To see the other types of publications on this topic, follow the link: Acoustics, Dynamics, and Controls.

Dissertations / Theses on the topic 'Acoustics, Dynamics, and Controls'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Acoustics, Dynamics, and Controls.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Campbell, Leckey Cara Ann. "Investigation of Ultrasonic Wave Scattering Effects using Computational Methods." W&M ScholarWorks, 2011. https://scholarworks.wm.edu/etd/1539623348.

Full text
Abstract:
Advances in computational power and expanded access to computing clusters has made mathematical modeling of complex wave effects possible. We have used multi-core and cluster computing to implement analytical and numerical models of ultrasonic wave scattering in fluid and solid media (acoustic and elastic waves). We begin by implementing complicated analytical equations that describe the force upon spheres immersed in inviscid and viscous fluids due to an incident plane wave. Two real-world applications of acoustic force upon spheres are investigated using the mathematical formulations: emboli removal from cardiopulmonary bypass circuits using traveling waves and the micromanipulation of algal cells with standing waves to aid in biomass processing for algae biofuels. We then move on to consider wave scattering situations where analytical models do not exist: scattering of acoustic waves from multiple scatterers in fluids and Lamb wave scattering in solids. We use a numerical method called finite integration technique (FIT) to simulate wave behavior in three dimensions. The 3D simulations provide insight into experimental results for situations where 2D simulations would not be sufficient. The diverse set of scattering situations explored in this work show the broad applicability of the underlying principles and the computational tools that we have developed. Overall, our work shows that the movement towards better availability of large computational resources is opening up new ways to investigate complicated physics phenomena.
APA, Harvard, Vancouver, ISO, and other styles
2

Dieckman, Eric Allen. "Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform." W&M ScholarWorks, 2014. https://scholarworks.wm.edu/etd/1539623643.

Full text
Abstract:
In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results.
APA, Harvard, Vancouver, ISO, and other styles
3

Bingham, Jill Paisley. "Ultrasonic guided wave interpretation for structural health inspections." W&M ScholarWorks, 2008. https://scholarworks.wm.edu/etd/1539623538.

Full text
Abstract:
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications.;This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path.;For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
APA, Harvard, Vancouver, ISO, and other styles
4

Rudd, Kevin Edward. "Parallel three-dimensional acoustic and elastic wave simulation methods with applications in nondestructive evaluation." W&M ScholarWorks, 2007. https://scholarworks.wm.edu/etd/1539623332.

Full text
Abstract:
In this dissertation, we present two parallelized 3D simulation techniques for three-dimensional acoustic and elastic wave propagation based on the finite integration technique. We demonstrate their usefulness in solving real-world problems with examples in the three very different areas of nondestructive evaluation, medical imaging, and security screening. More precisely, these include concealed weapons detection, periodontal ultrasography, and guided wave inspection of complex piping systems. We have employed these simulation methods to study complex wave phenomena and to develop and test a variety of signal processing and hardware configurations. Simulation results are compared to experimental measurements to confirm the accuracy of the parallel simulation methods.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Jiawei. "SIMULATION OF WHISTLE NOISE USING COMPUTATIONAL FLUID DYNAMICS AND ACOUSTIC FINITE ELEMENT SIMULATION." UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/9.

Full text
Abstract:
The prediction of sound generated from fluid flow has always been a difficult subject due to the nonlinearities in the governing equations. However, flow noise can now be simulated with the help of modern computation techniques and super computers. The research presented in this thesis uses the computational fluid dynamics (CFD) and the acoustic finite element method (FEM) in order to simulate the whistle noise caused by vortex shedding. The acoustic results were compared to both analytical solutions and experimental results to better understand the effects of turbulence models, fluid compressibility, and wall boundary meshes on the acoustic frequency response. In the case of the whistle, sound power and pressure levels are scaled since 2-D models are used to model 3-D phenomenon. The methodology for scaling the results is detailed.
APA, Harvard, Vancouver, ISO, and other styles
6

Bertoncini, Crystal Ann. "Applications of pattern classification to time-domain signals." W&M ScholarWorks, 2010. https://scholarworks.wm.edu/etd/1539623559.

Full text
Abstract:
Many different kinds of physics are used in sensors that produce time-domain signals, such as ultrasonics, acoustics, seismology, and electromagnetics. The waveforms generated by these sensors are used to measure events or detect flaws in applications ranging from industrial to medical and defense-related domains. Interpreting the signals is challenging because of the complicated physics of the interaction of the fields with the materials and structures under study. often the method of interpreting the signal varies by the application, but automatic detection of events in signals is always useful in order to attain results quickly with less human error. One method of automatic interpretation of data is pattern classification, which is a statistical method that assigns predicted labels to raw data associated with known categories. In this work, we use pattern classification techniques to aid automatic detection of events in signals using features extracted by a particular application of the wavelet transform, the Dynamic Wavelet Fingerprint (DWFP), as well as features selected through physical interpretation of the individual applications. The wavelet feature extraction method is general for any time-domain signal, and the classification results can be improved by features drawn for the particular domain. The success of this technique is demonstrated through four applications: the development of an ultrasonographic periodontal probe, the identification of flaw type in Lamb wave tomographic scans of an aluminum pipe, prediction of roof falls in a limestone mine, and automatic identification of individual Radio Frequency Identification (RFID) tags regardless of its programmed code. The method has been shown to achieve high accuracy, sometimes as high as 98%.
APA, Harvard, Vancouver, ISO, and other styles
7

Seale, Michael David. "Propagation of guided acoustic waves in composite media." W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539623884.

Full text
Abstract:
Composite materials are being more widely used today by aerospace, automotive, and a number of other commercial industries because of their advantages over conventional metals. Composites are finding applications ranging from bicycle frames to the proposed High-Speed Civil Transport (HSCT). Determining the response to a variety of damage mechanisms is necessary for a complete understanding of the total use environment of composite structures. The objective of the research presented here is to provide a method of quantifying the amount of damage in composite materials for a number of different damage scenarios. Components which have non-visible damage, but have degraded performance, are of interest. at this level of damage, the safety margin designed into the structure may be compromised.;Nondestructive Evaluation (NDE) is a field of measurement physics where energy is imparted to a material and information is obtained from observing how the energy interacts with the system. Many different forms of energy can be used to obtain useful information from these measurements: acoustic, thermal, x-ray, optical, and electromagnetic. Among the many various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating these composite materials. as a material is damaged, the elastic parameters of the structure change. Since the Lamb wave velocity depends on these properties, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Additionally, Lamb wave measurements are beneficial because they can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material.;Presented in this study are the results involving the investigation of a variety of damage mechanisms (fatigue, thermal, and thermal-mechanical) using the Lamb wave technique. Two fatigue studies were conducted which showed that the change in modulus and change in velocity of the Lamb wave squared follow the same general trend. The Lamb wave velocity was also observed to decrease with increasing crack density. For the thermal damage study, the results showed that the velocity of the lowest order symmetric Lamb mode dropped significantly for extended thermal damage. When the experimental results were compared to model calculations, good agreement was observed for both fatigue and thermal damage. Finally, for thermal-mechanical damage, it was found that the Lamb wave technique was also able to predict a local defect in a specimen, which was later found to have a large delamination zone.;The Lamb wave velocity is a quantitative measurement and it has been shown by this work to be an effective tool in monitoring different types of damage in composites. Since the Lamb wave velocity depends on a variety of material properties, an ideal technique exists to monitor composites as damage is incurred. With the continued development of damage assessment techniques such as the Lamb wave method, the safety of such structures can be assured.
APA, Harvard, Vancouver, ISO, and other styles
8

Kamaldar, Mohammadreza. "DISCRETE-TIME ADAPTIVE CONTROL ALGORITHMS FOR REJECTION OF SINUSOIDAL DISTURBANCES." UKnowledge, 2018. https://uknowledge.uky.edu/me_etds/129.

Full text
Abstract:
We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies.
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, David J. "An Advanced Controller for a Semi-Active Wheelchair Suspension." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/451.

