To see the other types of publications on this topic, follow the link: Acremonium chrysogenum.

Journal articles on the topic 'Acremonium chrysogenum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Acremonium chrysogenum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stepanov, Valentin M., Galina N. Rudenskaya, Lyudmila I. Vasil'eva, Irina N. Krest'anova, Olga M. Khodova, and Yurii E. Bartoshevitch. "Serine proteinases from Acremonium chrysogenum." International Journal of Biochemistry 18, no. 4 (January 1986): 369–75. http://dx.doi.org/10.1016/0020-711x(86)90043-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kozma, J�zsef, Luz Lucas, and Karl Sch�gerl. "Alternative respiration of Acremonium chrysogenum." Biotechnology Letters 13, no. 12 (December 1991): 899–900. http://dx.doi.org/10.1007/bf01022095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartoshevich, Yu E., P. L. Zaslavskaya, M. J. Novak, and O. D. Yudina. "Acremonium chrysogenum differentiation and biosynthesis of cephalosporin." Journal of Basic Microbiology 30, no. 5 (1990): 313–20. http://dx.doi.org/10.1002/jobm.3620300503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aldana Bohórquez, Sandra Milena, and Ramón Ovidio García-Rico. "Effect of different stress conditions on the vegetative growth of the filamentous fungus Acremonium chrysogenum." BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS 17, no. 2 (August 16, 2019): 182. http://dx.doi.org/10.24054/01204211.v2.n2.2019.3535.

Full text
Abstract:
El hongo filamentoso Acremonium chrysogenum produce una mezcla de sustancias antibióticas, entre las que destaca la cefalosporina C. Con una participación de mercado del 50% para la cefalosporina C y sus derivados semisintéticos, desempeñan un importante rol en la industria farmacéutica. Debido a su amplio espectro de efectividad contra las bacterias Gram (+) y Gram (-), la cefalosporina C es un fármaco importante, producido únicamente por A. chrysogenum. Las condiciones ambientales inducen adaptaciones en los seres vivos, que responden modificando sus procesos biológicos para lograr su supervivencia. Estas respuestas pueden evaluarse in vitro para dilucidar el efecto del estrés fisiológico en el desarrollo. De esta manera, en este trabajo se evaluó el efecto de diferentes osmolitos, del peróxido de hidrógeno y la luz blanca sobre el crecimiento vegetativo de A. chrysogenum. Se observó un incremento del crecimiento de A. chrysogenum en condiciones de NaCl 0,5 M, mientras que frente al KCl fue osmosensible, deduciéndose una osmoadaptación al NaCl. El glicerol solamente mostró efectos inhibidores del crecimiento a concentraciones de 1M. Por otro lado, A. chrysogenum presentó tolerancia al estrés oxidativo inducido por el peróxido, incluso a concentraciones de 100 mM. Finalmente, un fotoperíodo LD (12/12) estimuló el desarrollo del hongo, mientras que en condiciones LL la tasa de crecimiento fue similar a la observada en la condición de control (DD).Palabras clave: Acremonium chrysogenum, estrés osmótico, estrés oxidativo, estrés lumínico.
APA, Harvard, Vancouver, ISO, and other styles
5

P�ggeler, Stefanie, Birgit Hoff, and Ulrich K�ck. "Asexual Cephalosporin C Producer Acremonium chrysogenum Carries a Functional Mating Type Locus." Applied and Environmental Microbiology 74, no. 19 (August 8, 2008): 6006–16. http://dx.doi.org/10.1128/aem.01188-08.

Full text
Abstract:
ABSTRACT Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant β-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the α-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The α-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaΔMAT strain). After fertilization with a P. anserina MAT1-2 (MAT+) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum.
APA, Harvard, Vancouver, ISO, and other styles
6

