To see the other types of publications on this topic, follow the link: Acridinique.

Journal articles on the topic 'Acridinique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Acridinique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Maas, Gerhard, and Berndt Singer. "Dikationether, 6 [1] Spektroskopische Vergleiche von 9,9′-Oxy-bis(acridinium)- und 9,9′-Thio-bis(acridinium)-Salzen mit anderen 9-substituierten Acridinium-Ionen / Dication Ethers, 6 [1] Spectroscopic Comparisons of 9,9′-Oxy-bis(acridinium)- and 9,9′-Thio-bis(acridinium) Salts with Other 9-Substituted Acridinium Ions." Zeitschrift für Naturforschung B 40, no. 1 (January 1, 1985): 90–99. http://dx.doi.org/10.1515/znb-1985-0118.

Full text
Abstract:
9,9′-Oxy-bis(acridinium) salts 2a and 2b as well as the 9,9′-thio-bis(acridinium) salt 2c have been compared with other 9-substituted acridinium salts by 1H NMR, 13C NMR, and UV/VIS spectra. The data show that the bond state of the acridine rings in 2a-c is quite similar to that in 9-(pseudo)halide-substituted acridinium ions, i.e., the aromatic conjugation throughout the heterocyclic system is not disturbed
APA, Harvard, Vancouver, ISO, and other styles
2

Natrajan, Anand, and David Wen. "A comparison of chemiluminescent acridinium dimethylphenyl ester labels with different conjugation sites." Organic & Biomolecular Chemistry 13, no. 9 (2015): 2622–33. http://dx.doi.org/10.1039/c4ob02528h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katoh, Makoto, Susumu Chishima, Nobukazu Kiuchi, Tomihiro Ikeo, and yasuhiko Sasaki. "A New Method for the Assay of Exposed Platelet Fibrinogen Receptor Using a Chemiluminescent Label." Thrombosis and Haemostasis 74, no. 06 (1995): 1546–50. http://dx.doi.org/10.1055/s-0038-1649980.

Full text
Abstract:
SummaryAssay of the platelet fibrinogen-binding receptor glycoprotein (GP) IIb/IIIa is widely performed using 125I-labeled fibrinogen (125I-fibrinogen). We successfully devised a receptor binding assay system with high selectivity and sensitivity using a stable chemiluminescent acridinium derivative I-labeled fibrinogen (acridinium-fibrinogen).Human fibrinogen in saline was labeled with equimolar acridinium dissolved in dimethylformamide, and allowed to react with gel-filtered human platelets in the presence of ADP. Acridinium-fibrinogen binding to GPIIb/IIIa was assayed by measuring chemiluminescence emitted on addition of 0.1 N NaOH containing 0.06% H202 in a luminometer. Non-specific binding was measured in the presence of 10 mM EDTA. Acridinium-fibrinogen binding to human platelets was rapid and reversible, specific and saturable, and dependent on ADP concentrations. Scatchard plot analysis revealed one class of binding sites with a Kd of 326 nM and Bmax of 7.8 pmol/108 platelets. These values were comparable to the data obtained by using 125I-fibrinogen. Unlabeled fibrinogen, RGDS, and HHLGGAKQAGDV (fibrinogen γ-chain 400-411) displaced acridinium-fibrinogen from its binding site with Ki values of 322 nM, 9.2 μM and 31.3μM, respectively. Thus, this binding assay system may be useful in measuring the binding between platelet GPIIb/IIIa and fibrinogen without using a radioisotop.
APA, Harvard, Vancouver, ISO, and other styles
4

Shaameri, Zurina, Ning Shan, and William Jones. "Acridinium isophthalate." Acta Crystallographica Section E Structure Reports Online 57, no. 10 (September 20, 2001): o945—o946. http://dx.doi.org/10.1107/s1600536801013927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

White, Alexander, Leifeng Wang, and David Nicewicz. "Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis." Synlett 30, no. 07 (March 12, 2019): 827–32. http://dx.doi.org/10.1055/s-0037-1611744.