Full text
Abstract:
An Advanced Controller for a Semi-Active Wheelchair Suspension was designed, built and tested. The suspension consisted of a Goodyear 1S3-011 air spring, IQ Valves high speed proportional solenoid valve, and a custom made accumulator. Several controller designs specific to semi-active suspensions were designed and tested. The controllers investigated were skyhook, acceleration driven damping, and a combined control law employing both a dual and single sensor version. The implementation of skyhook control suffered performance degradation from the idealization due to particular elements of hardware, however acceleration driven damping showed a marked and statistically significant improvement over skyhook control, in hardware, by 14%. The combined control laws exhibited as yet unexplained transient behavior that produced results with low confidence in their veracity. All controllers proposed performed better than a conventional oil damper and spring type suspension.
APA, Harvard, Vancouver, ISO, and other styles
10

Malyarenko, Eugene V. "Lamb wave diffraction tomography." W&M ScholarWorks, 2000. https://scholarworks.wm.edu/etd/1539623991.

Full text
Abstract:
As the worldwide aviation fleet continues to age, methods for accurately predicting the presence of structural flaws, such as hidden corrosion and disbonds, that compromise air worthiness become increasingly necessary. Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. In addition, human inspection process tends to be highly subjective, slow and prone to errors. The only practical alternative to traditional inspection routine is a software expert system capable of interpreting data with minimum error and maximum speed and reliability. Such a system would use the laws of guided wave propagation and material parameters to help signal processing algorithms automatically extract information from digitized waveforms. This work discusses several practical approaches to building such an expert system.;The next step in the inspection process is data interpretation, and imaging is the most natural way to represent two-dimensional structures. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter of the sample. Combined with the ability of Lamb waves to travel over large distances, tomography becomes the method of choice for solving NDE problems. This work explores different tomographic reconstruction techniques to graphically represent the Lamb wave data in quantitative maps that can be easily interpreted by technicians. Because the velocity of Lamb waves depends on the thickness, the traveltimes of the fundamental modes can be converted into a thickness map of the inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for the Lamb Wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.
APA, Harvard, Vancouver, ISO, and other styles
11

Leonard, Kevin Raymond. "Ultrasonic guided wave tomography of pipes: A development of new techniques for the nondestructive evaluation of cylindrical geometries and guided wave multi-mode analysis." W&M ScholarWorks, 2004. https://scholarworks.wm.edu/etd/1539616737.

Full text
Abstract:
This dissertation concentrates on the development of two new tomographic techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT) techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT) uses Lamb-like guided wave modes transmitted and received by two circumferential arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the same crosshole geometry with a linear array of transducers along the axis of the cylinder. However, even though these new scanning geometries are similar to plates, additional complexities arise because they are cylindrical structures. First, because it is a single crosshole geometry, the wave vector coverage is poorer than in the full LWT system. Second, since waves can travel in both directions around the circumference of the pipe, modes can also constructively and destructively interfere with each other. These complexities necessitate improved signal processing algorithms to produce accurate and unambiguous tomographic reconstructions. Consequently, this work also describes a new algorithm for improving the extraction of multi-mode arrivals from guided wave signals. Previous work has relied solely on the first arriving mode for the time-of-flight measurements. In order to improve the LWT, HUT and MUT systems reconstructions, improved signal processing methods are needed to extract information about the arrival times of the later arriving modes. Because each mode has different through-thickness displacement values, they are sensitive to different types of flaws, and the information gained from the multi-mode analysis improves understanding of the structural integrity of the inspected material. Both tomographic frequency compounding and mode sorting algorithms are introduced. It is also shown that each of these methods improve the reconstructed images both qualitatively and quantitatively.
APA, Harvard, Vancouver, ISO, and other styles
12

Campbell, Steven Conner. "DETERMINATION OF ACOUSTIC RADIATION EFFICIENCY VIA PARTICLE VELOCITY SENSOR WITH APPLICATIONS." UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/133.

Full text
Abstract:
Acoustic radiation efficiency is defined as the ratio of sound power radiated to the surface vibration power of a piston with equivalent surface area. It has been shown that the radiation efficiency is maximized and may exceed unity when the structural and acoustic wavelengths are approximately equal. The frequency at which this occurs is called the critical frequency and can be shifted with structural modifications. This has proven to be an effective way to reduce noise. The standard radiation efficiency measurement is comprised of an intensity scan for sound power measurement and accelerometer array for spatially averaged vibration determination. This method is difficult to apply to lightweight structures, complicated geometries, and when acoustic sources are in close proximity to one another. Recently, robust particle velocity sensors have been developed. Combined with a small microphone in the same instrument, particle velocity and sound pressure can be measured simultaneously and at the same location. This permits radiation efficiency to be measured using a non-contact approach with a single sensor. A suggested practice for measuring radiation efficiency has been developed and validated with several examples including two flat plates of different thickness, an oil pan, and components on a running small engine.
APA, Harvard, Vancouver, ISO, and other styles
13

Currie, Blake J. "Control of a Spacecraft Using Mixed Momentum Exchange Devices." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1313.

Full text
Abstract:
Hardware configurations, a control law, and a steering law are developed for a mixed hardware spacecraft that uses both control moment gyros and reaction wheels. Replacing one or more gyros in a spacecraft with a reaction wheel has potential for cost savings while still achieving much greater performance than using reaction wheels alone. Several simulated tests are run to compare the performance to a traditional all reaction wheel or all control moment gyro spacecraft, including analysis of failure modes and singular configurations. The mixed system performed similarly to all gyro systems, responding within 6% of the gyro system’s time for all nominal cases. It far exceeds the performance of reaction wheel systems, taking only a fourth of the time. It also handles failures better than reduced size gyro systems. As such, it can be an effective cost saving measure for certain satellite missions.
APA, Harvard, Vancouver, ISO, and other styles
14

Reisman, Garrett Erin Brennen Christopher E. "Dynamics, acoustics and control of cloud cavitation on hydrofoils /." Diss., Pasadena, Calif. : California Institute of Technology, 1997. http://resolver.caltech.edu/CaltechETD:etd-03302004-140539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Friedman, Adam D. "Theoretical and experimental study of generation mechanisms for laser ultrasound in woven graphite /epoxy composites with translaminar stitching." W&M ScholarWorks, 2000. https://scholarworks.wm.edu/etd/1539623984.

Full text
Abstract:
The aerospace industry is beginning to use advanced composite materials for primary load bearing structures and their failure mechanisms must be better understood to predict their behavior in service. The Combined Loads Tests (COLTS) facility is being constructed at the NASA Langley Research Center to characterize these failure mechanisms. Laser based ultrasonic NDE can monitor the samples during dynamic loading without interfering with the structural tests. However, the constraints of implementing laser ultrasound in a structures laboratory reduces the efficiency of the technique. The system has to be "eye-safe" because many people will be present during the structural tests. Consequently, laser light has to be delivered through fiber optics and a significant amount of light is lost. Also, the nature of the composite materials makes laser ultrasonic inspection difficult. The composites of interest are formed from woven layers that are stitched through the laminate thickness and bound in a resin matrix. These materials attenuate ultrasound strongly and exhibit a high degree of scattering.;Generation mechanisms in laser based ultrasound must be better understood to improve generation efficiency and consequently improve the signal-to-noise ratio. Although some experimental and theoretical studies have been conducted to characterize generation mechanisms, more extensive work is needed for composite materials. Specifically, we are concerned with generation mechanisms in thick, stitched composite structures. We describe a theoretical and experimental investigation of laser generated ultrasound in complex composite materials. We first develop a mathematical model describing the thermoelastic generation of ultrasound in a general anisotropic material. We then present a wide range of experimental data investigating the effects of laser and material parameters on the generated ultrasound. We specifically consider the relationship between laser pulse width, laser wavelength, and material composition. Finally, we compare this data to our mathematical model.
APA, Harvard, Vancouver, ISO, and other styles
16

Moreira, Scott Henry. "PREDICTING THE ACOUSTIC RESPONSE OF THE GOLF CLUB & BALL IMPACT USING FINITE ELEMENTS AND THE BOUNDARY ELEMENT METHOD." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/649.