Martı́n, Juan F., and Arnold L. Demain. "Unraveling the methionine–cephalosporin puzzle in Acremonium chrysogenum." Trends in Biotechnology 20, no. 12 (December 2002): 502–7. http://dx.doi.org/10.1016/s0167-7799(02)02070-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhgun, A. A., M. A. Ivanova, A. G. Domracheva, M. I. Novak, M. A. Elidarov, K. G. Skryabin, and Yu E. Bartoshevich. "Genetic transformation of the mycelium fungi Acremonium chrysogenum." Applied Biochemistry and Microbiology 44, no. 6 (October 28, 2008): 600–607. http://dx.doi.org/10.1134/s0003683808060070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karaffa, Levente, Erzsébet Sándor, Erzsébet Fekete, József Kozma, Attila Szentirmai, and István Pócsi. "Stimulation of the cyanide-resistant alternative respiratory pathway by oxygen in Acremonium chrysogenum correlates with the size of the intracellular peroxide pool." Canadian Journal of Microbiology 49, no. 3 (March 1, 2003): 216–20. http://dx.doi.org/10.1139/w03-029.

Full text
Abstract:
The relationship between oxygen input and activity of the cyanide-resistant alternative respiration of submerged cultures of Acremonium crysogenum was investigated. The volumetric oxygen transfer coefficient of the respective cultures correlated positively within almost two ranges of magnitude with the size of the intracellular peroxide pool, which in turn, correlated with the activity of the cyanide-resistant alternative respiratory pathway. Increased aeration also stimulated the glucose uptake rate but had no effect on the total respiration rate or the growth rate. Addition of the lipid peroxyl radical scavenger DL-α-tocopherol to A. chrysogenum cultures decreased the rate of intracellular peroxide production as well as glucose uptake. An increase in the cyanide-resistant fraction of total respiration was observed, while growth and the total respiratory activity remained unchanged. We conclude that intracellular peroxides may stimulate the alternative respiration in A. chrysogenum.Key words: Acremonium chrysogenum, alternative respiration, oxygen, peroxide, Kla.
APA, Harvard, Vancouver, ISO, and other styles
9

Luengo, J. M., M. T. Alemany, F. Salto, F. Ramos, M. J. López-Nieto, and J. F. Martin. "Direct Enzymatic Synthesis of Penicillin G Using Cyclases of Penicillium chrysogenum and Acremonium chrysogenum." Nature Biotechnology 4, no. 1 (January 1986): 44–47. http://dx.doi.org/10.1038/nbt0186-44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jekosch, K., and U. Kück. "Codon bias in the ß-lactam procucer Acremonium chrysogenum." Fungal Genetics Reports 46, no. 1 (July 25, 1999): 9–10. http://dx.doi.org/10.4148/1941-4765.1233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dumina, M. V., A. A. Zhgun, A. G. Domracheva, M. I. Novak, and M. A. El’darov. "Chromosomal polymorphism of Acremonium chrysogenum strains producing cephalosporin C." Russian Journal of Genetics 48, no. 8 (August 2012): 778–84. http://dx.doi.org/10.1134/s1022795412050067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Alonso, M. J., and J. M. Luengo. "Interference by methionine on valine uptake in Acremonium chrysogenum." Antimicrobial Agents and Chemotherapy 31, no. 2 (February 1, 1987): 357–59. http://dx.doi.org/10.1128/aac.31.2.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Smith, Andrew W., Martin Ramsden, and John F. Peberdy. "Analysis of promoter activity by transformation of Acremonium chrysogenum." Gene 114, no. 2 (May 1992): 211–16. http://dx.doi.org/10.1016/0378-1119(92)90576-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ullán, Ricardo V., Ramiro P. Godio, Fernando Teijeira, Inmaculada Vaca, Carlos García-Estrada, Raúl Feltrer, Katarina Kosalkova, and Juan F. Martín. "RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using β-lactam genes expression." Journal of Microbiological Methods 75, no. 2 (October 2008): 209–18. http://dx.doi.org/10.1016/j.mimet.2008.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vialta, Airton, Cleide F. Catani, Renato B. Junior, and João L. Azevedo. "Isolation and characterization of selenate resistant mutants of Acremonium chrysogenum." Brazilian Archives of Biology and Technology 42, no. 3 (1999): 369–74. http://dx.doi.org/10.1590/s1516-89131999000300016.

Full text
Abstract:
Mutants unable to convert exogenous sulfate to sulfite were isolated using the toxic analogue selenate. Three of twenty-eight isolated mutants were chromate sensitive. They showed a possible lesion in the gene that codes the ATP sulfurylase. The others were chromate resistant, and probably had a lesion in one or both of the genes that code the sulfate permease. Methionine increased the resistance levels to selenate. In addition, the frequency of spontaneous mutants obtained in a medium containing methionine was higher (between 2.4 x 10-6 and 18.0 x 10-6) than that obtained using a medium without any intentional source of sulfur (between 0.7 x 10-6 and 5.0 x 10-6). The original strain, as well as the mutants, were able to grow in a sulfur-free liquid medium even after 4 consecutive inoculation procedures. These results indicated the existence of sulfur traces in the medium and/or an efficient intracellular storage system. There was no significant difference between cephalosporin C production in mutants and the original strain.
APA, Harvard, Vancouver, ISO, and other styles
16

FUKAGAWA, Masao, Takao ISOGAI, Ichiro ARAMORI, Morita IWAMI, Hitoshi KOJO, Takaharu ONO, Masanobu KOHSAKA, and Hiroshi IMANAKA. "Direct Production of 7-Aminodeacetylcephalosporanic Acid by Acremonium chrysogenum Hum178." Agricultural and Biological Chemistry 55, no. 8 (1991): 2163–65. http://dx.doi.org/10.1271/bbb1961.55.2163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jürgens, M., G. Seidel, and K. Schügerl. "Production of cephalosporin C by Acremonium chrysogenum in semisynthetic medium." Process Biochemistry 38, no. 2 (October 2002): 263–72. http://dx.doi.org/10.1016/s0032-9592(02)00080-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Yan, Guihua Gong, Chunbao Zhu, Baoquan Zhu, and Youjia Hu. "Environmentally Safe Production of 7-ACA by Recombinant Acremonium chrysogenum." Current Microbiology 61, no. 6 (May 9, 2010): 609–14. http://dx.doi.org/10.1007/s00284-010-9660-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shin, Hyun Yong, and Seung Wook Kim. "A Novel Lipid Detection for the Fungus, Acremonium chrysogenum M35." Journal of Bioscience and Bioengineering 108 (November 2009): S123—S124. http://dx.doi.org/10.1016/j.jbiosc.2009.08.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kurzątkowski, Wiesław, and Joanna Kuczerowska. "ANTIBIOTIC BIOSYNTHESIS AND SECONDARY METABOLISM IN HIGH-YIELDING STRAINS OF STREPTOMYCES, PENICILLIUM CHRYSOGENUM AND ACREMONIUM CHRYSOGENUM." Postępy Mikrobiologii - Advancements of Microbiology 56, no. 4 (2019): 422–28. http://dx.doi.org/10.21307/pm-2017.56.4.422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Brakhage, Axel A. "Molecular Regulation of β-Lactam Biosynthesis in Filamentous Fungi." Microbiology and Molecular Biology Reviews 62, no. 3 (September 1, 1998): 547–85. http://dx.doi.org/10.1128/mmbr.62.3.547-585.1998.

Full text
Abstract:
SUMMARY The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal β-lactam biosynthesis genes are controlled by a complex regulatory network, e.g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of β-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Gang, Javier Casqueiro, Oscar Bañuelos, Rosa E. Cardoza, Santiago Gutiérrez, and Juan F. Martı́n. "Targeted Inactivation of the mecB Gene, Encoding Cystathionine-γ-Lyase, Shows that the Reverse Transsulfuration Pathway Is Required for High-Level Cephalosporin Biosynthesis inAcremonium chrysogenum C10 but Not for Methionine Induction of the Cephalosporin Genes." Journal of Bacteriology 183, no. 5 (March 1, 2001): 1765–72. http://dx.doi.org/10.1128/jb.183.5.1765-1772.2001.

Full text
Abstract:
ABSTRACT Targeted gene disruption efficiency in Acremonium chrysogenum was increased 10-fold by applying the double-marker enrichment technique to this filamentous fungus. Disruption of themecB gene by the double-marker technique was achieved in 5% of the transformants screened. Mutants T6 and T24, obtained by gene replacement, showed an inactive mecB gene by Southern blot analysis and no cystathionine-γ-lyase activity. These mutants exhibited lower cephalosporin production than that of the control strain, A. chrysogenum C10, in MDFA medium supplemented with methionine. However, there was no difference in cephalosporin production between parental strain A. chrysogenum C10 and the mutants T6 and T24 in Shen's defined fermentation medium (MDFA) without methionine. These results indicate that the supply of cysteine through the transsulfuration pathway is required for high-level cephalosporin biosynthesis but not for low-level production of this antibiotic in methionine-unsupplemented medium. Therefore, cysteine for cephalosporin biosynthesis in A. chrysogenum derives from the autotrophic (SH2) and the reverse transsulfuration pathways. Levels of methionine induction of the cephalosporin biosynthesis gene pcbC were identical in the parental strain and the mecB mutants, indicating that the induction effect is not mediated by cystathionine-γ-lyase.
APA, Harvard, Vancouver, ISO, and other styles
23

Sándor, Erzsébet, Attila Szentirmai, Gopal C. Paul, Colin R. Thomas, István Pócsi, and Levente Karaffa. "Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum." Canadian Journal of Microbiology 47, no. 9 (September 1, 2001): 801–6. http://dx.doi.org/10.1139/w01-082.

Full text
Abstract:
Mycelial fragmentation in submerged cultures of the cephalosporin C (CPC) producing fungus Acremonium chrysogenum was characterized by image analysis. In both fed-batch and chemostat cultures, the proportion of mycelial clumps seemed to be the most sensitive morphological indicator of fragmentation. In a fed-batch fermentation culture, this declined from roughly 60% at inoculation to less than 10% after 43 h. Subsequent additions of glucose resulted in a sharp increase back to near the initial value, an increase that reversed itself a few hours after glucose exhaustion. Meanwhile CPC production continued to decline steadily. On the other hand, the addition of soybean oil enhanced CPC production, but had no significant effect on the morphology. Although it may sometimes appear that morphology and productivity are related in batch or fed-batch cultures, this study suggests that this is because both respond simultaneously to more fundamental physiological changes, dependent on the availability of carbon. In circumstances, such as supplementary carbon source addition, the relationship is lost. Chemostat cultures supported this belief, as CPC-production rates were hardly affected by the specific growth rate, but the morphology showed significant differences, i.e., lower dilution rates resulted in a lower proportion of clumps and in smaller clumps.Key words: image analysis, Acremonium chrysogenum, morphology, fragmentation, cephalosporin C.
APA, Harvard, Vancouver, ISO, and other styles
24

VELASCO, Javier, Santiago GUTIERREZ, Sonia CAMPOY, and Juan F. MARTIN. "Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits." Biochemical Journal 337, no. 3 (January 25, 1999): 379–85. http://dx.doi.org/10.1042/bj3370379.

Full text
Abstract:
Constructions starting at each of the three in-frame ATG codons of the Acremonium chrysogenum cefG gene (Met1, Met46 and Met60) were expressed in Escherichia coli, obtaining proteins of 49, 44 and 43 kDa, respectively. All three proteins showed deacetylcephalosporin C (DAC) acetyltransferase activity. The native A. chrysogenum DAC acetyltransferase was purified to electrophoretic homogeneity by immunoaffinity chromatography. It showed a molecular mass of 50 kDa by filtration in calibrated Sephadex G-75 SF or Superose 12 (FPLC) columns. The N-terminal end of the pure DAC acetyltransferase was Met-Leu-Pro-Ser-Ala-Gln-Val-Ala-Arg-Leu, which matched perfectly the deduced amino acid sequence starting at Met1. The putative α- and β-subunits of DAC acetyltransferase were also obtained in E. coli but showed no enzymic activity either separately or in combination. Immunoblotting (Western) analysis revealed that the 50 kDa DAC acetyltransferase showed high protein levels in A. chrysogenum cultures at 72 and 96 h and decreased sharply thereafter, but in all cases no detectable processing of the enzyme into subunits was found. Three different A. chrysogenum strains (including the wild-type Brotzu strain and two high-cephalosporin-producing mutants) showed the same unprocessed 50 kDa DAC acetyltransferase. The non-producer mutant ATCC 20371 showed no DAC acetyltransferase protein band but formed a normal transcript of 1.4 kb.
APA, Harvard, Vancouver, ISO, and other styles
25

Романовська, I. I., and С. С. Декіна. "THE DEVELOPMENT OF TEXTILE WOUND COATING WITH ACREMONIUM CHRYSOGENUM PROTEASE C." Microbiology&Biotechnology, no. 1(13) (March 15, 2011): 26–33. http://dx.doi.org/10.18524/2307-4663.2011.1(13).90663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hu, Youjia, and Baoquan Zhu. "Study on genetic engineering of Acremonium chrysogenum , the cephalosporin C producer." Synthetic and Systems Biotechnology 1, no. 3 (September 2016): 143–49. http://dx.doi.org/10.1016/j.synbio.2016.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shin, Hyun Yong, Jin Young Lee, You Ree Jung, and Seung Wook Kim. "Stimulation of cephalosporin C production in Acremonium chrysogenum M35 by glycerol." Bioresource Technology 101, no. 12 (June 2010): 4549–53. http://dx.doi.org/10.1016/j.biortech.2010.01.095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Smith, Andrew W., Martin Ramsden, Melanie J. Dobson, Stephen Harford, and John F. Peberdy. "Regulation of Isopenicillin N Synthetase (IPNS) Gene Expression in Acremonium Chrysogenum." Nature Biotechnology 8, no. 3 (March 1990): 237–40. http://dx.doi.org/10.1038/nbt0390-237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Díez, B., J. Velasco, A. T. Marcos, M. Rodríguez, J. L. de la Fuente, and J. L. Barredo. "The gene encoding γ-actin from the cephalosporin producer Acremonium chrysogenum." Applied Microbiology and Biotechnology 54, no. 6 (December 13, 2000): 786–91. http://dx.doi.org/10.1007/s002530000457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shin, Hyun Yong, Jin Young Lee, Eun Ji Kim, and Seung Wook Kim. "Rapid Quantification of Lipids in Acremonium chrysogenum Using Oil Red O." Current Microbiology 62, no. 3 (November 21, 2010): 1023–27. http://dx.doi.org/10.1007/s00284-010-9818-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Smith, Andrew W., Kathryn Collis, Martin Ramsden, Hilary M. Fox, and John F. Peberdy. "Chromosome rearrangements in improved cephalosporin C-producing strains of Acremonium chrysogenum." Current Genetics 19, no. 3 (March 1991): 235–37. http://dx.doi.org/10.1007/bf00336492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nijland, Jeroen G., Andriy Kovalchuk, Marco A. van den Berg, Roel A. L. Bovenberg, and Arnold J. M. Driessen. "Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum." Fungal Genetics and Biology 45, no. 10 (October 2008): 1415–21. http://dx.doi.org/10.1016/j.fgb.2008.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Prabandari, Erwahyuni, Dyah Noor Hidayati, Diana Dewi, Eni Dwi Islamiati, and Khaswar Syamsu. "PENINGKATAN PRODUKSI SEFALOSPORIN C DARI Acremonium chrysogenum CB2/11/1.10.6 DENGAN OPTIMASI MEDIA MENGGUNAKAN METODE RESPON PERMUKAAN." Jurnal Bioteknologi & Biosains Indonesia (JBBI) 4, no. 1 (June 8, 2017): 10. http://dx.doi.org/10.29122/jbbi.v4i1.1808.

Full text
Abstract:
Cephalosporin is a β-lactam antibiotic produced by Acremonium chrysogenum using submerged fermentation. Carbon and nitrogen are the most influential medium ingredients for cephalosporin formation. The purpose of this study was to obtain the best composition of media for cephalosporin C production. Response surface methodology was used for production optimization. The results showed that molasses of 70 g/Lwas the best carbon source, while the best nitrogen source was the combination of corn steep liquor, urea and ammonium sulphate. DL-methionine, carbon, and nitrogen source significantly affected the production of cephalosporin C. The mathematically modelled optimization showed that the highest production of cephalosporin C (3876 mg/L) was obtained using medium composition of 68.28 g/L molasses, 71.61 g/L nitrogen, and 0.4 g/L DL-methionine. Laboratory verification using the same medium composition produced 3696 mg/L of cephalosporin C, being 4.65% different from the mathematically optimized results. Medium optimization increased the cephalosprin C production which was 1.48 times higher than that using the previous medium, where the maximum production was only 2487 mg / L.Keywords: Carbon, cephalosporin C, cultivation medium, nitrogen, A. chrysogenum ABSTRAKSefalosporin C adalah golongan antibiotik β-lactam yang dihasilkan Acremonium chrysogenum melalui fermentasi cair. Komponen yang sangat berpengaruh terhadap produksi sefalosporin C adalah sumber karbon dan nitrogen. Penelitian ini bertujuan mendapatkan komposisi media terbaik untuk produksi sefalosporin C. Optimasi dilakukan menggunakan metode respon permukaan. Hasil menunjukkan bahwa molases 70 g/L adalah sumber karbon terbaik dan kombinasi corn steep liquor, urea dan ammonium sulfat adalah sumber nitrogen terbaik. DL-methionin, sumber karbon, dan nitrogen berpengaruh nyata terhadap produksi sefalosporin C. Optimasi menggunakan model matematika menunjukkan produksi sefalosporin C tertinggi (3876 mg/L) yang diperoleh dengan komposisi media 68,28 g/L molases, 71,61 g/L nitrogen, dan 0,4 g/L DL-methionin. Verfikasi di laboratorium menggunakan komposisi media yang sama menghasilkan sefalosporin C sebesar 3696 mg/L, berbeda 4,65% dibanding dengan hasil optimasi matematis. Optimasi media mampu meningkatkan produksi sefalosprin C sebesar 1,48 kali dibanding media yang digunakan sebelumnya, dimana maksimal hanya menghasilkan 2487 mg/L.Kata kunci: Karbon, sefalosporin C, media kultivasi, nitrogen, A. chrysogenum
APA, Harvard, Vancouver, ISO, and other styles
34

Liu, Jiajia, Tianchao Hao, Pengjie Hu, Yuanyuan Pan, Xuejun Jiang, and Gang Liu. "Functional analysis of the selective autophagy related gene Acatg11 in Acremonium chrysogenum." Fungal Genetics and Biology 107 (October 2017): 67–76. http://dx.doi.org/10.1016/j.fgb.2017.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

ISOGAI, Takao, Masaru YOSHIDA, Miho TANAKA, and Hatsuo AOKI. "Transformation of Acremonium chrysogenum and Saccharomyces cerevisiae using an antibiotic resistance marker." Agricultural and Biological Chemistry 51, no. 9 (1987): 2321–29. http://dx.doi.org/10.1271/bbb1961.51.2321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mukhtar, Hamid, Umar Farooq, and Ikram-ul Haq. "Production of cephalosporin C from acremonium chrysogenum and optimization of fermentation parameters." Journal of Biotechnology 150 (November 2010): 374. http://dx.doi.org/10.1016/j.jbiotec.2010.09.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Walz, Markus, and Ulrich K�ck. "Targeted integration into the Acremonium chrysogenum genome: disruption of the pcbC gene." Current Genetics 24, no. 5 (November 1993): 421–27. http://dx.doi.org/10.1007/bf00351851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Yan, Guihua Gong, Liping Xie, Ning Yuan, Chunbao Zhu, Baoquan Zhu, and Youjia Hu. "Improvement of Cephalosporin C Production by Recombinant DNA Integration in Acremonium chrysogenum." Molecular Biotechnology 44, no. 2 (September 29, 2009): 101–9. http://dx.doi.org/10.1007/s12033-009-9214-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Chang, Jia He, Wenyan Gao, Yanmin Wei, and Gang Liu. "Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum." Current Microbiology 76, no. 5 (March 21, 2019): 545–51. http://dx.doi.org/10.1007/s00284-019-01650-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kirtsideli, I. Yu. "Soil microfungi of the Barents Sea coast (near Varandey settlement)." Novosti sistematiki nizshikh rastenii 43 (2009): 113–21. http://dx.doi.org/10.31111/nsnr/2009.43.113.

Full text
Abstract:
The paper is a report of soil microfungi of the Barents Sea coast. 49 species of saprotrophic filamentous microfungi belonging to 22 genera were isolated by soil dilution methods from three tundra locations. 82-89% of strains were psychrophiles and psychrotrophs. 76-92% of isolates had tolerance to high concentration of NaCl in the media. Geomyces pannorum (Pseudogymnoascus roseus), Penicillium chrysogenum, P. expansum and Trichoderma viride were most often in these soil samples in all habitats studied. The microfungi Acremonium strictum and Phoma sp. were very frequent in different peat-bog habitats.
APA, Harvard, Vancouver, ISO, and other styles
41

Ullán, Ricardo V., Fernando Teijeira, and Juan F. Martín. "Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic β-lactam transporter." Current Genetics 54, no. 3 (July 31, 2008): 153–61. http://dx.doi.org/10.1007/s00294-008-0207-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

M., Hijarrubia, Aparicio J., and Martín J. "Nitrate regulation of α-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum." Applied Microbiology and Biotechnology 59, no. 2-3 (July 1, 2002): 270–77. http://dx.doi.org/10.1007/s00253-002-0995-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Ying, Pengjie Hu, Honghua Li, Yanling Wang, Liang-kun Long, Kuan Li, Xiaoling Zhang, Yuanyuan Pan, and Gang Liu. "A Myb transcription factor represses conidiation and cephalosporin C production in Acremonium chrysogenum." Fungal Genetics and Biology 118 (September 2018): 1–9. http://dx.doi.org/10.1016/j.fgb.2018.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Karaffa, Levente, Erzsébet Sándor, József Kozma, and Attila Szentirmai. "Methionine enhances sugar consumption, fragmentation, vacuolation and cephalosporin-C production in Acremonium chrysogenum." Process Biochemistry 32, no. 6 (August 1997): 495–99. http://dx.doi.org/10.1016/s0032-9592(97)00003-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kalebina, T. S., I. O. Selyakh, A. A. Gorkovskii, E. E. Bezsonov, M. A. El’darov, M. I. Novak, A. G. Domracheva, and Yu E. Bartoshevich. "Structure peculiarities of cell walls of Acremonium chrysogenum—an autotroph of cephalosporin C." Applied Biochemistry and Microbiology 46, no. 6 (November 2010): 614–19. http://dx.doi.org/10.1134/s0003683810060098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Song, Zhihui, Jie Pan, Liping Xie, Guihua Gong, Shu Han, Wei Zhang, and Youjia Hu. "Expression, purification, and activity of ActhiS, a thiazole biosynthesis enzyme from Acremonium chrysogenum." Biochemistry (Moscow) 82, no. 7 (July 2017): 852–60. http://dx.doi.org/10.1134/s0006297917070112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gutiérrez, S., J. Velasco, A. T. Marcos, F. J. Fernández, F. Fierro, J. L. Barredo, B. Díez, and J. F. Martín. "Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum." Applied Microbiology and Biotechnology 48, no. 5 (November 25, 1997): 606–14. http://dx.doi.org/10.1007/s002530051103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ghasemi, Saba, Marjan Heidary, and Zohreh Habibi. "The 11α-hydroxylation of medroxyprogesterone acetate by Absidia griseolla var. igachii and Acremonium chrysogenum." Steroids 149 (September 2019): 108427. http://dx.doi.org/10.1016/j.steroids.2019.108427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

WESTLAKE, D. W. S., B. LESKIW, M. ROLLINS, and S. E. JENSEN. "Characteristics of the ?-Lactam Synthesizing Enzymes of Streptomyces clavuligerus, Cephalosporium acremonium, and Penicillium chrysogenum." Annals of the New York Academy of Sciences 542, no. 1 Enzyme Engine (December 1988): 11–15. http://dx.doi.org/10.1111/j.1749-6632.1988.tb25803.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shahidzadeh, Haleh, Ghazal Labbeiki, and Hossein Attar. "Enhanced fermentative production of Cephalosporin C by magnetite nanoparticles in culture of Acremonium chrysogenum." IET Nanobiotechnology 11, no. 6 (June 9, 2017): 644–49. http://dx.doi.org/10.1049/iet-nbt.2016.0155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography