Academic literature on the topic 'Acoustic Comfort'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acoustic Comfort.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acoustic Comfort"
WEN, Xin, Qi MENG, Da YANG, and Mengmeng LI. "Effects of indoor thermal-acoustic interaction on comfort and facial expression." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, no. 7 (October 4, 2024): 4303–11. http://dx.doi.org/10.3397/in_2024_3442.
Full textRoskams, Michael, Barry Haynes, Pyoung-Jik Lee, and Sang-Hee Park. "Acoustic comfort in open-plan offices: the role of employee characteristics." Journal of Corporate Real Estate 21, no. 3 (September 9, 2019): 254–70. http://dx.doi.org/10.1108/jcre-02-2019-0011.
Full textAmran, M. Mohd, M. Shaiful Rizal, I. Maznan, Mohd Nazrul Roslan, Y. Musli Nizam, Mohd Imran Ghazali, and M. Shahruddin. "Evaluation of Sound Comfort in Examination Hall Using Acoustical Environmental Analyses." Applied Mechanics and Materials 315 (April 2013): 825–29. http://dx.doi.org/10.4028/www.scientific.net/amm.315.825.
Full textCANSU, Nicole, Greta ÖHLUND WISTBACKA, Sofia HOLMQVIST-JäMSéN, Roland RYDELL, Emma ARVIDSSON, and Viveka LYBERG ÅHLANDER. "Acoustic refurbishments in a university lecture room: effects on speaker's comfort and voice use." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, no. 6 (October 4, 2024): 5254–61. http://dx.doi.org/10.3397/in_2024_3566.
Full textMiqueau, Valentin, Etienne Parizet, and Sylvain Germes. "Psycho-acoustic evaluation of the automotive acoustic comfort using vibro-acoustic prediction methods." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 6 (August 1, 2021): 703–14. http://dx.doi.org/10.3397/in-2021-1630.
Full textAndargie, Maedot S., Marianne Touchie, and William O'Brien. "Subjective and objective evaluation of the impact and airborne sound insulation of multi-unit residential buildings." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 6 (August 1, 2021): 778–86. http://dx.doi.org/10.3397/in-2021-1648.
Full textWu, Yue, Qi Meng, Lei Li, and Jingyi Mu. "Interaction between Sound and Thermal Influences on Patient Comfort in the Hospitals of China’s Northern Heating Region." Applied Sciences 9, no. 24 (December 17, 2019): 5551. http://dx.doi.org/10.3390/app9245551.
Full textGlean, Aldo A., Stanley D. Gatland, and Ihab Elzeyadi. "Visualization of Acoustic Comfort in an Open-Plan, High-Performance Glass Building." Buildings 12, no. 3 (March 11, 2022): 338. http://dx.doi.org/10.3390/buildings12030338.
Full textAyinla, Abdulrasaq Kunle, Glory Ndifrekeabasi Ekpo, Ilelabayo Ismail Adebisi, and Olusola Oladapo Makinde. "Correlates of Acoustic and Visual Comforts in Selected Lecture Theaters in Ladoke Akintola University of Technology, Ogbomoso, Nigeria." International Research Journal of Natural Sciences 11, no. 1 (January 15, 2023): 13–23. http://dx.doi.org/10.37745/irjns.13/vol11n11323.
Full textJalil, Nurul Amira Abd, Nazli Bin Che Din, and Nila Inangda Manyam Keumala Daud. "A Literature Analysis on Acoustical Environment in Green Building Design Strategies." Applied Mechanics and Materials 471 (December 2013): 138–42. http://dx.doi.org/10.4028/www.scientific.net/amm.471.138.
Full textDissertations / Theses on the topic "Acoustic Comfort"
Hanson, R. E. "Towards a practical method for ranking acoustic comfort in structurally connected dwellings in England : motivating improvements in, and understanding of, acoustic comfort." Thesis, University College London (University of London), 2009. http://discovery.ucl.ac.uk/18697/.
Full textCarbajo, Alix. "Analysis of vibro-acoustic comfort for engine with deactivated cylinders." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI101.
Full textThe technology of cylinder of deactivation has been developed in order to reduce gas consumption and CO2 emissions. Two strategies were studied at groupe PSA called fixed and rotating deactivations depending on the number of cylinders deactivated per engine cycle. This implies non neglecting modifications of sound and vibrations transmitted to the car cabin depredating the global comfort of the car. This research work focused on how driver’s comfort was altered by these engine configurations and how it would be possible to improve this comfort. Among the solutions possible, appears the principle of real-time sonification of the engine noise. To answer these questions, five perceptual experiments have been conducted. First, the aim was to evaluate global comfort with different engine configurations and validate the use of a vibro-acoustic simulator. This showed that one deactivation strategy was significantly reducing the comfort evaluation. Then, we focused on the second strategy which was also considered as not comfortable. On the third experiment, we were interested in finding an acceptable threshold between the vibrations and sounds with the deactivation and with the usual engine configuration. This led to a target of signal to reach in order to provide acceptable situations in terms of sound and vibrations. In the last two experiments, we were interested in the simulation of two solutions about the deactivation settings that would reduce the annoyance: the modification of the engine speed range in which the deactivation occurs and the softening of horizontal suspensions part in order to reduce vibrations resonances at low engine speed
CLAUDI, Livia. "A soft-sensing approach for measuring acoustic comfort in buildings." Doctoral thesis, Università Politecnica delle Marche, 2019. http://hdl.handle.net/11566/263188.
Full textOccupants’ well-being is one of the main aspects to be considered in buildings design and refurbishment. The indoor environment impacts significantly on health and work productivity. Comfort is a very broad concept since it regards multiple aspects (indoor air quality, acoustic, thermal and visual comfort). Acoustic comfort is a complex topic because of its dependence on both physical and physiological variables. Despite being an important concept, it is vaguely defined and explored in literature. In fact, although the construction industry is facing the issue of requalifying existing buildings to increase performance, acoustic comfort is not yet one of the main drivers due to the lack of holistic reference procedures. The research presents the development and the application of a methodology for measuring acoustic comfort of buildings, using a soft-sensing approach. The soft-sensor provides a measurement system, which takes into account experimental, simulated, assumed and subjective data, through which the building acoustic quality, in relation to the outdoor surrounding noise level, can be evaluated. The metric is represented by Key Performance Indicators (KPIs), which express buildings acoustic comfort and make possible the comparison among performance of different existing buildings. The evaluation system based on KPIs can be applied in buildings renovations for evaluating the acoustic quality of buildings before and after the retrofitting, supporting the stakeholders in the evaluation stage. In particular, two KPIs have been developed: the “objective KPI”, which provides information regarding the acoustic comfort of the building, with normalized value for simplified quantification of acoustic performance, and the “subjective KPI”, which aims at validating the objective one, since it is based on the assessment of the occupants’ rating. Several case studies are used to demonstrate the exploitability of the soft-sensing method, using in-field measurements combined with calculation models and subjective data. Sensitivity and uncertainty analyses are performed to establish how the accuracy of the KPIs measurement impacts on the decision-making process. The application of the methodology has shown promising results in the identification of the best retrofit strategy. The soft-sensor system for buildings’ acoustic comfort measurement has been integrated within the European project New TREND (H2020) and applied on one demo-case in order to demonstrate its usability and reliability.
Torresin, Simone. "Indoor soundscape modelling: Rethinking acoustic comfort in naturally ventilated residential buildings." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/327411.
Full textRiffelli, Stefano. "Sustainable comfort in indoor environments: global comfort indices and virtual sensors." Doctoral thesis, Urbino, 2022. http://hdl.handle.net/11576/2700929.
Full textMontoschi, Federico. "How the layout can improve the acoustic comfort in a museum exhibit hall: a new predictive model." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20107/.
Full textDahlan, Nur Dalilah. "Occupant's indoor comfort perceptions through thermal, visual & acoustic assessments in typical multi-storey hostels in Malaysia." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54503/.
Full textAraujo, Bianca Carla Dantas de. "Proposta de elemento vazado acústico." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/16/16132/tde-01062010-102405/.
Full textThe environmental comfort requires the search for design alternatives that promote less energy impact on architecture. In places with hot and humid climates, natural ventilation is one of design strategies; into this vision, the hollow elements (cobogós or combogós, as popularly known in northeastern Brazil) act as architectural components that provide permanent natural ventilation, sun protection and natural lighting, and ease of manufacture. Despite the secular use of hollow elements, they lost space in contemporary architectural production, and there are few surveys with a view to enhancing its potential as an alternative passive design. However, there is awareness of the problems related noise that comes from its use in natural ventilation, such as commitment in the isolation of external noise and privacy between environments. In this work, for these reasons, the proposal is to develop an element hollow sound, aiming to use it in alleviating the problem of the dichotomy between the thermal and acoustic aspects involved. The performance of sound insulation in situ of the elements created was assessed based on the ISO 140-5, was also studied the performance of natural ventilation through computer simulations, using methods of computational fluid dynamics - CFD. Were developed 4 types of blocks, all studied at different mounts on a wall like facade, according to 3 conditions: closed and open (with and without sound absorption material). The results revealed how likely is the transmission of noise from the vent, however, satisfactory sound insulation were obtained, especially in one of the mounts (block type 3, box), which presented a performance similar to a closed block with index Noise Reduction Global Standard (Dntw) of 27 dB. This assembly has an open area ratio of satisfactory to promote natural ventilation in an environment (confirmed by the comparative performance of simulated ventilation of the blocks), while maintaining sound insulation than the other (few) elements in the market, with the objective to promote natural ventilation and reduce noise transmission to achieve good performance
Kritikou, Sofia Kristina. "Evaluation of acoustic, visual and thermal comfort perception of students in the Educational Building at KTH Campus : A study case in a university building in Stockholm." Thesis, KTH, Installations- och energisystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239429.
Full textUnder senare år har fokus och tillämpning av hållbarhet i byggnader ökat, både för miljö och mänskligt välbefinnande. Kvaliteten på inomhusmiljön påverkar välbefinnandet, produktiviteten och arbetsprestandan. Tyvärr kan det också påverka de anställda negativt, som ökad risk för olika sjukdomar och hälsoproblem. En bra inomhusmiljö tillsammans med applikationer av hållbara material, ordentliga HVAC-installationer och byggregler bidrar till en hållbar lösning med låg miljöpåverkan och minskad energiförbrukning. Eftersom byggnader ensamma svarar för 38% av alla mänskliga växthusgasutsläpp (Wikipedia, 2017), rekommenderar de flesta länder nya mer hållbara lösningar för att minska den procentuella andelen. I EU strävar EUs klimat- och energipaket 2020 till att; minska 20% av växthusgasutsläppen, 20% av EUs energi från förnybara energikällor och 20% förbättrad energieffektivitet (European Commission, n.d.). Förutom den positiva aspekten av låg miljöpåverkan har nya konstruktioner skapat en bra levnads- och arbetsmiljö för användarna. Studier har visat att en bättre inomhuskvalitet ökar produktiviteten och arbetsprestandan men framförallt känner sig brukarna bekväma och nöjda med sin miljö. Ett stort antal rapporter har granskats enligt akustisk, visuell, termisk komfort och inomhusluftkvalitet, som är huvudaspekterna av inomhusklimatet. De flesta rapporter fokuserar på användarnas uppfattning om dessa fyra aspekter samt andra parametrar som påverkar inomhusmiljön (arkitektonisk geometri, material osv.). På samma sätt fokuserar jag på två olika metoder för att erhålla resultaten. Den objektiva metoden som innehåller innemiljömätningar och den subjektiva metoden som innehåller ett frågeformulär som skapats specifikt för detta forskningsprojekt. Genom att erhålla dessa två uppsättningar data utvecklas viktiga fokuspunkter, till exempel om byggnadens certifiering uppfyller Miljöbyggnads rekommendationer, vilka aspekter som i huvudsak påverkar elevernas uppfattning och om det finns några tydliga samband mellan uppmätta och beräknade data. Studiefallet utvecklades i en universitetsbyggnad i Stockholm, där de fyra huvudaspekterna av inomhusmiljön utvärderades. De fysiska parametrarna mättes såsom temperatur, lufthastighet, relativ fuktighet, CO2-koncentration och akustiken i fem olika klassrum. Dessutom har en undersökning utvecklats för detta studieprojekt som inkluderade uppfattningsfrågor inom termisk, visuell, akustisk komfort och inomhusluftkvalitet. Kön och klimatzonens ursprung var två andra parametrar som påverkade den övergripande inomhusmiljöuppfattningen, enligt andra studier. Även om majoriteten av båda könen röstade för "ingen förändring" svarade restrerande kvinnor att de föredrog klasrummet varmare. Dessutom svarade flertalet från alla klimatzoner "ingen förändring", även om den näst högsta åsikten för studenter från varmare klimatzoner var "varmare", vilket också har hittats i andra studier. Höga negativa korrelationer hittades mellan akustiken och tillfredsställningsnivån för den akustiska komforten. På samma sätt observerades höga korrelationer mellan den visuella komfortnöjdhetsnivån och de tre aspekter som påverkar den. Vidare visade resultaten att alla fysiska mätningar påverkade elevernas termiska komfort och upplevelse av inomhusluftkvalitet. Alla erhållna mätningar indikerade en bra inomhusmiljö i alla klassrum och att alla värden var inom svensk standards rekommendationer. Låg korrelation hittades mellan den uppmätta PVM (predicted mean vote) och AMV (actual mean vote) från frågeformulären även om alla värden var inom gränserna. Dessutom granskar studien metoder som kan tillämpas på liknande framtida studier liksom vilka slags fel som bör undvikas i framtiden. Det finns fortfarande mycket forskning som kan utvecklas för att förstå mer om inomhusmiljön och hur människor uppfattar den.
Hirashima, Simone Queiróz da Silveira. "Percepção sonora e térmica e avaliação de conforto em espaços urbanos abertos do município de Belo Horizonte - MG, Brasil." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/16/16132/tde-23062015-172738/.
Full textIn urban open public spaces, particularly in big cities of tropical climate, city-users are often exposed not only to high sound levels but also to high thermal loads, a situation that can cause both acoustic and thermal discomfort. Nevertheless, in most cases, the relationship between the exposure to each of these adverse conditions and human perceptions towards each of them are studied separately. In order to address the lack of a combined analysis of these conditions, this research has adopted an integrated approach to evaluate urban acoustic and thermal comfort and their likely combined effects. This study was carried out in in the Brazilian city of Belo Horizonte, in the state of Minas Gerais, a city located in a region of tropical of altitude climate, with hot wet summers and cold dry winters. Acoustic and climatic data were measured simultaneously with the administration of questionnaires in two representative days of summer (March/2013) and winter (August/2013), in two squares that noticeably differ in relation to their acoustic and thermal environment and their morphological parameters such as the sky view factor, the height of the buildings, the type of pavement, the presence of water sources and the vegetation. The LAeq,T and the PET index were used to represent acoustic and microclimatic conditions respectively. Subjective variables (perceived volume of the environmental sound, assessment of annoyance caused by environmental sound, acoustic comfort evaluation, perception of thermal sensation, thermal sensation preference and evaluation of thermal comfort), personal variables (clothing, physical activity, age, weight, height, gender) and control data related to psychological, social and cultural issues that might interfere with acoustic and thermal perception of the environment were collected through the questionnaires. The sample consisted of approximately 1,700 respondents. The statistical treatment of the data collected was comprised of descriptive analysis as well as analysis using correlations and regressions. Ordinal logistic regression models were used to predict the ranges of acoustic and thermal perception and logistic regression models were used to predict the ranges of acoustic and thermal comfort and discomfort. Some of the results of this study are: 1) the calibration of the LAeq index for perceived loudness - ranges: \"Low\", <35dB(A), \"Normal\", between 36 and 67dB(A), and \"High\", >68dB(A); and for evaluation of acoustic comfort - ranges: \"Comfortable\" <67dB(A), and \"Uncomfortable\", >68dB(A); 2) the calibration of the PET index for perceived thermal sensations - ranges, \"Cold\", <18.9°C, \"Well\", 19-27°C, and \"Hot\", >27.1°C; and for evaluation of thermal comfort - ranges: \"Comfortable\", 23-31°C, and \"Uncomfortable\", <22.9 and >31.1°C; 3) the definition of neutral and preferred temperatures for Summer (27.7 and 14.9°C) and Winter (15.9°C and 20.9°C), respectively, showing the influence of expectation on evaluation of thermal conditions; and 4) the confirmation that an increase of the acoustic discomfort may cause (albeit on a small scale) an increase in the thermal discomfort and vice versa. These results might shed light on the issues of acoustic and thermal perception and comfort in urban spaces, helping to guide public policies on urban projects related to these topics.
Books on the topic "Acoustic Comfort"
Canada Mortgage and Housing Corporation., ed. Qualification of the degree of acoustic comfort provided by multi-family buildings: Phase II. [Ottawa]: CMHC, 2003.
Find full textFuchs, Helmut V. Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29367-2.
Full textFuchs, Helmut V. Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control: Alternative Solutions - Innovative Tools - Practical Examples. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textQualification of the degree of acoustic comfort in multi-family buildings. [Ottawa]: CMHC, 1999.
Find full textReifen – Fahrwerk – Fahrbahn. VDI Verlag, 2022. http://dx.doi.org/10.51202/9783181023983.
Full textFuchs, Helmut V. Applied Acoustics : Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control: Alternative Solutions - Innovative Tools - Practical Examples. Springer Berlin / Heidelberg, 2015.
Find full textApplied Acoustics Concepts Absorbers And Silencers For Acoustical Comfort And Noise Control Alternative Solutions Innovative Tools Practical Examples. Springer, 2012.
Find full textFuchs, Helmut V. Applied Acoustics : Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control: Alternative Solutions - Innovative Tools - Practical Examples. Springer, 2013.
Find full textRiehl, Mark. TMS stimulator design. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0003.
Full textBook chapters on the topic "Acoustic Comfort"
Offtermatt, David, Daniel Lust, and Tobias Erhart. "Box-Type Windows as Means for Better Air Quality and Acoustic Comfort in Urban Areas." In iCity. Transformative Research for the Livable, Intelligent, and Sustainable City, 315–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92096-8_21.
Full textBacria, Vasile, Eugen Ghita, and Nicolae Herisanu. "On Acoustic Comfort in Urban Transport on Rails." In Springer Proceedings in Physics, 83–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69823-6_10.
Full textSerra, R., and H. Coch. "A Study Into Climatic, Luminic and Acoustic Comfort in the Architecture." In 1989 2nd European Conference on Architecture, 201–2. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-017-0556-1_59.
Full textHaselsteiner, Edeltraud, Marielle Ferreira Silva, and Željka Kordej-De Villa. "Climatic, Cultural, Behavioural and Technical Influences on the Indoor Environment Quality and Their Relevance for a." In Future City, 201–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71819-0_10.
Full textHaselsteiner, Edeltraud. "Gender Matters! Thermal Comfort and Individual Perception of Indoor Environmental Quality: A Literature Review." In Future City, 169–200. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71819-0_9.
Full textIpinza, Constanza, Maureen Trebilcock-Kelly, and María Beatriz Piderit-Moreno. "Barriers and Challenges of Acoustic Design in Flexible Learning Spaces for Schools in Chile." In Removing Barriers to Environmental Comfort in the Global South, 295–310. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24208-3_21.
Full textDiaz, Muriel, Alex Gonzalez-Caceres, and Shady Attia. "Multicriteria Design: Optimizing Thermal, Acoustic, and Visual Comfort and Indoor Air Quality in Classrooms." In Removing Barriers to Environmental Comfort in the Global South, 435–49. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24208-3_30.
Full textGeniola, Viola, Stefania Camplone, Antonio Marano, and Emilio Rossi. "Design of an Innovative Furniture System: Improving Acoustic Comfort in Coworking Workplaces." In Advances in Intelligent Systems and Computing, 835–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39512-4_127.
Full textAguilar-Aguilera, Antonio J., M. L. De la Hoz-Torres, M. D. Martínez-Aires, and Diego P. Ruiz. "Management of Acoustic Comfort in Learning Spaces Using Building Information Modelling (BIM)." In Occupational and Environmental Safety and Health II, 409–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41486-3_44.
Full textGutiérrez, Giancarlo, and Laura Marín-Restrepo. "Acoustic Comfort and Noise Control in the Design of Multi-residential Buildings in the Tropics." In Removing Barriers to Environmental Comfort in the Global South, 279–93. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24208-3_20.
Full textConference papers on the topic "Acoustic Comfort"
Wang, Junqiang, and Bin Du. "Sound Insulation and Acoustic Comfort Requirements for Noise-Sensitive Buildings." In Conference Proceedings of The 12th International Symposium on Project Management, China, 1726–31. Riverwood, NSW, Australia: Aussino Academic Publishing House (AAPH), 2024. http://dx.doi.org/10.52202/076061-0230.
Full textPapadakis, Nikolaos M., and Georgios E. Stavroulakis. "Investigation of the Acoustic Comfort of an Academic Library: Case Study at the Technical University of Crete." In 2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), 167–71. IEEE, 2024. http://dx.doi.org/10.1109/metrolivenv60384.2024.10615396.
Full textChen, Yong, Sebastian Ghinet, Andrew Price, Viresh Wickramasinghe, and Anant Grewal. "Evaluation of Aircrew Noise Exposure and Hearing Protection Solutions in CH-147F Chinook Helicopter Cabin." In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12280.
Full textTHOMAS, A., K. BERGMARK, and MR JANSSEN. "ROOM ACOUSTIC COMFORT™ IN HEALTHCARE PREMISES." In Euronoise 2009. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17289.
Full textBormotina, E., Viktor Asminin, and Elena Maklakova. "ANALYSIS OF FACTORS AFFECTING ACOUSTIC COMFORT IN OFFICE SPACES." In SCIENCE AND STUDENTS – 2024, 36–39. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2024. https://doi.org/10.58168/sas_36-39.
Full textMucchi, Emiliano, Elena Pierro, and Antonio Vecchio. "Experimental Guidelines for NVH Improvements in Helicopter Vibro-Acoustic Comfort." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87383.
Full textSyamsiyah, Nur Rahmawati, Atyanto Dharoko, and Sentagi Sesotya Utami. "Mixed method in acoustic comfort measurement to reveal component of acoustics preservation." In EXPLORING RESOURCES, PROCESS AND DESIGN FOR SUSTAINABLE URBAN DEVELOPMENT: Proceedings of the 5th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112389.
Full textUffreduzzi, F., A. Aquili, E. De Paola, L. G. Stoica, and A. Di Marco. "Beamforming Algorithm for Vehicle Cabin Acoustic Comfort Application." In 10th Convention of the European Acoustics Association Forum Acusticum 2023. Turin, Italy: European Acoustics Association, 2022. http://dx.doi.org/10.61782/fa.2023.1091.
Full textGuarnaccia, Claudio, Alessandro Ruggiero, Domenico Russo, Matteo Ferro, Salvatore Dello Iacono, and Petr Valášek. "Characterization of green materials for automotive acoustic comfort." In 2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive). IEEE, 2023. http://dx.doi.org/10.1109/metroautomotive57488.2023.10219100.
Full textMASIULYTĖ-VITKAUSKĖ, L., EG BOGDANIENĖ, M. LEBEDNYKAITĖ, A. JAGNIATINSKIS, and M. MICKAITIS. "ACOUSTIC COMFORT IN EDUCATIONAL BUILDINGS: LITHUANIAN CASE STUDY." In ICSV24 2017. Institute of Acoustics, 2024. https://doi.org/10.25144/24252.
Full text