Full text
Abstract:
Photoredox catalysis is a rapidly evolving platform for synthetic methods development. The prominent use of acridinium salts as a sustainable option for photoredox catalysts has driven the development of more robust and synthetically useful versions based on this scaffold. However, more complicated syntheses, increased cost, and limited commercial availability have hindered the adoption of these catalysts by the greater synthetic community. By utilizing the direct conversion of a xanthylium salt into the corresponding acridinium as the key transformation, we present an efficient and scalable preparation of the most synthetically useful acridinium reported to date. This divergent strategy also enabled the preparation of a suite of novel acridinium dyes, allowing for a systematic investigation of substitution effects on their photophysical properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Eshtiagh-Hosseini, Hossein, Azam Hassanpoor, Masoud Mirzaei, and Ali R. Salimi. "Acridinium 2-hydroxybenzoate." Acta Crystallographica Section E Structure Reports Online 66, no. 11 (October 31, 2010): o2996. http://dx.doi.org/10.1107/s160053681004345x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zilate, Bouthayna, Christian Fischer, Lukas Schneider, and Christof Sparr. "Scalable Synthesis of Acridinium Catalysts for Photoredox Deuterations." Synthesis 51, no. 23 (October 21, 2019): 4359–65. http://dx.doi.org/10.1055/s-0039-1690694.

Full text
Abstract:
The continuous development of photocatalytic methods incentivizes the design of organic catalysts to complement the frequently used and precious polypyridyl transition metal systems. Herein, a scalable synthesis of suitable acridinium dyes and their application in photoredox deuterations are described. The acridinium catalysts, prepared on multi-gram scale, allowed the deuteration of a pharmaceutically relevant scaffold in high yield and selectivity under mild conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Derikvand, Zohreh, Hossein Aghabozorg, and Jafar Attar Gharamaleki. "Acridinium 3,5-dicarboxybenzoate monohydrate." Acta Crystallographica Section E Structure Reports Online 65, no. 5 (April 30, 2009): o1173. http://dx.doi.org/10.1107/s1600536809015529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zadykowicz, Beata, Damian Trzybiński, Artur Sikorski, and Jerzy Błażejowski. "9-(Methylsulfanyl)acridinium trifluoromethanesulfonate." Acta Crystallographica Section E Structure Reports Online 65, no. 3 (February 21, 2009): o566—o567. http://dx.doi.org/10.1107/s1600536809004978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Natrajan, Anand, David Wen, and David Sharpe. "Synthesis and properties of chemiluminescent acridinium ester labels with fluorous tags." Org. Biomol. Chem. 12, no. 23 (2014): 3887–901. http://dx.doi.org/10.1039/c4ob00456f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gosset, A., Z. Xu, F. Maurel, L. M. Chamoreau, S. Nowak, G. Vives, C. Perruchot, V. Heitz, and H. P. Jacquot de Rouville. "A chemically-responsive bis-acridinium receptor." New Journal of Chemistry 42, no. 6 (2018): 4728–34. http://dx.doi.org/10.1039/c7nj03712k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Meyer, Andreas Uwe, Anna Lucia Berger, and Burkhard König. "Metal-free C–H sulfonamidation of pyrroles by visible light photoredox catalysis." Chemical Communications 52, no. 72 (2016): 10918–21. http://dx.doi.org/10.1039/c6cc06111g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jacquot de Rouville, Henri-Pierre, Nathalie Zorn, Emmanuelle Leize-Wagner, and Valérie Heitz. "Entwined dimer formation from self-complementary bis-acridiniums." Chemical Communications 54, no. 78 (2018): 10966–69. http://dx.doi.org/10.1039/c8cc05958f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wen, Min, Chen Li, Mengyuan Zhang, Yan Sun, Fengming Liu, Xiaoyan Cui, and Yongkui Shan. "Acridinium benzoates for ratiometric fluorescence imaging of cellular viscosity." Analyst 146, no. 5 (2021): 1538–42. http://dx.doi.org/10.1039/d0an02321c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Adamczyk, Maciej, Phillip G. Mattingly, Jeffrey A. Moore, You Pan, Kevin Shreder, and Zhiguang Yu. "Design of Acridinium-9-carboxamides and Anti-acridinium Antibodies for Chemiluminescent Signal Enhancement." Bioconjugate Chemistry 12, no. 3 (May 2001): 329–31. http://dx.doi.org/10.1021/bc000152j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kronenburg, M. J., K. Goubitz, C. A. Reiss, and D. Heijdenrijk. "Crystal studies of acridinium dyes. III. 10-Methyl-9-(2-methylphenyl)acridinium perchlorate." Acta Crystallographica Section C Crystal Structure Communications 45, no. 9 (September 15, 1989): 1352–53. http://dx.doi.org/10.1107/s0108270189002313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stam, C. H. "Crystal studies of acridinium dyes. XII. 9-(4-Dimethylaminophenyl)-10-methyl-acridinium chloride." Acta Crystallographica Section C Crystal Structure Communications 46, no. 6 (June 15, 1990): 1079–81. http://dx.doi.org/10.1107/s0108270189010322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Uygur, Mustafa, Tobias Danelzik, and Olga García Mancheño. "Metal-free desilylative C–C bond formation by visible-light photoredox catalysis." Chemical Communications 55, no. 20 (2019): 2980–83. http://dx.doi.org/10.1039/c8cc10239b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Verhoeven, Jan W., Hendrik J. van Ramesdonk, Hong Zhang, Michiel M. Groeneveld, Andrew C. Benniston, and Anthony Harriman. "Long-lived Charge-Transfer States in 9-Aryl-Acridinium Ions; A Critical Reinvestigation." International Journal of Photoenergy 7, no. 2 (2005): 103–8. http://dx.doi.org/10.1155/s1110662x05000152.

Full text
Abstract:
In the recent literature a simple 9-aryl-acridinium ion was claimed to undergo an intramolecular, photoinduced charge shift to produce an extremely long-lived and very high energy charge-transfer state. The possible consequences of this observation are discussed and the tenability of the claims made is investigated via time resolved spectroscopy of a closely related system with spectroscopic characteristics allowing more solid identification of the actual photophysical events taking place. From the results obtained it appears likely that the long-lived species observed earlier in solution cannot be charge transfer in nature but must instead be identified as the lowest triplet state of the acridinium chromophore.
APA, Harvard, Vancouver, ISO, and other styles
20

Lawson, Connor A., Andrew P. Dominey, Glynn D. Williams, and John A. Murphy. "Visible light-mediated Smiles rearrangements and annulations of non-activated aromatics." Chemical Communications 56, no. 77 (2020): 11445–48. http://dx.doi.org/10.1039/d0cc04666c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Natrajan, Anand, and David Wen. "Effect of branching in remote substituents on light emission and stability of chemiluminescent acridinium esters." RSC Adv. 4, no. 42 (2014): 21852–63. http://dx.doi.org/10.1039/c4ra02516d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yoshida, Yuma, Tetsuya Shimada, Tamao Ishida, and Shinsuke Takagi. "Thermodynamic study of the adsorption of acridinium derivatives on the clay surface." RSC Advances 10, no. 36 (2020): 21360–68. http://dx.doi.org/10.1039/d0ra03158e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sparr, Christof, and Christian Fischer. "Configurationally Stable Atropisomeric Acridinium Fluorophores." Synlett 29, no. 16 (August 3, 2018): 2176–80. http://dx.doi.org/10.1055/s-0037-1610233.

Full text
Abstract:
Arylated heterocyclic fluorophores are particularly useful scaffolds for numerous applications, such as bioimaging or synthetic photochemistry. While variation of the substitution pattern at the heterocycle and aryl groups allows dye modulation, the bond rotational barriers are also strongly affected. Unsymmetrically substituted ring systems of rotationally restricted arylated heterocycles therefore lead to configurationally stable atropisomeric fluorophores. Herein, we describe these characteristics by determining the properties and configurational stability of atropisomeric, tri-ortho-substituted naphthyl-acridinium fluorophores. A significant barrier to rotation of >120 kJ mol–1 was measured, which renders these dyes and related compounds distinct ­atropisomers with stereoisomer-specific properties over a broad temperature range.
APA, Harvard, Vancouver, ISO, and other styles
24

Trzybiński, Damian, Beata Zadykowicz, Karol Krzymiński, Artur Sikorski, and Jerzy Błażejowski. "9-Phenyl-10H-acridinium trifluoromethanesulfonate." Acta Crystallographica Section E Structure Reports Online 66, no. 11 (October 20, 2010): o2845—o2846. http://dx.doi.org/10.1107/s1600536810040900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Attar Gharamaleki, Jafar, Zohreh Derikvand, and Helen Stoeckli-Evans. "Acridinium 3-carboxypyrazine-2-carboxylate." Acta Crystallographica Section E Structure Reports Online 66, no. 9 (August 11, 2010): o2231. http://dx.doi.org/10.1107/s1600536810030588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Best, Quinn A., Richard A. Haack, Kerry M. Swift, Brian M. Bax, Sergey Y. Tetin, and Stefan J. Hershberger. "A rainbow of acridinium chemiluminescence." Luminescence 36, no. 4 (March 9, 2021): 1097–106. http://dx.doi.org/10.1002/bio.4038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hartmann, Horst. "A Simple Route to Benz[a]acridinium Salts." Zeitschrift für Naturforschung B 66, no. 7 (July 1, 2011): 711–14. http://dx.doi.org/10.1515/znb-2011-0711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fuse, Hiromu, Hiroyasu Nakao, Yutaka Saga, Arisa Fukatsu, Mio Kondo, Shigeyuki Masaoka, Harunobu Mitsunuma, and Motomu Kanai. "Photocatalytic redox-neutral hydroxyalkylation of N-heteroaromatics with aldehydes." Chemical Science 11, no. 44 (2020): 12206–11. http://dx.doi.org/10.1039/d0sc04114a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Bin, Pinhua Li, Tao Miao, Long Zou, and Lei Wang. "Visible-light induced decarboxylative C2-alkylation of benzothiazoles with carboxylic acids under metal-free conditions." Organic & Biomolecular Chemistry 17, no. 1 (2019): 115–21. http://dx.doi.org/10.1039/c8ob02476f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Kuai, Ling-Guo Meng, Qi Zhang, and Lei Wang. "Direct construction of 4-aryl tetralones via visible-light-induced cyclization of styrenes with molecular oxygen." Green Chemistry 18, no. 9 (2016): 2864–70. http://dx.doi.org/10.1039/c5gc02550h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Shenliang, and Anand Natrajan. "Synthesis and properties of chemiluminescent acridinium esters with different N-alkyl groups." RSC Advances 5, no. 26 (2015): 19989–20002. http://dx.doi.org/10.1039/c5ra00334b.

Full text
Abstract:
Acridinium esters containingN-alkyl groups with charge-neutral sulfobetaine zwitterions when compared toN-sulfopropyl groups exhibit faster light emission, improved chemiluminescence stability and lower non-specific binding.
APA, Harvard, Vancouver, ISO, and other styles
32

Deng, Yongming, Jason Zhang, Bradley Bankhead, Jonathan P. Markham, and Matthias Zeller. "Photoinduced oxidative cyclopropanation of ene-ynamides: synthesis of 3-aza[n.1.0]bicycles via vinyl radicals." Chemical Communications 57, no. 43 (2021): 5254–57. http://dx.doi.org/10.1039/d1cc02016a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zadykowicz, Beata, Justyna Czechowska, Agnieszka Ożóg, Anton Renkevich, and Karol Krzymiński. "Effective chemiluminogenic systems based on acridinium esters bearing substituents of various electronic and steric properties." Organic & Biomolecular Chemistry 14, no. 2 (2016): 652–68. http://dx.doi.org/10.1039/c5ob01798j.

Full text
Abstract:
A series of new acridinium esters, variously substituted in the benzene ring, have been investigated for the mechanism of light generation and ability to show chemiluminescence in various environments.
APA, Harvard, Vancouver, ISO, and other styles
34

Chelli, Riccardo, Giangaetano Pietraperzia, Andrea Bencini, Claudia Giorgi, Vito Lippolis, Pier Remigio Salvi, and Cristina Gellini. "A fluorescent receptor for halide recognition: clues for the design of anion chemosensors." Physical Chemistry Chemical Physics 17, no. 16 (2015): 10813–22. http://dx.doi.org/10.1039/c5cp00131e.

Full text
Abstract:
The chemosensing properties for halide ions of a polyammine ligand containing acridine are investigated by fluorescence spectroscopy. The emission is due to acridinium species formed after photoinduced proton transfer.
APA, Harvard, Vancouver, ISO, and other styles
35

Ruberto, Michael A., and Mary Lynn Grayeski. "Acridinium chemiluminescence detection with capillary electrophoresis." Analytical Chemistry 64, no. 22 (November 15, 1992): 2758–62. http://dx.doi.org/10.1021/ac00046a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Derikvand, Zohreh, Marilyn M. Olmstead, and Jafar Attar Gharamaleki. "Acridinium 6-carboxypyridine-2-carboxylate monohydrate." Acta Crystallographica Section E Structure Reports Online 67, no. 2 (January 15, 2011): o416. http://dx.doi.org/10.1107/s1600536810053791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wen, Min, Xijing Wang, Ting Wang, Yan Sun, Mengting Fan, Min Li, Junru Zhu, Dazhi Zhang, Xiaoyan Cui, and Yongkui Shan. "Acridinium Benzoates for Ratiometric Fluorescence Imaging." Chemistry – A European Journal 26, no. 15 (March 12, 2020): 3247–51. http://dx.doi.org/10.1002/chem.201905810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Septak, M. "Acridinium ester-labelled DNA oligonucleotide probes." Journal of Bioluminescence and Chemiluminescence 4, no. 1 (July 1989): 351–56. http://dx.doi.org/10.1002/bio.1170040148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Adamczyk, M. "O-(Acridinium)hydroxylamine (AHA): a reagent for the preparation of chemiluminescent acridinium oxime (AO)-steroid conjugates." Steroids 65, no. 7 (July 2000): 387–94. http://dx.doi.org/10.1016/s0039-128x(00)00095-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mandal, Susanta, Karan Chhetri, Samuzal Bhuyan, and Biswajit G. Roy. "Efficient iron catalyzed ligand-free access to acridines and acridinium ions." Green Chemistry 22, no. 10 (2020): 3178–85. http://dx.doi.org/10.1039/d0gc00617c.

Full text
Abstract:
A general synthesis of both acridines and acridinium ions is descried from inexpensive and commercially available aliphatic starting materials using iron as catalyst and aerobic oxygen as oxidant in alcoholic solvent to produce water as only by product.
APA, Harvard, Vancouver, ISO, and other styles
41

Goubitz, K., C. A. Reiss, and D. Heijdenrijk. "Crystal studies of acridinium dyes. XIII. The structures of 10-methyl-9-(4-methylphenyl)acridinium perchlorate (A) and 10-methyl-9-(4-methoxyphenyl)acridinium perchlorate (B)." Acta Crystallographica Section C Crystal Structure Communications 46, no. 6 (June 15, 1990): 1081–84. http://dx.doi.org/10.1107/s0108270189010334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bian, Zi-Long, Xin-Xin Lv, Ya-Lan Li, Wen-Wu Sun, Ji-Kai Liu, and Bin Wu. "Acid-promoted synthesis and photophysical properties of substituted acridine derivatives." Organic & Biomolecular Chemistry 18, no. 40 (2020): 8141–46. http://dx.doi.org/10.1039/d0ob01824d.

Full text
Abstract:
A simple and efficient synthetic protocol for the preparation of acridinium esters and amides through the cyclization and esterification or amidation of isatins with alcohols or amines as nucleophiles in the presence of CF3SO3H is established.
APA, Harvard, Vancouver, ISO, and other styles
43

Sato, Kazuaki, Eiji Matsuda, Keiichi Kamisango, Hiroaki Iwasaki, Shuzo Matsubara, and Yasuko Matsunaga. "Development of a Hypersensitive Detection Method for Human Parvovirus B19 DNA." Journal of Clinical Microbiology 38, no. 3 (2000): 1241–43. http://dx.doi.org/10.1128/jcm.38.3.1241-1243.2000.

Full text
Abstract:
A new detection method for human parvovirus B19 DNA was established using PCR coupled with a hybridization protection assay. The amplified product was detected using acridinium ester-labeled DNA probes. By this method, a few copies of B19 DNA were detected in human serum albumin.
APA, Harvard, Vancouver, ISO, and other styles
44

Zomer, Gijsbert, Rijk H. van den Berg, and Eugène H. J. M. Jansen. "Optimal labelling of proteins with acridinium ester." Analytica Chimica Acta 205 (1988): 267–71. http://dx.doi.org/10.1016/s0003-2670(00)82338-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Linden, A., J. Guspanová, J. Bernát, and P. Kristian. "9-Propylidenehydrazino-10-acridinium Thiocyanate at 173K." Acta Crystallographica Section C Crystal Structure Communications 53, no. 6 (June 15, 1997): 732–34. http://dx.doi.org/10.1107/s010827019700108x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Razavi, Zia, and Frank McCapra. "Stable and versatile active acridinium esters I." Luminescence 15, no. 4 (2000): 239–44. http://dx.doi.org/10.1002/1522-7243(200007/08)15:4<239::aid-bio587>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Razavi, Zia, and Frank McCapra. "Stable and versatile active acridinium esters II." Luminescence 15, no. 4 (2000): 245–49. http://dx.doi.org/10.1002/1522-7243(200007/08)15:4<245::aid-bio588>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sikorski, Artur, Agnieszka Niziołek, Karol Krzymiński, Tadeusz Lis, and Jerzy Błażejowski. "10-Methyl-9-(2-nitrophenoxycarbonyl)acridinium trifluoromethanesulfonate." Acta Crystallographica Section E Structure Reports Online 64, no. 2 (January 4, 2008): o372—o373. http://dx.doi.org/10.1107/s1600536807068109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sikorski, Artur, Karol Krzymiński, Agata Białońska, Tadeusz Lis, and Jerzy Błażejowski. "10-Methyl-9-(2-methylphenoxycarbonyl)acridinium trifluoromethanesulfonate." Acta Crystallographica Section E Structure Reports Online 62, no. 2 (January 27, 2006): o822—o824. http://dx.doi.org/10.1107/s1600536806002340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Goubitz, K., C. A. Reiss, and D. Heijdenrijk. "Crystal studies of acridinium dyes. V. 10-Methyl-9-[4-(1,4,7,10-tetraoxa-13-aza-13-cyclopentadecyl)phenyl]acridinium perchlorate." Acta Crystallographica Section C Crystal Structure Communications 45, no. 9 (September 15, 1989): 1356–58. http://dx.doi.org/10.1107/s0108270189002337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography