Academic literature on the topic 'ACMG classification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ACMG classification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ACMG classification"

1

Lugeiro, Palloma C., Betsaida Urtremari, Lucas S. Santana, Elisangela P. S. Quedas, and Delmar Muniz Lourenco. "Comparative Analysis of Different International Criteria (ACMG-AMP vs. TENGEN) Applied to Classification of Missense Germline Allelic Variants in Patients With Multiple Endocrine Neoplasia Type 1 or Suspected to this Syndrome." Journal of the Endocrine Society 5, Supplement_1 (2021): A1014. http://dx.doi.org/10.1210/jendso/bvab048.2074.

Full text
Abstract:
Abstract Context: Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant genetic syndrome caused by germline pathogenic allele variants (PAV) in the MEN1 tumor suppressor gene, which predispose MEN1 carriers to the increased risk of several endocrine neoplasms throughout life. The MEN1 gene (11q13), contains 10 exons encoding the MENIN protein. About 600 different PAVs have been reported, with 25% of them being missense variants. Of value, the definition of pathogenicity can be challenging, especially for missense variants. Thus, international guidelines for improving the clas
APA, Harvard, Vancouver, ISO, and other styles
2

Cristofoli, Francesca, Muharrem Daja, Paolo Enrico Maltese, et al. "MAGI-ACMG: Algorithm for the Classification of Variants According to ACMG and ACGS Recommendations." Genes 14, no. 8 (2023): 1600. http://dx.doi.org/10.3390/genes14081600.

Full text
Abstract:
We have developed MAGI-ACMG, a classification algorithm that allows the classification of sequencing variants (single nucleotide or small indels) according to the recommendations of the American College of Medical Genetics (ACMG) and the Association for Clinical Genomic Science (ACGS). The MAGI-ACMG classification algorithm uses information retrieved through the VarSome Application Programming Interface (API), integrates the AutoPVS1 tool in order to evaluate more precisely the attribution of the PVS1 criterion, and performs the customized assignment of specific criteria. In addition, we propo
APA, Harvard, Vancouver, ISO, and other styles
3

Mattivi, Connor L., J. Martijn Bos, Richard D. Bagnall, et al. "Clinical Utility of a Phenotype-Enhanced MYH7 -Specific Variant Classification Framework in Hypertrophic Cardiomyopathy Genetic Testing." Circulation: Genomic and Precision Medicine 13, no. 5 (2020): 453–59. http://dx.doi.org/10.1161/circgen.120.003039.

Full text
Abstract:
Background: Missense variants in the MYH7 -encoded MYH7 (beta myosin heavy chain 7) represent a leading cause of hypertrophic cardiomyopathy (HCM). MYH7 -specific American College of Medical Genetics and Genomics (ACMG) variant classification guidelines were released recently but have yet to be assessed independently. We set out to assess the performance of the MYH7 -specific ACMG guidelines and determine if the addition of phenotype-enhanced criteria (PE-ACMG) using the HCM Genotype Predictor Score can further reduce the burden of variants of uncertain significance (VUS). Methods: Re-assessme
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Liting, Xiaoyan Li, Lin Zhao, et al. "Reevaluating the Mutation Classification in Genetic Studies of Bradycardia Using ACMG/AMP Variant Classification Framework." International Journal of Genomics 2020 (February 26, 2020): 1–12. http://dx.doi.org/10.1155/2020/2415850.

Full text
Abstract:
Purpose. Next-generation sequencing (NGS) has become more accessible, leading to an increasing number of genetic studies of familial bradycardia being reported. However, most of the variants lack full evaluation. The relationship between genetic factors and bradycardia should be summarized and reevaluated. Methods. We summarized genetic studies published in the PubMed database from 2008/1/1 to 2019/9/1 and used the ACMG/AMP classification framework to analyze related sequence variants. Results. We identified 88 articles, 99 sequence variants, and 34 genes after searching the PubMed database an
APA, Harvard, Vancouver, ISO, and other styles
5

Brown, Angela, Mansour Zamanpoor, Donald R. Love, and Debra O. Prosser. "Determination of Pathogenicity of Breast Cancer 1 Gene Variants using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Guidelines." Sultan Qaboos University Medical Journal [SQUMJ] 19, no. 4 (2019): 324. http://dx.doi.org/10.18295/squmj.2019.19.04.008.

Full text
Abstract:
Objectives: Molecular diagnostic laboratories screen for mutations in disease-causing genes in order to confirm a clinical diagnosis. The classification of DNA variants as ‘pathogenic’ or ‘likely pathogenic’ mutations creates a workflow bottleneck, which becomes increasingly challenging as greater number of genes are screened. The classification challenge is also acute if there are conflicting reports regarding pathogenicity and differing classification criteria between laboratories. This study aimed to compare two procedures for the classification of variants in the breast cancer (BRCA)1 gene
APA, Harvard, Vancouver, ISO, and other styles
6

Cristofoli, Francesca, Elisa Sorrentino, Giulia Guerri, et al. "Variant Selection and Interpretation: An Example of Modified VarSome Classifier of ACMG Guidelines in the Diagnostic Setting." Genes 12, no. 12 (2021): 1885. http://dx.doi.org/10.3390/genes12121885.

Full text
Abstract:
Variant interpretation is challenging as it involves combining different levels of evidence in order to evaluate the role of a specific variant in the context of a patient’s disease. Many in-depth refinements followed the original 2015 American College of Medical Genetics (ACMG) guidelines to overcome subjective interpretation of criteria and classification inconsistencies. Here, we developed an ACMG-based classifier that retrieves information for variant interpretation from the VarSome Stable-API environment and allows molecular geneticists involved in clinical reporting to introduce the nece
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Yichuan, Hui-Qi Qu, Adam S. Wenocur, et al. "Interpretation of Maturity-Onset Diabetes of the Young Genetic Variants Based on American College of Medical Genetics and Genomics Criteria: Machine-Learning Model Development." JMIR Biomedical Engineering 5, no. 1 (2020): e20506. http://dx.doi.org/10.2196/20506.

Full text
Abstract:
Background Maturity-onset diabetes of the young (MODY) is a group of dominantly inherited monogenic diabetes, with HNF4A-MODY, GCK-MODY, and HNF1A-MODY as the three most common forms based on the causal genes. Molecular diagnosis of MODY is important for precise treatment. Although a DNA variant causing MODY can be assessed based on the criteria of the American College of Medical Genetics and Genomics (ACMG) guidelines, gene-specific assessment of disease-causing mutations is important to differentiate among MODY subtypes. As the ACMG criteria were not originally designed for machine-learning
APA, Harvard, Vancouver, ISO, and other styles
8

Tavtigian, Sean V., Marc S. Greenblatt, Steven M. Harrison, et al. "Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework." Genetics in Medicine 20, no. 9 (2018): 1054–60. http://dx.doi.org/10.1038/gim.2017.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lattante, Serena, Giuseppe Marangi, Paolo Niccolò Doronzio, et al. "High-Throughput Genetic Testing in ALS: The Challenging Path of Variant Classification Considering the ACMG Guidelines." Genes 11, no. 10 (2020): 1123. http://dx.doi.org/10.3390/genes11101123.

Full text
Abstract:
The development of high-throughput sequencing technologies and screening of big patient cohorts with familial and sporadic amyotrophic lateral sclerosis (ALS) led to the identification of a significant number of genetic variants, which are sometimes difficult to interpret. The American College of Medical Genetics and Genomics (ACMG) provided guidelines to help molecular geneticists and pathologists to interpret variants found in laboratory testing. We assessed the application of the ACMG criteria to ALS-related variants, combining data from literature with our experience. We analyzed a cohort
APA, Harvard, Vancouver, ISO, and other styles
10

DeMille, Desiree, Jamie McDonald, Carmelo Bernabeu, et al. "Specifications of the ACMG/AMP Variant Curation Guidelines for Hereditary Hemorrhagic Telangiectasia Genes—ENG and ACVRL1." Human Mutation 2024 (May 18, 2024): 1–13. http://dx.doi.org/10.1155/2024/3043736.

Full text
Abstract:
The 2015 ACMG/AMP standards and guidelines for interpretation of sequence variants are widely used by laboratories, including for variant curation of the hereditary hemorrhagic telangiectasia (HHT) genes. However, the need for gene- and disease-specific modifications and specifications of these general guidelines to optimize and standardize variant classification was recognized at the time of publication. With this goal, the ClinGen HHT variant curation expert panel was formed. Here, we describe our recommended HHT-specific variant classification criteria and the outcomes from pilot testing of
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!