Full text
Abstract:
An improved and repeatable method for meshing golf club heads using finite elements in TrueGrid® was developed. Using solid brick elements through the thickness of the club head instead of shell elements better represents the many thickness variations throughout each section of a club head. This method also results in a high quality mesh at the center of the club head sections while still maintaining high quality at the edges. A simulation procedure was also developed to predict the acoustic pressure at a designated point in an acoustic medium of a golf club and ball impact using the BEM and Rayleigh methods in LS-DYNA®. The simulation time and computing power required for the impact are modest, while the acoustic simulation time and computing power are much greater. The Rayleigh method provides an alternative which can greatly reduce these requirements. The simulation of sound produced from the ball and a USGA COR plate, generic driver, and hybrid impact was accomplished with reasonable results. Experimental testing was performed using a USGA plate to validate the plate result. A simple tap test and an air cannon test were performed to record the acoustic response with a microphone. A Fast Fourier Transform was performed to obtain the frequency response. These two tests correlated with each other, indicating that air cannon procedures could be negated in favor of a much simpler tap test during prototype testing for acoustics. The simulation frequency responses showed similar results to the experimental tests, demonstrating that the procedure developed in this project can be a viable and effective method for determining the acoustic response of the golf club and ball impact.
APA, Harvard, Vancouver, ISO, and other styles
17

Pearson, Stephen Herbert. "Nonlinear Ball Chain Waveguides For Acoustic Emission And Ultrasound Sensing Of Ablation." ScholarWorks @ UVM, 2014. http://scholarworks.uvm.edu/graddis/256.

Full text
Abstract:
Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion - often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube packed with 17 steel particles are studied with a frequency sweep. The deformation experienced by a single steel particle in the dimer chain is approximated. Steel ball waveguides and steel rods are fitted with piezoelectric sensors to monitor the force at different points inside the waveguide during testing. The corresponding frequency responses, including intermodulation products, are compared based on amplitude and preloads. A nonlinear mechanical model describes the motion of the dimer chains in a vacuum. Based on the results of these studies it is anticipated that a nonlinear waveguide will be designed, built, and tested as a possible replacement for the high-fidelity waveguides presently being used in an Inductively Coupled Plasma Torch facility for high heat flux thermal protection system testing. The design is intended to accentuate acoustic emission signals of interest, while suppressing other forms of elastic wave noise.
APA, Harvard, Vancouver, ISO, and other styles
18

Wellman, Brandon. "Root Locus Techniques With Nonlinear Gain Parameterization." UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/21.

Full text
Abstract:
This thesis presents rules that characterize the root locus for polynomials that are nonlinear in the root-locus parameter k. Classical root locus applies to polynomials that are affine in k. In contrast, this thesis considers polynomials that are quadratic or cubic in k. In particular, we focus on constructing the root locus for linear feedback control systems, where the closed-loop denominator polynomial is quadratic or cubic in k. First, we present quadratic root-locus rules for a controller class that yields a closed-loop denominator polynomial that is quadratic in k. Next, we develop cubic root-locus rules for a controller class that yields a closed-loop denominator polynomial that is cubic in k. Finally, we extend the quadratic root-locus rules to accommodate a larger class of controllers. We also provide controller design examples to demonstrate the quadratic and cubic root locus. For example, we show that the triple integrator can be high-gain stabilized using a controller that yields a closed-loop denominator polynomial that is quadratic in k. Similarly, we show that the quadruple integrator can be high-gain stabilized using a controller that yields a closed-loop denominator polynomial that is cubic in k.
APA, Harvard, Vancouver, ISO, and other styles
19

Polston, James D. "DECENTRALIZED ADAPTIVE CONTROL FOR UNCERTAIN LINEAR SYSTEMS: TECHNIQUES WITH LOCAL FULL-STATE FEEDBACK OR LOCAL RELATIVE-DEGREE-ONE OUTPUT FEEDBACK." UKnowledge, 2013. http://uknowledge.uky.edu/me_etds/24.

Full text
Abstract:
This thesis presents decentralized model reference adaptive control techniques for systems with full-state feedback and systems with output feedback. The controllers are strictly decentralized, that is, each local controller uses feedback from only local subsystems and no information is shared between local controllers. The full-state feedback decentralized controller is effective for multi-input systems, where the dynamics matrix and control-input matrix are unknown. The decentralized controller achieves asymptotic stabilization and command following in the presence of sinusoidal disturbances with known spectrum. We present a construction technique of the reference-model dynamics such that the decentralized controller is effective for systems with arbitrarily large subsystem interconnections. The output-feedback decentralized controller is effective for single-input single-output subsystems that are minimum phase and relative degree one. The decentralized controller achieves asymptotic stabilization and disturbance rejection in the presence of an unknown disturbance, which is generated by an unknown Lyapunov-stable linear system.
APA, Harvard, Vancouver, ISO, and other styles
20

Mullen, Jon. "FILTERED-DYNAMIC-INVERSION CONTROL FOR FIXED-WING UNMANNED AERIAL SYSTEMS." UKnowledge, 2014. http://uknowledge.uky.edu/me_etds/45.

Full text
Abstract:
Instrumented umanned aerial vehicles represent a new way of measuring turbulence in the atmospheric boundary layer. However, autonomous measurements require control methods with disturbance-rejection and altitude command-following capabilities. Filtered dynamic inversion is a control method with desirable disturbance-rejection and command-following properties, and this controller requires limited model information. We implement filtered dynamic inversion as the pitch controller in an altitude-hold autopilot. We design and numerically simulate the continuous-time and discrete-time filtered-dynamic-inversion controllers with anti-windup on a nonlinear aircraft model. Finally, we present results from a flight experiment comparing the filtered-dynamic-inversion controller to a classical proportional-integral controller. The experimental results show that the filtered-dynamic-inversion controller performs better than a proportional-integral controller at certain values of the parameter.
APA, Harvard, Vancouver, ISO, and other styles
21

Downs, Matthew C. "Adaptive Control Applied to the Cal Poly Spacecraft Attitude Dynamics Simulator." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/231.

Full text
Abstract:
The goal of this thesis is to use the Cal Poly Spacecraft Attitude Dynamics Simulator to provide proof of concept of two adaptive control theories developed by former Cal Poly students: Nonlinear Direct Model Reference Adaptive Control and Adaptive Output Feedback Control. The Spacecraft Attitude Dynamics Simulator is a student-built air bearing spacecraft simulator controlled by four reaction wheels in a pyramidal arrangement. Tests were performed to determine the effectiveness of the two adaptive control theories under nominal operating conditions, a “plug-and-play” spacecraft scenario, and under simulated actuator damage. Proof of concept of the adaptive control theories applied to attitude control of a spacecraft is provided. The adaptive control theories are shown to attain similar or improved performance over a Full State Feedback controller. However, the measurement capabilities of the simulator need to be improved before strong comparisons between the adaptive controllers and Full State Feedback can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
22

Wu, Meng-Chou. "Nonlinearity parameters of polymers." W&M ScholarWorks, 1989. https://scholarworks.wm.edu/etd/1539623784.

Full text
Abstract:
Three types of acoustic nonlinearity parameters for solids are discussed. The results of measurements of these parameters for three polymers--polymethyl methacrylate, Polystyrene, and polysulfone--are presented.;The author has developed a new technique, using piezoelectric transducers directly bonded to the specimens, which allows the measurements of fundamental and second harmonics generated in the solids, and thereby the determination of nonlinearity parameter {dollar}\beta\sb3{dollar}, which is the ratio of a linear combination of second- and third-order elastic coefficients to the second-order elastic coefficient.;The second nonlinearity parameter, B/A can be determined from the temperature and pressure derivatives of the sound velocity. We derive its exact relationship for the case of solids. The results from the two techniques are shown to be consistent.;The pressure derivative of the sound velocity is also related to the Gruneisen parameter, which can be used to describe the anharmonicity of interactions in polymer molecules, especially of interchain vibrations. The interchain specific heat for these polymers is then calculated from the Gruneisen parameters; and the characterization of polymers by using these thermoacoustic parameters is discussed.
APA, Harvard, Vancouver, ISO, and other styles
23

Gao, Wen. "Sonar sensor interpretation for ectogeneous robots." W&M ScholarWorks, 2005. https://scholarworks.wm.edu/etd/1539616656.

Full text
Abstract:
We have developed four generations of sonar scanning systems to automatically interpret surrounding environment. The first two are stationary 3D air-coupled ultrasound scanning systems and the last two are packaged as sensor heads for mobile robots. Template matching analysis is applied to distinguish simple indoor objects. It is conducted by comparing the tested echo with the reference echoes. Important features are then extracted and drawn in the phase plane. The computer then analyzes them and gives the best choices of the tested echoes automatically. For cylindrical objects outside, an algorithm has been presented to distinguish trees from smooth circular poles based on analysis of backscattered sonar echoes. The echo data is acquired by a mobile robot which has a 3D air-coupled ultrasound scanning system packaged as the sensor head. Four major steps are conducted. The final Average Asymmetry-Average Squared Euclidean Distance phase plane is segmented to tell a tree from a pole by the location of the data points for the objects interested. For extended objects outside, we successfully distinguished seven objects in the campus by taking a sequence scans along each object, obtaining the corresponding backscatter vs. scan angle plots, forming deformable template matching, extracting interesting feature vectors and then categorizing them in a hyper-plane. We have also successfully taught the robot to distinguish three pairs of objects outside. Multiple scans are conducted at different distances. A two-step feature extraction is conducted based on the amplitude vs. scan angle plots. The final Slope1 vs. Slope2 phase plane not only separates the rectangular objects from the corresponding cylindrical.
APA, Harvard, Vancouver, ISO, and other styles
24

Gudgel, Garrett Daniel. "Three Degree-of-Freedom Parallel Actuator Telescope Mount." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1547.

Full text
Abstract:
This thesis contains the design, implementation, and testing of an original, small-scaled two degree-of-freedom telescope mount and a medium-scaled three degree-of-freedom telescope mount inspired by the six degree-of-freedom Stewart-Gough platform telescope mount. The end product is intended to achieve research-standard resolution of targeted sky coverage for binary star research. The scaled prototype was carried through concept design, manufacturing, software development, and testing. The mount software development and electronic design is applicable to a full-scale mount as the drivers have been designed to be easily adapted to different actuator configurations. It is recommended that this design be implemented into a telescope in the one to two meter range for economic practicality.
APA, Harvard, Vancouver, ISO, and other styles
25

Mullen, Michael P. "DATA ACQUISITION, ANALYSIS, AND MODELING OF ROTORDYNAMIC SYSTEMS." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2164.

Full text
Abstract:
Data acquisition systems for rotordynamic analysis and machine vibration were explored for the purpose of replacing the obsolete Bently Nevada ADRE 208 and ADRE for Windows system. These included the development of Matlab based custom data acquisition systems and a user interface. A model of an anisotropic rotor response undergoing transient speed was developed for the rapid prototyping and testing of data acquisition systems. Several methods for the measurement of amplitudes and phase in both the time domain and frequency domain were developed and compared. An alternate data acquisition method which is more inline with industry practices was created for the purpose of spectral analysis. Additionally, an optimized data acquisition strategy was developed for implementation within the Matlab app which included batch processing, state-based acquisition, and differentiated vector and waveform acquisition rates. A Bently Nevada 2300/20 vibration monitor was configured for use in the lab but found unsuitable for replacing the ADRE 208. Ultimately a Bently Nevada ADAPT 3701/44 Vibration Monitor was configured and found to be an adequate replacement for the ADRE 208 system for use in the Cal Poly Vibrations Lab.
APA, Harvard, Vancouver, ISO, and other styles
26

Wu, Ruimeng. "UTILIZATION OF EMPIRICAL MODELS TO DETERMINE THE BULK PROPERTIES OF COMPRESSED SOUND ABSORPTIVE MATERIALS." UKnowledge, 2017. https://uknowledge.uky.edu/me_etds/106.

Full text
Abstract:
Empirical models based on flow resistivity are commonly used to determine the bulk properties of porous sound absorbing materials. The bulk properties include the complex wavenumber and complex characteristic impedance which can be used directly in simulation models. Moreover, the bulk properties can also be utilized to determine the normal incidence sound absorption and specific acoustic impedance for sound absorbing materials of any thickness and for design of layered materials. The sound absorption coefficient of sound absorbing materials is measured in an impedance tube using wave decomposition and the measured data is used to determine the flow resistivity of the materials by least squares curve fitting to empirical equations. Results for several commonly used foams and fibers are tabulated to form a rudimentary materials database. The same approach is then used to determine the flow resistivity of compressed sound absorbing materials. The flow resistivities of the compressed materials are determined as a function of the compression ratio. Results are then used in conjunction with transfer matrix theory to predict the sound absorptive performance of layered compressed absorbers with good agreement to measurement.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Yue. "LOW COST FLOW SENSING FOR FIELD SPRAYERS." UKnowledge, 2014. http://uknowledge.uky.edu/bae_etds/26.

Full text
Abstract:
Precisely measuring the flow rate in sprayers is a key technology to precision agriculture. With the development of advanced technologies, the demand for the ability to measure flow rate of individual nozzle has become more important and urgent. This paper investigates the possibility of developing a low-cost flow rate measurement technique. The technique is based on analyzing the acoustic signal from a microphone placed near the nozzle tip. A comparison between acoustic signal and vibration signal was made to study the relations between them. Then several possible locations of the microphone for measuring flow rate were tested and compared, and one has been chosen as the best location. After that, two methods of analyzing data were proposed, one that could better describe the original curve was chosen. With all of that work done, further experiments were conducted on a variety of nozzle tips. The results showed that an acoustic sensor could be used as an indicator of flow rate from a nozzle, but that unique calibrations for different nozzle tips would be necessary.
APA, Harvard, Vancouver, ISO, and other styles
28

Goupil, Marc Y. "Dynamic Pressure Sensing for the Flight Test Data System." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2115.

Full text
Abstract:
This thesis describes the design, assembly, and test of the FTDS-K, a new device in the Boundary Layer Data System (BLDS) family of flight data acquisition systems. The FTDS-K provides high-frequency, high-gain data acquisition capability for up to two pressure sensors and an additional three low-frequency pressure sensors. Development of the FTDS-K was separated into a core module, specialized analog subsystem, and practical testing of the FTDS-K in a flow measurement mission. The core module combines an nRF52840-based microcontroller module, switching regulator, microSD card, real-time clock, temperature sensor, and trio of pressure sensors to provide the same capabilities as previous-generation BLDS-P devices. An expansion header is included in the core module to allow additional functionality to be added via daughter boards. An analog signal chain comprised of two-stage amplification and fourth-order active antialiasing filters was implemented as a daughter board to provide an AC-coupled end-to-end gain of 7,500 and a DC-coupled end-to-end gain of 50. This arrangement was tested in a wind tunnel to demonstrate that sensors with a full-scale range of 103 kPa can be used to reliably discriminate between laminar and turbulent flows based on pressure fluctuation differences on the order of tens of Pa. A combination of wind-off correction and band-filtering was used to reduce the effect of inherent and induced electrical noise, while two-sensor correlation was tested and shown to be effective at removing certain types of noise. Total power consumption for the FTDS-K in a representative mission is 208 mW, which translates to an operational endurance of 9 hours with 2 AAA LiFeS2 cells at -40°C.
APA, Harvard, Vancouver, ISO, and other styles
29

Gasik, Kevin Richard. "COMPARISON OF LQR AND LQR-MRAC FOR LINEAR TRACTOR-TRAILER MODEL." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2117.

Full text
Abstract:
The United States trucking industry is immense. Employing over three million drivers and traveling to every city in the country. Semi-Trucks travel millions of miles each week and encompass roads that civilians travel on. These vehicles should be safe and allow efficient travel for all. Autonomous vehicles have been discussed in controls for many decades. Now fleets of autonomous vehicles are beginning their integration into society. The ability to create an autonomous system requires domain and system specific knowledge. Approaches to implement a fully autonomous vehicle have been developed using different techniques in control systems such as Kalman Filters, Neural Networks, Model Predictive Control, and Adaptive Control. However some of these control techniques require superb models, immense computing power, and terabytes of storage. One way to circumvent these issues is by the use of an adaptive control scheme. Adaptive control systems allow for an existing control system to self-tune its performance for unknown variables i.e. when an environment changes. In this thesis a LQR error state control system is derived and shown to maintain a magnitude of 15 cm of steady state error from the center-line of the road. In addition a proposed LQR-MRAC controller is used to test the robustness of a lane-keeping control system. The LQR-MRAC controller was able to improve its transient response peak error from the center-line of the road of the tractor and the trailer by 9.47 [cm] and 7.27 [cm]. The LQR-MRAC controller increased tractor steady state error by 0.4 [cm] and decreased trailer steady state error by 1 [cm]. The LQR-MRAC controller was able to outperform modern control techniques and can be used to improve the response of the tractor-trailer system to handle mass changes in its environment.
APA, Harvard, Vancouver, ISO, and other styles
30

He, Shujian. "A TRANSFER MATRIX APPROACH TO DETERMINE THE LOW FREQUENCY INSERTION LOSS OF ENCLOSURES INCLUDING APPLICATIONS." UKnowledge, 2017. https://uknowledge.uky.edu/me_etds/104.

Full text
Abstract:
Partial enclosures are commonly used to reduce machinery noise. However, it is well known in industry that enclosures sometimes amplify the sound at low frequencies due to strong acoustic resonances compromising the performance. These noise issues are preventable if predicted prior to prototyping and production. Though boundary and finite element approaches can be used to accurately predict partial enclosure insertion loss, modifications to the model require time for remeshing and solving. In this work, partial enclosure performance at low frequencies is simulated using a plane wave transfer matrix approach. Models can be constructed and the effect of design modifications can be predicted rapidly. Results are compared to finite element analysis and measurement with good agreement. The approach is then used to design and place resonators into a sample enclosure. Improvements in enclosure performance are predicted using plane wave simulation, compared with acoustic finite element analysis, and then validated via measurement.
APA, Harvard, Vancouver, ISO, and other styles
31

Ananda, Agus A. "Propagation of Rayleigh waves in thin films." W&M ScholarWorks, 1997. https://scholarworks.wm.edu/etd/1539623914.

Full text
Abstract:
With the advent of thin film technology and more recently its applications in microelectronics and control of surface properties, the interest in mechanical properties of thin films has grown tremendously. Mechanical defects such as creep, fracture and adhesion loss, play a very important role in physical instabilities of thin film materials. An acoustic microscope has been built to study mechanical properties of thin-films. The microscope operates at a nominal frequency of 50 MHz. Rayleigh surface waves velocities on the surface of film-substrate systems were measured from V(z) curves generated by the acoustic microscope. V(z) curves are produced from interference between the Rayleigh surface wave and the specularly reflected waves. Technologically important materials, non-stoichiometric titanium nitride (TiN{dollar}\sb{lcub}\rm x{rcub}{dollar}) films and diamond films, were fabricated by using magnetron plasma deposition and hot filament chemical vapor deposition (HFCVD) on Si (100) and Si (111) substrates. Spectra from XPS (X-ray Photoelectron Spectroscopy) were used to determine the chemical composition of the films and SEM (Scanning Electron Microscope) micrographs were taken to study the morphology of the films. Rayleigh surface wave velocity measurements on TiN{dollar}\sb{lcub}\rm x{rcub}{dollar} films show a sharp increase in velocity at x = 0.7. A comparison with the phase diagram of TiN {dollar}\sb{lcub}\rm x{rcub}{dollar} suggests that the sharp increase in velocity might be due to a crystal structural transition from tetragonal {dollar}\varepsilon{dollar}-Ti{dollar}\sb2{dollar}N to fcc {dollar}\delta{dollar}-TiN.
APA, Harvard, Vancouver, ISO, and other styles
32

Vlcek, Robert John. "The Identification of Resonant Frequencies Emitted by Violins and Flat Top Guitars." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1894.

Full text
Abstract:
This research identifies the resonant frequencies emitted by 2 types of stringed instruments, violins and guitars, in a definitive way that provides measured data for results. A resonance testing apparatus designed to support the instruments for testing, produce forced vibrations of precise period and amplitude to excite an instrument, and acquire measured data was used to perform the testing for this research. The output of this research presents a tabulation of the resonant frequencies and their amplitude that correlates the resonant frequencies below 1000 Hz pictorially to a location on the top plate of the instrument that represents the most significant displacement. The outcome of this research supports the viability of this method with opportunities for further research to focus on improved construction techniques, areas of a completed system that can be manipulated to improve tonal quality, or methods of manipulation that have previously not been explored.
APA, Harvard, Vancouver, ISO, and other styles
33

Furger, Steve M. "Analysis and Mitigation of the CubeSat Dynamic Environment." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1042.

Full text
Abstract:
A vibration model was developed for CubeSats inside the Poly-Picosatellite Orbital Deployer (P-POD). CubeSats are fixed in the Z axis of deployers, and therefore resonate with deployer peaks. CubeSats generally start fixed in the X and Y axes, and then settle into an isolated position. CubeSats do not resonate with deployers after settling into an isolated position. Experimental data shows that the P-POD amplifies vibration loads when CubeSats are fixed in the deployer, and vibration loads are reduced when the CubeSats settle into an isolated position. A concept for a future deployer was proposed that isolates CubeSats from the deployer at the rail interface using viscoelastic foam sandwiched in the deployer rails. By creating an isolator frequency far below the deployer resonant frequency, CubeSats loads are not amplified at the deployer’s resonant peak. Feasibility tests show that CubeSat vibration loads can be reduced to 50% of the vibration input in certain cases. Testing also shows that it is much easier to define vibration loads for isolated CubeSats than CubeSats in the current P-POD.
APA, Harvard, Vancouver, ISO, and other styles
34

Olney, Kory. "Acoustic Source Localization with a VTOL sUAV Deployable Module." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7557.

Full text
Abstract:
A real time acoustic direction-finding module has been developed to estimate the ele- vation and azimuth of an impulsive event while function aboard a small unmanned air- craft vehicle. The generalized cross-correlation with phase transform method was used to estimate time differences of arrival in an 8 channel microphone array. A linear least squares approach was used to calculate an estimate for the direction of arrival. In order to accomplish this task, a vertical takeoff and landing small unmanned aircraft system was assembled to host the direction finding module. The module itself is made up of an eight-channel synchronous analog-to-digital converter connected to eight lightweight micro electro-mechanical microphones with pre-amplifiers. The data is processed on an embedded system with a field programmable gate array chip and a central processing unit. Noise canceling techniques were employed to address the noise propagating from the propellers under operation. The results from this research show that it is possible to perform direction-finding estimation while aboard an operating small unmanned aircraft vehicle with initial tests showing maximum errors of ± 7°.
APA, Harvard, Vancouver, ISO, and other styles
35

Noxon, Nikola John Linn. "A MODEL PREDICTIVE CONTROL APPROACH TO ROLL STABILITY OF A SCALED CRASH AVOIDANCE VEHICLE." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/783.

Full text
Abstract:
In this paper, a roll stability controller (RSC) is presented based on an eight degree of freedom dynamic vehicle model. The controller is designed for and tested on a scaled vehicle performing obstacle avoidance maneuvers on a populated test track. A rapidly-exploring random tree (RRT) algorithm is used for the vehicle to execute a trajectory around an obstacle, and examines the geographic, non-homonymic, and dynamic constraints to maneuver around the obstacle. A model predictive controller (MPC) uses information about the vehicle state and, based on a weighted performance measure, generates an optimal trajectory around the obstacle. The RSC uses the standard vehicle state sensors: four wheel mounted encoders, a steering angle sensor, and a six degree of freedom inertial measurement unit (IMU). An emphasis is placed on the mitigation of rollover and spin-out, however if a safe maneuver is not found and a collision is inevitable, the program will run a brake command to reduce the vehicle speed before impact. The trajectory is updated at a rate of 20 Hz, providing improved stability and maneuverability for speeds up to 10 ft/s and turn angles of up to 20°.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Xingye. "A SUBSYSTEM IDENTIFICATION APPROACH TO MODELING HUMAN CONTROL BEHAVIOR AND STUDYING HUMAN LEARNING." UKnowledge, 2015. http://uknowledge.uky.edu/me_etds/70.

Full text
Abstract:
Humans learn to interact with many complex dynamic systems such as helicopters, bicycles, and automobiles. This dissertation develops a subsystem identification method to model the control strategies that human subjects use in experiments where they interact with dynamic systems. This work provides new results on the control strategies that humans learn. We present a novel subsystem identification algorithm, which can identify unknown linear time-invariant feedback and feedforward subsystems interconnected with a known linear time-invariant subsystem. These subsystem identification algorithms are analyzed in the cases of noiseless and noisy data. We present results from human-in-the-loop experiments, where human subjects in- teract with a dynamic system multiple times over several days. Each subject’s control behavior is assumed to have feedforward (or anticipatory) and feedback (or reactive) components, and is modeled using experimental data and the new subsystem identifi- cation algorithms. The best-fit models of the subjects’ behavior suggest that humans learn to control dynamic systems by approximating the inverse of the dynamic system in feedforward. This observation supports the internal model hypothesis in neuro- science. We also examine the impact of system zeros on a human’s ability to control a dynamic system, and on the control strategies that humans employ.
APA, Harvard, Vancouver, ISO, and other styles
37

Seyyedmousavi, Seyyedalireza. "THE EFFECTS OF SYSTEM CHARACTERISTICS, REFERENCE COMMAND, AND COMMAND-FOLLOWING OBJECTIVES ON HUMAN-IN-THE-LOOP CONTROL BEHAVIOR." UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/140.

Full text
Abstract:
Humans learn to interact with many complex physical systems. For example, humans learn to fly aircraft, operate drones, and drive automobiles. We present results from human-in-the-loop (HITL) experiments, where human subjects interact with dynamic systems while performing command-following tasks multiple times over a one-week period. We use a new subsystem identification (SSID) algorithm to estimate the control strategies (feedforward, feedforward delay, feedback, and feedback delay) that human subjects use during their trials. We use experimental and SSID results to examine the effects of system characteristics (e.g., system zeros, relative degree, system order, phase lag, time delay), reference command, and command-following objectives on humans command-following performance and on the control strategies that the humans learn. Results suggest that nonminimum-phase zeros, relative degree, phase lag, and time delay tend to make dynamic systems difficult for human to control. Subjects can generalize their control strategies from one task to another and use prediction of the reference command to improve their command-following performance. However, this dissertation also provides evidence that humans can learn to improve performance without prediction. This dissertation also presents a new SSID algorithm to model the control strategies that human subjects use in HITL experiments where they interact with dynamic systems. This SSID algorithm uses a two-candidate-pool multi-convex-optimization approach to identify feedback-and-feedforward subsystems with time delay that are interconnected in closed loop with a known subsystem. This SSID method is used to analyze the human control behavior in the HITL experiments discussed above.
APA, Harvard, Vancouver, ISO, and other styles
38

Uddin, Md Mosleh. "Active Vibration Control of Helicopter Rotor Blade by Using a Linear Quadratic Regulator." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2499.

Full text
Abstract:
Active vibration control is a widely implemented method for the helicopter vibration control. Due to the significant progress in microelectronics, this technique outperforms the traditional passive control technique due to weight penalty and lack of adaptability for the changing flight conditions. In this thesis, an optimal controller is designed to attenuate the rotor blade vibration. The mathematical model of the triply coupled vibration of the rotating cantilever beam is used to develop the state-space model of an isolated rotor blade. The required natural frequencies are determined by the modified Galerkin method and only the principal aerodynamic forces acting on the structure are considered to obtain the elements of the input matrix. A linear quadratic regulator is designed to achieve the vibration reduction at the optimum level and the controller is tuned for the hovering and forward flight with different advance ratios.
APA, Harvard, Vancouver, ISO, and other styles
39

Simard, Peter. "Dolphin Sound Production and Distribution on the West Florida Shelf." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4402.

Full text
Abstract:
This dissertation is an investigation of dolphin sound production and distribution off west central Florida. Although a wealth of information exists on the production of common sounds (whistles, echolocation) made by captive, trained dolphins, far less is known about free-ranging dolphin sound production and of unusual sounds. In addition, while inshore dolphin populations or communities are the subjects of research projects in many locations, dolphins in offshore waters are less commonly studied. The objectives of this dissertation were to contribute information on free-ranging dolphin sounds and continental shelf dolphin distribution. While echolocation has been rigorously studied in captive, trained dolphins, there is far less known about how free-ranging dolphins use their echolocation. In order to investigate the use of echolocation by free-ranging dolphins, echolocation recordings from 14 groups of common bottlenose dolphins (Tursiops truncatus) were obtained during towed hydrophone cruises on the West Florida Shelf (WFS) and in Tampa Bay. The mean echolocation pulse rate was inversely related to water depth, suggesting echolocation pulse rate was a function of the two-way travel time of echolocation pulses, which was related to depth. Pulse rate modes were related to potential target distances, and indicated dolphins were commonly echolocating on targets up to at least 91.8 m away. The results of this study indicate that free-ranging bottlenose dolphins are using their echolocation in a manner similar to that found in studies with captive, trained dolphins. Unusual low frequency sounds from bottlenose dolphins were found in the towed hydrophone recordings in Tampa Bay, and the acoustic properties and behavioral contexts of these sounds were investigated. Additional recordings were obtained from Sarasota Bay and Mississippi Sound. These low frequency narrow-band (LFN) sounds were tonal, had peak frequencies between 500 Hz and 1000 Hz, and were produced in trains. Inter-LFN intervals (the time duration between sequential LFN sounds) were significantly longer in recordings from Mississippi Sound. Sounds were correlated with social behavior, and were common during socio-sexual behavior. These sounds were found below optimal hearing range of bottlenose dolphins, and are prone to masking by boats. A combination of autonomous acoustic recorders and visual surveys were used to determine the distribution and sound production patterns on the WFS. Visual surveys supported the results of previous studies indicating that bottlenose dolphins were more common in coastal areas and off of Tampa Bay, while Atlantic spotted dolphins (Stenella frontalis) were more common beyond the 20 m isobath. A single group of rough-toothed dolphins (Steno bredanensis) was observed. Overall, dolphin numbers decreased from inshore to offshore. Acoustic detections mirrored this distribution pattern, however acoustic detections were not as high in coastal regions as expected from the visual survey results, which suggests low sound production rates by coastal dolphins. Atlantic spotted dolphin numbers increased in more northern and inshore waters in spring, suggesting a seasonal migration pattern. Peaks in dolphin sounds in the coastal regions were commonly observed in daylight and evening hours, while in offshore areas sound production peaked at night. This pattern likely reflects foraging activity, and the diel activity cycles of common prey species. Coastal dolphins made proportionately more echolocation than whistles, while the opposite was true for deeper water dolphins. In inshore waters (< 25 m depth), dolphin sound production was generally positively correlated to water temperature (bottom temperature and sea surface temperature) and negatively correlated with chlorophyll, while the opposite pattern tends to occur in deeper waters (> 35 m). This delineation roughly coincides with the distribution patterns of oceanographic properties, prey species distribution, and the distribution of Atlantic spotted dolphins and bottlenose dolphin ecotypes. These results suggest a shift from a benthic based ecosystem to a phytoplankton based ecosystem with increasing depth on the WFS.
APA, Harvard, Vancouver, ISO, and other styles
40

Scherer, Markus Josef. "VIBRATION HEALTH MONITORING OF GEARS." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/820.

Full text
Abstract:
Monitoring the health of vibrating gears is important to ensure proper operation especially in potentially life-threatening structures, such as helicopters, nuclear power plants, and uninterruptible power supply transitions in hospitals. The most common monitoring technique is casing mounted accelerometers to measure vibration. In contrast, during the last few years acoustic monitoring techniques have also provided a few diagnostic methods for gear failure. Current diagnostic methods to indicate improper gear behavior use either existing vibration data, recorded from defective gear systems, or modern dynamic models predicting gear failure behavior. This thesis uses dynamic models to indicate, predict, and diagnose healthy and unhealthy gear systems. Influence of Tip Relief on contact forces are introduced for a decent understanding of gear dynamics followed by evaluation of common gear failure mechanisms. Two software systems were used to model gear failure: Adams®, a vibration based software that uses a rigid-elastic model for multi-body dynamics, and LSDYNA ®, a transient dynamic finite element solver, capable of solving acoustic problems with the boundary element method. Results describe tooth loads along the line of contact with respect to different Tip Reliefs and contact ratios. Gear failure is examined using a Fast Fourier Transformation to characterize patterns that can be used to diagnose unhealthy gear systems. Agreement of experimental results validates theoretical predictions of analytical and numerical solutions of gear failure especially of tooth breakage.
APA, Harvard, Vancouver, ISO, and other styles
41

Katz, Jonathan Edward. "monitoR: Automation Tools For Landscape-scale Acoustic Monitoring." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/359.

Full text
Abstract:
Climate change coupled with land-use change will likely alter habitats and affect state parameters of the animal populations that dwell in them. Affected parameters are anticipated to include site occupancy and abundance, population range, and phenophase cycles (e.g., arrival dates on breeding grounds for migrant bird species). Detecting these changes will require monitoring many sites for many years, a process that is well suited for an automated system. We developed and tested monitoR, an R package that is designed for long-term, multi-taxa automated passive acoustic monitoring programs. monitoR correctly identified presence for black-throated green warbler and ovenbird in 64% and 72% of the 52 surveys using binary point matching, respectively, and 73% and 72% of the 52 surveys using spectrogram cross-correlation, respectively. Of individual black-throated green warbler song events, 73% of 166 black-throated green warbler songs and 69% of 502 ovenbird songs were identified by binary point matching. Spectrogram cross correlation identified 64% of 166 black-throated green warbler songs and 64% of 502 ovenbird songs. False positive rates were We describe a method to identify the probability of survey presence in a template-based automated detection system using known false positive rates for each template. True and false positive detection rates were observed in 146 training surveys. These probabilities were used in a Bayesian approach that discriminates between detections in occupied surveys and unoccupied surveys. We evaluated this approach in 146 test surveys. A total of 1142 Black-throated green warbler (Setophaga virens) songs were observed in the training surveys and test surveys, which we attempted to locate with 3 different binary point matching templates. When only posterior probabilities greater than 0.5 were considered detections, the average ratio of accurate identifications of survey presence to false positive identifications in 500 bootstrapped samples improved from 1.2:1 using a standard score cutoff approach to 2.8:1 using all 3 templates and a likelihood-based discriminator. With the selected score cutoffs the average true positive and false positive rates for the combined three templates were 0.18 and 0.002, respectively. Automated detection methods are increasingly being used for identification and monitoring of landscape-scale responses to climate change and land-use change. Skepticism of automated acoustic monitoring software is largely due to higher false positive and negative error rates than those in traditional human surveys, but the false positive multiple method occupancy model is capable of estimating detection parameters and occupancy state when one method has occasional false positive detections. We test the accuracy of the model when automated detection of black-throated green warbler is mixed with human detection in 4 recorded surveys at 60 sites. Precision and accuracy are evaluated by simulation, and we use the results to optimize future sampling. In simulation, parameter estimates by the multiple method occupancy model are close to those we computed manually when two surveys are manually analyzed. Our results support the use of the multiple method false positive occupancy model to track detection rates in automated monitoring programs.
APA, Harvard, Vancouver, ISO, and other styles
42

Morris, Melissa. "Robot Control for Remote Ophthalmology and Pediatric Physical Rehabilitation." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3350.

Full text
Abstract:
The development of a robotic slit-lamp for remote ophthalmology is the primary purpose of this work. In addition to novel mechanical designs and implementation, it was also a goal to develop a control system that was flexible enough to be adapted with minimal user adjustment to various styles and configurations of slit-lamps. The system was developed with intentions of commercialization, so common hardware was used for all components to minimize the costs. In order to improve performance using this low-cost hardware, investigations were made to attempt to achieve better performance by applying control theory algorithms in the system software. Ultimately, the controller was to be flexible enough to be applied to other areas of human-robot interaction including pediatric rehabilitation via the use of humanoid robotic aids. This application especially requires a robust controller to facilitate safe interaction. Though all of the prototypes were successfully developed and made to work sufficiently with the control hardware, the application of advanced control did not yield notable gains as was hoped. Further investigations were made attempting to alter the performance of the control system, but the components selected did not have the physical capabilities for improved response above the original software implemented. Despite this disappointment, numerous novel advances were made in the area of teleoperated ophthalmic technology and pediatric physical rehabilitation tools. This includes a system that is used to remote control a slit-lamp and lens for examinations and some laser procedures. Secondly, a series of of humanoid systems suitable for both medical research and therapeutic modeling were developed. This included a robotic face used as an interactive system for ophthalmic testing and training. It can also be used as one component in an interactive humanoid robotic system that includes hands and arms to allow use of teaching sign language, social skills or modeling occupational therapy tasks. Finally, a humanoid system is presented that can serve as a customized surrogate between a therapist and client to model physical therapy tasks in a realistic manner. These systems are all functional, safe and low-cost to allow for feasible implementation with patients in the near future.
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Shaoqian. "ATTITUDE CONTROL ON SO(3) WITH PIECEWISE SINUSOIDS." UKnowledge, 2018. https://uknowledge.uky.edu/me_etds/125.

Full text
Abstract:
This dissertation addresses rigid body attitude control with piecewise sinusoidal signals. We consider rigid-body attitude kinematics on SO(3) with a class of sinusoidal inputs. We present a new closed-form solution of the rotation matrix kinematics. The solution is analyzed and used to prove controllability. We then present kinematic-level orientation-feedback controllers for setpoint tracking and command following. Next, we extend the sinusoidal kinematic-level control to the dynamic level. As a representative dynamic system, we consider a CubeSat with vibrating momentum actuators that are driven by small $\epsilon$-amplitude piecewise sinusoidal internal torques. The CubeSat kinetics are derived using Newton-Euler's equations of motion. We assume there is no external forcing and the system conserves zero angular momentum. A second-order approximation of the CubeSat rotational motion on SO(3) is derived and used to derive a setpoint tracking controller that yields order O(ε2) closed-loop error. Numerical simulations are presented to demonstrate the performance of the controls. We also examine the effect of the external damping on the CubeSat kinetics. In addition, we investigate the feasibility of the piecewise sinusoidal control techniques using an experimental CubeSat system. We present the design of the CubeSat mechanical system, the control system hardware, and the attitude control software. Then, we present and discuss the experiment results of yaw motion control. Furthermore, we experimentally validate the analysis of the external damping effect on the CubeSat kinetics.
APA, Harvard, Vancouver, ISO, and other styles
44

Padilla, Scott T. "Novel Transducer Calibration and Simulation Verification of Polydimethylsiloxane (PDMS) Channels on Acoustic Microfluidic Devices." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6922.

Full text
Abstract:
The work and results presented in this dissertation concern two complimentary studies that are rooted in surface acoustic waves and transducer study. Surface acoustic wave devices are utilized in a variety of fields that span biomedical applications to radio wave transmitters and receivers. Of interest in this dissertation is the study of surface acoustic wave interaction with polydimethylsiloxane. This material, commonly known as PDMS, is widely used in the microfluidic field applications in order to create channels for fluid flow on the surface of a piezoelectric substrate. The size, and type of PDMS that is created and ultimately etched on the surface of the substrate, plays a significant role in its operation, chiefly in the insertion loss levels experienced. Here, through finite element analysis, via ANSYS® 15 Finite Element Modeling software, the insertion loss levels of varying PDMS sidewall channel dimensions, from two to eight millimeters is investigated. The simulation is modeled after previously published experimental data, and the results demonstrate a clear increase in insertion loss levels with an increase in channel sidewall dimensions. Analysis of the results further show that due to the viscoelastic nature of PDMS, there is a non -linear increase of insertion loss as the sidewall dimensions thicken. There is a calculated variation of 8.31 decibels between the insertion loss created in a microfluidic device with a PDMS channel sidewall thickness of eight millimeters verse a thickness of two millimeters. Finally, examination of the results show that insertion loss levels in a device are optimized when the PDMS sidewall channels are between two and four millimeters. The second portion of this dissertation concerns the calibration of an ultrasonic transducer. This work is inspired by the need to properly quantify the signal generated by an ultrasonic transducer, placed under a static loading condition, that will be used in measuring ultrasonic bone conducted frequency perception of human subjects. Ultrasonic perception, classified as perception beyond the typical hearing limit of approximately 20 kHz, is a subject of great interest in audiology. Among other reasons, ultrasonic signal perception in humans is of interest because the mechanism by which either the brain or the ear interprets these signals is not entirely understood. Previous studies have utilized ultrasonic transducers in order to study this ultrasonic perception; however, the calibration methods taken, were either incomplete or did not properly account for the operation conditions of the transducers. A novel transducer calibration method is detailed in this dissertation that resolves this issue and provides a reliable means by which the signal that is being created can be compared to the perception of human subjects.
APA, Harvard, Vancouver, ISO, and other styles
45

Sanchez, Gabriel Sabino. "AN INVESTIGATION OF DAMAGE ARRESTMENT DEVICES ON CARBON FIBER SANDWICH SPECIMENS UNDER DYNAMIC LOADING." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/821.

Full text
Abstract:
This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of the Cal Poly Shake Table by two aluminum block fixtures. The mechanical properties of LTM45/CF1803 pre-impregnated carbon fiber and Last-A-foam FR 6710 polyvinylchloride foam were experimentally analyzed using ASTM D3039 and ASTM D1621 standards respectively to determine the material’s mechanical properties. By using the finite element program COSMOS with the pre-software GeoStar, accuracy representation were created to compare numerical, analytical, and theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
46

Baker, David L. "Development of a Rotordynamic Signal Processing MATLAB Interface and a Two-Disk Rotor Model." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1794.

Full text
Abstract:
Using MATLAB and a National Instruments data acquisition card, a signal processing program meant to monitor the behavior of rotordynamic systems in real-time was developed and tested. By using traditional analysis methods in this field of engineering, commonly desired data representations such as bode, polar, orbit, full spectrum plots were able to be produced to a very high accuracy. Additional capabilities offered by this application are slow roll compensation, synchronous and sub-synchronous filtering, and true three dimensional plotting. The verification of this program was done by comparing the results to the ones acquired with Bently Nevada’s “Automated Diagnostics for Rotating Equipment” (ADRE) system. In addition to a data acquisition program, theoretical models of the two-disk rotor were created to estimate the unknown physical parameters of the system. By simulating the rotor with and without gyroscopic effects included, estimates for the stiffness, damping, eccentricity, initial phase, and initial skew values present in the system were determined.
APA, Harvard, Vancouver, ISO, and other styles
47

Waal, Steven. "A Quantitative Approach for Tuning a Mountain Bike Suspension." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2246.

Full text
Abstract:
A method for tuning the spring rate and damping rate of a mountain bike suspension based on a data-driven procedure is presented. The design and development of a custom data acquisition system, known as the MTB~DAQ, capable of measuring acceleration data at the front and rear axles of a bike are discussed. These data are input into a model that is used to calculate the vertical acceleration and pitching angular acceleration response of the bike and rider. All geometric and dynamic properties of the bike and rider system are measured and built into the model. The model is tested and validated using image processing techniques. A genetic algorithm is implemented with the model and used to calculate the best spring rate and damping rate of the mountain bike suspension such that the vertical and pitching accelerations of the bike and rider are minimized for a given trail. Testing is done on a variety of different courses and the performance of the bike when tuned to the results of the genetic algorithm is discussed. While more fine tuning of the model is possible, the results show that the genetic algorithm and model accurately predict the best suspension settings for each course necessary to minimize the vertical and pitching accelerations of the bike and rider.
APA, Harvard, Vancouver, ISO, and other styles
48

Gerdom, Christopher Martin. "Nanosatellite Launch Data-Logger (Sync)." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1966.

Full text
Abstract:
CubeSat designers are increasingly looking to incorporate delicate structures and optics into their payloads. These delicate payloads, however, may not survive the required absolute-worst-case launch vibration testing needed for flight certification. To help address this problem, and to better match testing conditions to real-world launch environments, this thesis introduces Sync, a compact 1/4U CubeSat payload designed to collect data on the vibrations and thermal environments CubeSats experience inside a deployer on the way to orbit. This data can be used to better understand the launch environment for different vehicles, and help develop new, more realistic testing guidelines that could enable more delicate payloads to be launched.
APA, Harvard, Vancouver, ISO, and other styles
49

Wall, Carrie Christy. "Shelf-scale Mapping of Fish Distribution Using Active and Passive Acoustics." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4251.

Full text
Abstract:
Fish sound production has been associated with courtship and spawning behavior. Acoustic recordings of fish sounds can be used to identify distribution and behavior. Passive acoustic monitoring (PAM) can record large amounts of acoustic data in a specific area for days to years. These data can be collected in remote locations under potentially unsafe seas throughout a 24-hour period providing datasets unattainable using observer-based methods. However, the instruments must withstand the caustic ocean environment and be retrieved to obtain the recorded data. This can prove difficult due to the risk of PAMs being lost, stolen or damaged, especially in highly active areas. In addition, point-source sound recordings are only one aspect of fish biogeography. Passive acoustic platforms that produce low self-generated noise, have high retrieval rates, and are equipped with a suite of environmental sensors are needed to relate patterns in fish sound production to concurrently collected oceanographic conditions on large, synoptic scales. The association of sound with reproduction further invokes the need for such non-invasive, near-real time datasets that can be used to enhance current management methods limited by survey bias, inaccurate fisher reports, and extensive delays between fisheries data collection and population assessment. Red grouper (Epinephelus morio) exhibit the distinctive behavior of digging holes and producing a unique sound during courtship. These behaviors can be used to identify red grouper distribution and potential spawning habitat over large spatial scales. The goal of this research was to provide a greater understanding of the temporal and spatial distribution of red grouper sound production and holes on the central West Florida Shelf (WFS) using active sonar and passive acoustic recorders. The technology demonstrated here establishes the necessary methods to map shelf-scale fish sound production. The results of this work could aid resource managers in determining critical spawning times and areas. Over 403,000 acoustic recordings were made across an approximately 39,000 km2 area on the WFS during periods throughout 2008 to 2011 using stationary passive acoustic recorders and hydrophone-integrated gliders. A custom MySQL database with a portal to MATLAB was developed to catalogue and process the large acoustic dataset stored on a server. Analyses of these data determined the daily, seasonal and spatial patterns of red grouper as well as toadfish and several unconfirmed fish species termed: 100 Hz Pulsing, 6 kHz Sound, 300 Hz FM Harmonic, and 365 Hz Harmonic. Red grouper sound production was correlated to sunrise and sunset, and was primarily recorded in water 15 to 93 m deep, with increased calling within known hard bottom areas and in Steamboat Lumps Marine Reserve. Analyses of high-resolution multibeam bathymetry collected in a portion of the reserve in 2006 and 2009 allowed detailed documentation and characterization of holes excavated by red grouper. Comparisons of the spatially overlapping datasets suggested holes are constructed and maintained over time, and provided evidence towards an increase in spawning habitat usage. High rates of sound production recorded from stationary recorders and a glider deployment were correlated to high hole density in Steamboat Lumps. This research demonstrates the utility of coupling passive acoustic data with high-resolution bathymetric data to verify the occupation of suspected male territory (holes) and to provide a more complete understanding of effective spawning habitat. Annual peaks in calling (July and August, and November and December) did not correspond to spawning peaks (March - May); however, passive acoustic monitoring was established as an effective tool to identify areas of potential spawning activity by recording the presence of red grouper. Sounds produced by other species of fish were recorded in the passive acoustic dataset. The distribution of toadfish calls suggests two species (Opsanus beta and O. pardus) were recorded; the latter had not been previously described. The call characteristics and spatial distribution of the four unknown fish-related sounds can be used to help confirm the sources. Long-term PAM studies that provide systematic monitoring can be a valuable assessment tool for all soniferous species. Glider technology, due to a high rate of successful retrieval and low self-generated noise, was proven to be a reliable and relatively inexpensive method to collect fisheries acoustic data in the field. The implementation of regular deployments of hydrophone-integrated gliders and fixed location passive acoustic monitoring stations is suggested to enhance fisheries management.
APA, Harvard, Vancouver, ISO, and other styles
50

Dworaczyk, Wiltshire Zachary Kelly. "A Methodology for Verification of Structural Standards for a Seating System by Finite Element Analysis." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2104.

Full text
Abstract:
Currently California Polytechnic State University has a patent pending on a new type of seating system designed to increase the functionality of public transportation vehicles. The patent is based on the work completed by a senior project group in 2016, whose design showcased the feasibility of the idea. Further development was completed by a second senior project group, the Adjustable Seating Systems, in 2019. The intent of the Adjustable Seating Systems group was to develop a seating system with the intent of commercialization and implementation in paratransit vehicles with future development into large buses and trains. Seating systems used in public transportation are required to meet strict geometric and structural standards by the federal government under FMVSS 207, 208, 209 and 210 to be comfortable and protect the passenger in a wide variety of situations. Included in these standards are quasi-static and dynamic tests developed to simulate the loading conditions of a crash event. Seating systems must be able to withstand the loading conditions with no obvious signs of failure to ensure the safety of the passengers. The work of this thesis was to simulate the loading conditions outlined by the safety standards on the design developed by the Adjustable Seating Systems group using finite element analysis. The results confirm the seating system meets the required safety standards. The largest stresses induced in the system are between the yield stress and ultimate stress of the material, indicating plastic deformation without failure due to fracture.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography