He, and Xiu Yu. "Ack1: Activation and Regulation by Allostery." PLoS ONE 8, no. 1 (January 14, 2013): e53994. http://dx.doi.org/10.1371/journal.pone.0053994.
Full textFurlow, Bryant. "Tyrosine kinase ACK1 promotes prostate tumorigenesis." Lancet Oncology 7, no. 1 (January 2006): 17. http://dx.doi.org/10.1016/s1470-2045(05)70525-8.
Full textdel Mar Masdeu, Maria, Beatriz G. Armendáriz, Anna La Torre, Eduardo Soriano, Ferran Burgaya, and Jesús Mariano Ureña. "Identification of novel Ack1-interacting proteins and Ack1 phosphorylated sites in mouse brain by mass spectrometry." Oncotarget 8, no. 60 (September 15, 2017): 101146–57. http://dx.doi.org/10.18632/oncotarget.20929.
Full textMahajan, Nupam P., Young E. Whang, James L. Mohler, and H. Shelton Earp. "Activated Tyrosine Kinase Ack1 Promotes Prostate Tumorigenesis: Role of Ack1 in Polyubiquitination of Tumor Suppressor Wwox." Cancer Research 65, no. 22 (November 15, 2005): 10514–23. http://dx.doi.org/10.1158/0008-5472.can-05-1127.
Full textYokoyama, Noriko, Julie Lougheed, and W. Todd Miller. "Phosphorylation of WASP by the Cdc42-associated Kinase ACK1." Journal of Biological Chemistry 280, no. 51 (October 28, 2005): 42219–26. http://dx.doi.org/10.1074/jbc.m506996200.
Full textYokoyama, Noriko, and W. Todd Miller. "Biochemical Properties of the Cdc42-associated Tyrosine Kinase ACK1." Journal of Biological Chemistry 278, no. 48 (September 22, 2003): 47713–23. http://dx.doi.org/10.1074/jbc.m306716200.
Full textMahajan, Kiran, and Nupam P. Mahajan. "Shepherding AKT and androgen receptor by Ack1 tyrosine kinase." Journal of Cellular Physiology 224, no. 2 (April 16, 2010): 327–33. http://dx.doi.org/10.1002/jcp.22162.
Full textMahajan, Kiran, Domenico Coppola, Y. Ann Chen, Weiwei Zhu, Harshani R. Lawrence, Nicholas J. Lawrence, and Nupam P. Mahajan. "Ack1 Tyrosine Kinase Activation Correlates with Pancreatic Cancer Progression." American Journal of Pathology 180, no. 4 (April 2012): 1386–93. http://dx.doi.org/10.1016/j.ajpath.2011.12.028.
Full textPrieto-Echagüe, Victoria, Azad Gucwa, Barbara P. Craddock, Deborah A. Brown, and W. Todd Miller. "Cancer-associated Mutations Activate the Nonreceptor Tyrosine Kinase Ack1." Journal of Biological Chemistry 285, no. 14 (January 28, 2010): 10605–15. http://dx.doi.org/10.1074/jbc.m109.060459.
Full textNonami, Atsushi, Martin Sattler, Ellen Weisberg, Qingsong Liu, Jianming Zhang, Matthew P. Patricelli, Amanda L. Christie, et al. "Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach." Blood 125, no. 20 (May 14, 2015): 3133–43. http://dx.doi.org/10.1182/blood-2014-12-615906.
Full textGrøvdal, Lene Melsæther, Lene E. Johannessen, Marianne Skeie Rødland, Inger Helene Madshus, and Espen Stang. "Dysregulation of Ack1 inhibits down-regulation of the EGF receptor." Experimental Cell Research 314, no. 6 (April 2008): 1292–300. http://dx.doi.org/10.1016/j.yexcr.2007.12.017.
Full textModzelewska, Katarzyna, Laura P. Newman, Radhika Desai, and Patricia J. Keely. "Ack1 Mediates Cdc42-dependent Cell Migration and Signaling to p130Cas." Journal of Biological Chemistry 281, no. 49 (October 12, 2006): 37527–35. http://dx.doi.org/10.1074/jbc.m604342200.
Full textMahajan, Kiran, Domenico Coppola, Sridevi Challa, Bin Fang, Y. Ann Chen, Weiwei Zhu, Alexis S. Lopez, et al. "Ack1 Mediated AKT/PKB Tyrosine 176 Phosphorylation Regulates Its Activation." PLoS ONE 5, no. 3 (March 19, 2010): e9646. http://dx.doi.org/10.1371/journal.pone.0009646.
Full textMahajan, K., and N. P. Mahajan. "ACK1/TNK2 tyrosine kinase: An emerging target for cancer therapeutics." AACR Education book 2014, no. 1 (April 4, 2014): 97–102. http://dx.doi.org/10.1158/aacr.edb-14-6109.
Full textMahajan, Kiran, and Nupam P. Mahajan. "ACK1 tyrosine kinase: Targeted inhibition to block cancer cell proliferation." Cancer Letters 338, no. 2 (September 2013): 185–92. http://dx.doi.org/10.1016/j.canlet.2013.04.004.
Full textChua, B. T., Y. D. Cheng, and S. C. Tham. "730: ACK1 is a potential target for anti-metastasis therapeutic development." European Journal of Cancer 50 (July 2014): S175. http://dx.doi.org/10.1016/s0959-8049(14)50642-9.
Full textLawrence, Harshani R., Kiran Mahajan, Yunting Luo, Daniel Zhang, Nathan Tindall, Miles Huseyin, Harsukh Gevariya, et al. "Development of Novel ACK1/TNK2 Inhibitors Using a Fragment-Based Approach." Journal of Medicinal Chemistry 58, no. 6 (March 17, 2015): 2746–63. http://dx.doi.org/10.1021/jm501929n.
Full textLei, Xiong, Yun-feng Li, Guo-dong Chen, Di-peng Ou, Xiao-xin Qiu, Chao-hui Zuo, and Lian-Yue Yang. "Ack1 overexpression promotes metastasis and indicates poor prognosis of hepatocellular carcinoma." Oncotarget 6, no. 38 (October 20, 2015): 40622–41. http://dx.doi.org/10.18632/oncotarget.5872.
Full textMahajan, K., and N. P. Mahajan. "ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers." Oncogene 34, no. 32 (October 27, 2014): 4162–67. http://dx.doi.org/10.1038/onc.2014.350.
Full textvan der Horst, E. H., Y. Y. Degenhardt, A. Strelow, A. Slavin, L. Chinn, J. Orf, M. Rong, et al. "Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1." Proceedings of the National Academy of Sciences 102, no. 44 (October 24, 2005): 15901–6. http://dx.doi.org/10.1073/pnas.0508014102.
Full textXIE, BINHUI, QINSHAN ZEN, XIAONONG WANG, XIAO HE, YUANKANG XIE, ZIXIANG ZHANG, and HEPING LI. "ACK1 promotes hepatocellular carcinoma progression via downregulating WWOX and activating AKT signaling." International Journal of Oncology 46, no. 5 (February 27, 2015): 2057–66. http://dx.doi.org/10.3892/ijo.2015.2910.
Full textLa Torre, Anna, José Antonio del Rio, Eduardo Soriano, and Jesús Mariano Ureña. "Expression pattern of ACK1 tyrosine kinase during brain development in the mouse." Gene Expression Patterns 6, no. 8 (October 2006): 886–92. http://dx.doi.org/10.1016/j.modgep.2006.02.009.
Full textXu, Song-Hui, Jin-Zhou Huang, Min Chen, Ming Zeng, Fei-Yan Zou, De Chen, and Guang-Rong Yan. "Amplification of ACK1 promotes gastric tumorigenesis via ECD-dependent p53 ubiquitination degradation." Oncotarget 8, no. 8 (October 20, 2015): 12705–16. http://dx.doi.org/10.18632/oncotarget.6194.
Full textPrieto-Echagüe, Victoria, Azad Gucwa, Deborah A. Brown, and W. Miller. "Regulation of Ack1 localization and activity by the amino-terminal SAM domain." BMC Biochemistry 11, no. 1 (2010): 42. http://dx.doi.org/10.1186/1471-2091-11-42.
Full textPao-Chun, Lin, Perry M. Chan, Wing Chan, and Ed Manser. "Cytoplasmic ACK1 Interaction with Multiple Receptor Tyrosine Kinases Is Mediated by Grb2." Journal of Biological Chemistry 284, no. 50 (October 8, 2009): 34954–63. http://dx.doi.org/10.1074/jbc.m109.072660.
Full textMahendrarajah, Nisintha, Marina E. Borisova, Sigrid Reichardt, Maren Godmann, Andreas Sellmer, Siavosh Mahboobi, Andrea Haitel, et al. "HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3." Cellular Signalling 39 (November 2017): 9–17. http://dx.doi.org/10.1016/j.cellsig.2017.07.014.
Full textHan, Woong, Hae-Ik Rhee, Jeong Woo Cho, Maurice S. B. Ku, Pill Soon Song, and Myeong-Hyeon Wang. "Overexpression of Arabidopsis ACK1 alters leaf morphology and retards growth and development." Biochemical and Biophysical Research Communications 330, no. 3 (May 2005): 887–90. http://dx.doi.org/10.1016/j.bbrc.2005.03.056.
Full textPourbasheer, Eslam, Reza Aalizadeh, Mohammad Reza Ganjali, Parviz Norouzi, and Javad Shadmanesh. "QSAR study of ACK1 inhibitors by genetic algorithm–multiple linear regression (GA–MLR)." Journal of Saudi Chemical Society 18, no. 5 (November 2014): 681–88. http://dx.doi.org/10.1016/j.jscs.2014.01.010.
Full textKato, Juran, Yoshito Kaziro, and Takaya Satoh. "Activation of the Guanine Nucleotide Exchange Factor Dbl Following ACK1-Dependent Tyrosine Phosphorylation." Biochemical and Biophysical Research Communications 268, no. 1 (February 2000): 141–47. http://dx.doi.org/10.1006/bbrc.2000.2106.
Full textMahajan, Kiran, Domenico Coppola, Bhupendra Rawal, Y. Ann Chen, Harshani R. Lawrence, Robert W. Engelman, Nicholas J. Lawrence, and Nupam P. Mahajan. "Ack1-mediated Androgen Receptor Phosphorylation Modulates Radiation Resistance in Castration-resistant Prostate Cancer." Journal of Biological Chemistry 287, no. 26 (May 7, 2012): 22112–22. http://dx.doi.org/10.1074/jbc.m112.357384.
Full textEley, Lorraine, Shabbir H. Moochhala, Roslyn Simms, Friedhelm Hildebrandt, and John A. Sayer. "Nephrocystin-1 interacts directly with Ack1 and is expressed in human collecting duct." Biochemical and Biophysical Research Communications 371, no. 4 (July 2008): 877–82. http://dx.doi.org/10.1016/j.bbrc.2008.05.016.
Full textYeow-Fong, Lee, Louis Lim, and Ed Manser. "SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1." FEBS Letters 579, no. 22 (August 19, 2005): 5040–48. http://dx.doi.org/10.1016/j.febslet.2005.07.093.
Full textBrandao, Rafael, Mei Qi Kwa, Yossi Yarden, and Cord Brakebusch. "ACK1 is dispensable for development, skin tumor formation, and breast cancer cell proliferation." FEBS Open Bio 11, no. 6 (May 2, 2021): 1579–92. http://dx.doi.org/10.1002/2211-5463.13149.
Full textKumar, Vikas, Raj Kumar, Shraddha Parate, Sanghwa Yoon, Gihwan Lee, Donghwan Kim, and Keun Woo Lee. "Identification of ACK1 inhibitors as anticancer agents by using computer-aided drug designing." Journal of Molecular Structure 1235 (July 2021): 130200. http://dx.doi.org/10.1016/j.molstruc.2021.130200.
Full textWu, Sijia. "Rescuing dysfunctional dopamine transporter trafficking: a role for the non-receptor tyrosine kinase, Ack1." Intrinsic Activity 4, Suppl. 2 (August 29, 2016): A18.28. http://dx.doi.org/10.25006/ia.4.s2-a18.28.
Full textLi, Yingming, and Kenneth S. Koeneman. "Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation." Urologic Oncology: Seminars and Original Investigations 26, no. 1 (January 2008): 106–7. http://dx.doi.org/10.1016/j.urolonc.2007.11.019.
Full textMahajan, N. P., Y. Liu, S. Majumder, M. R. Warren, C. E. Parker, J. L. Mohler, H. S. Earp, and Y. E. Whang. "Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation." Proceedings of the National Academy of Sciences 104, no. 20 (May 9, 2007): 8438–43. http://dx.doi.org/10.1073/pnas.0700420104.
Full textLiu, Y., M. Karaca, Z. Zhang, D. Gioeli, H. S. Earp, and Y. E. Whang. "Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases." Oncogene 29, no. 22 (April 12, 2010): 3208–16. http://dx.doi.org/10.1038/onc.2010.103.
Full textXu, Song-Hui, Jin-Zhou Huang, Man-Li Xu, Guangchuang Yu, Xing-Feng Yin, De Chen, and Guang-Rong Yan. "ACK1 promotes gastric cancer epithelial-mesenchymal transition and metastasis through AKT-POU2F1-ECD signalling." Journal of Pathology 236, no. 2 (March 9, 2015): 175–85. http://dx.doi.org/10.1002/path.4515.
Full textBuchwald, M., K. Pietschmann, P. Brand, A. Günther, N. P. Mahajan, T. Heinzel, and O. H. Krämer. "SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation." Oncogene 32, no. 41 (December 3, 2012): 4913–20. http://dx.doi.org/10.1038/onc.2012.515.
Full textJin, Meizhong, Jing Wang, Andrew Kleinberg, Mridula Kadalbajoo, Kam W. Siu, Andrew Cooke, Mark A. Bittner, et al. "Discovery of potent, selective and orally bioavailable imidazo[1,5-a]pyrazine derived ACK1 inhibitors." Bioorganic & Medicinal Chemistry Letters 23, no. 4 (February 2013): 979–84. http://dx.doi.org/10.1016/j.bmcl.2012.12.042.
Full textXiao, Shou-Hua, Ellyn Farrelly, John Anzola, Daniel Crawford, XianYun Jiao, Jinqian Liu, Merrill Ayres, et al. "An ultrasensitive high-throughput electrochemiluminescence immunoassay for the Cdc42-associated protein tyrosine kinase ACK1." Analytical Biochemistry 367, no. 2 (August 2007): 179–89. http://dx.doi.org/10.1016/j.ab.2007.05.007.
Full textKrause, Sue A., Hong Xu, and Joseph V. Gray. "The Synthetic Genetic Network around PKC1 Identifies Novel Modulators and Components of Protein Kinase C Signaling in Saccharomyces cerevisiae." Eukaryotic Cell 7, no. 11 (September 19, 2008): 1880–87. http://dx.doi.org/10.1128/ec.00222-08.
Full textFagan, Rita R., Patrick J. Kearney, Carolyn G. Sweeney, Dino Luethi, Florianne E. Schoot Uiterkamp, Klaus Schicker, Brian S. Alejandro, Lauren C. O'Connor, Harald H. Sitte, and Haley E. Melikian. "Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact." Journal of Biological Chemistry 295, no. 16 (March 4, 2020): 5229–44. http://dx.doi.org/10.1074/jbc.ra120.012628.
Full text