Academic literature on the topic 'Actin cytoskeleton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Actin cytoskeleton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Actin cytoskeleton"
Liu, Yi, Keyvan Mollaeian, and Juan Ren. "An Image Recognition-Based Approach to Actin Cytoskeleton Quantification." Electronics 7, no. 12 (December 17, 2018): 443. http://dx.doi.org/10.3390/electronics7120443.
Full textBreuer, David, Alexander Ivakov, Arun Sampathkumar, Florian Hollandt, Staffan Persson, and Zoran Nikoloski. "Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles." Journal of The Royal Society Interface 11, no. 97 (August 6, 2014): 20140362. http://dx.doi.org/10.1098/rsif.2014.0362.
Full textJack, R. M., R. M. Ezzell, J. Hartwig, and D. T. Fearon. "Differential interaction of the C3b/C4b receptor and MHC class I with the cytoskeleton of human neutrophils." Journal of Immunology 137, no. 12 (December 15, 1986): 3996–4003. http://dx.doi.org/10.4049/jimmunol.137.12.3996.
Full textVaduva, Gabriela, Nancy C. Martin, and Anita K. Hopper. "Actin-binding Verprolin Is a Polarity Development Protein Required for the Morphogenesis and Function of the Yeast Actin Cytoskeleton." Journal of Cell Biology 139, no. 7 (December 29, 1997): 1821–33. http://dx.doi.org/10.1083/jcb.139.7.1821.
Full textBezanilla, Magdalena, Amy S. Gladfelter, David R. Kovar, and Wei-Lih Lee. "Cytoskeletal dynamics: A view from the membrane." Journal of Cell Biology 209, no. 3 (May 11, 2015): 329–37. http://dx.doi.org/10.1083/jcb.201502062.
Full textSAUMET, Anne, Nando de JESUS, Chantal LEGRAND, and Véronique DUBERNARD. "Association of thrombospondin-1 with the actin cytoskeleton of human thrombin-activated platelets through an αIIbβ3- or CD36-independent mechanism." Biochemical Journal 363, no. 3 (April 24, 2002): 473–82. http://dx.doi.org/10.1042/bj3630473.
Full textBallestrem, C., B. Wehrle-Haller, and B. A. Imhof. "Actin dynamics in living mammalian cells." Journal of Cell Science 111, no. 12 (June 15, 1998): 1649–58. http://dx.doi.org/10.1242/jcs.111.12.1649.
Full textHolly, Stephen P., and Kendall J. Blumer. "Pak-Family Kinases Regulate Cell and Actin Polarization Throughout the Cell Cycle of Saccharomyces cerevisiae." Journal of Cell Biology 147, no. 4 (November 15, 1999): 845–56. http://dx.doi.org/10.1083/jcb.147.4.845.
Full textUray, Karen, Evelin Major, and Beata Lontay. "MicroRNA Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton." Cells 9, no. 7 (July 9, 2020): 1649. http://dx.doi.org/10.3390/cells9071649.
Full textVindin, Howard, Leanne Bischof, Peter Gunning, and Justine Stehn. "Validation of an Algorithm to Quantify Changes in Actin Cytoskeletal Organization." Journal of Biomolecular Screening 19, no. 3 (September 9, 2013): 354–68. http://dx.doi.org/10.1177/1087057113503494.
Full textDissertations / Theses on the topic "Actin cytoskeleton"
Brown, Jennifer. "Investigating the actin cytoskeleton in cancer." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7266/.
Full textHuber, Florian. "Emergent structure formation of the actin cytoskeleton." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-86666.
Full textFörster, Florian. "Targeting the actin cytoskeleton with natural compounds." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-168914.
Full textKim, Taeyoon Ph D. Massachusetts Institute of Technology. "Simulation of actin cytoskeleton structure and rheology." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39875.
Full textIncludes bibliographical references (p. 81-87).
Structures consisting of G-actin or other filament-forming monomers show a variety of morphologies with widely different properties in regard to pore size, degree of isotropy, and extent of cross-linking. These characteristics are primarily determined by the concentration and feature of proteins which cross-link filaments, but little is known how the filament-forming monomers and cross-linking proteins are organized in order to produce various network morphologies. In addition, it's generally known that mechanical force plays an important role in the physiology of eukaryote cells whose major structural component in cortex is actin cytoskeleton. Thus, understanding the origin of viscoelasticity of cross-linked networks should be crucial to figure out the exact role of cytoskeletal behaviors in many cellular functions. Here, we introduce a Brownian dynamics (BD) simulation model in three dimensions in which actin monomers polymerize into a filament and become cross-linked by two types of cross-linking molecules that constitute either perpendicular or parallel cross-links. We evaluate the influences of system parameters on the morphology of resultant networks. Some scaling behaviors that are independent of the specific choice of most parameters appear.
(cont.) Additionally, the modified model is employed to investigate the viscoelastic property of actin-like network by tracking the trajectories of filaments. This method is theoretically more direct and more precise than micro-bead rheology used in experiments. The viscoelastic property appears to be highly affected by characteristics of cross-linking molecules, average filament length, and concentration of actin monomers. Our model has the high potential as a BD model that can be applied for investigating a variety of actin-related phenomena after further refinement and modification.
by Taeyoon Kim.
S.M.
Gallinger, Julia. "WH2 domains and actin variants as multifunctional organizers of the actin cytoskeleton." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-161698.
Full textAktin ist als Bestandteil des Zytoskeletts eines der häufigsten Proteine in allen eukaryontischen Zellen. Eine genaue Regulation des Mikrofilamentsystems ist essentiell für Zellform, Zellmigration, Zellteilung und Membrandynamik. Ziel dieser Arbeit war (1) die Funktion von ausgewählten Aktin Bindedomänen in der Regulation des Aktin Zytoskeletts zu untersuchen und (2) die Funktion von Aktinvarianten zu verstehen. WH2 Domänen (WH2, Wiskott-Aldrich Syndrom Protein Homologie 2) sind kurze, konservierte Sequenzmotive (ca. 20 Aminosäuren), welche bevorzugt monomere Aktinmoleküle binden. Von besonderem Interesse waren Drosophila melanogaster Spire-WH2 und Mus musculus CAP2-WH2 Konstrukte. Das Protein Spire enthält vier WH2 Domänen (A-B-C-D) wohingegen CAP2 (Cyclase-assoziiertes Protein 2) nur eine WH2 Domäne besitzt. Diese WH2 Domänen können unter bestimmten Bedingungen (1) die Aktinpolymerisation stimulieren, (2) Aktinfilamente zerstückeln und (3) Aktinmonomere sequestrieren. Für die Nukleation der Aktinpolymerisation müssen mindestens zwei hintereinander angeordnete WH2 Domänen vorhanden sein und unterstöchiometrische Mengen an WH2 Domänen im Vergleich zur Aktinkonzentration vorliegen. Bei höheren WH2 Konzentrationen überwiegt die Sequestrierungsaktivität. Polymerisationsexperimente mit vorgefertigten SpireWH2-Aktin Komplexen bestätigen, dass diese Komplexe für die beobachtete Nukleation der Aktinpolymerisation verantwortlich sind. Im Gegensatz zu ungebundenen WH2 Domänen sind diese WH2-Aktin Komplexe selbst bei überstöchiometrischen WH2 Konzentrationen äußerst effiziente Nukleatoren. Alle untersuchten WH2 Konstrukte zeigen die bereits bekannte Bindung an G-Aktin, können aber auch vorgeformte Aktinfilamente sogar auseinanderreißen. Diese letztere und besonders auffällige Eigenschaft von WH2 Domänen wurde in fluorometrischen, viskometrischen und TIRF Experimenten nachgewiesen. Anscheinend ist die Affinität der WH2 Domänen zu Aktinmonomeren so stark, dass sie diese aus den Filamenten entfernen können und damit ganze Filamente und Filamentbündel zerstückeln. Für die Multifunktionalität der analysierten konservierten WH2 Domänen spricht zusammenfassend, dass sie neben der Aktinfilament Nukleation auch Filamente und Filamentbündel innerhalb von Sekunden fragmentieren können. Diese Daten wurden in Kollaboration mit den Gruppen Prof. Dr. Tad Holak und Prof. Dr. Robert Huber (Martinsried) durch kristallographische Versuchsansätze bestätigt. Neben den gut untersuchten konventionellen Aktinisoformen liegen oft auch Aktinvarianten vor, deren Funktion bisher unbekannt ist. Der Modellorganismus Dictyostelium discoideum besitzt mit seinen 41 Aktinen und Aktin-verwandten Proteinen ein umfangreiches „Aktinom”. Dazu gehört auch das Protein Filaktin (105 KDa), eine besonders außergewöhnliche Aktinvariante, die neben der konservierten Aktin-ähnlichen Domäne zusätzlich einen verlängerten N-Terminus mit einer definierten Domänenstruktur besitzt. Homologe von Filaktin wurden bisher in Dictyosteliden und einigen pathogenen Entamoeben identifiziert. Im zweiten Teil dieser Arbeit wurden die Funktionen von Filaktin in vivo und in vitro analysiert. Immunfluoreszenz Experimente zeigen, dass Filaktin mit konventionellem Aktin kolokalisiert und zusätzlich im Zytoplasma an Vesikel-artigen Strukturen zu sehen ist. Ein besonderes Merkmal von Filaktin ist zudem, dass es Teil von Stress-induzierten, intranukleären, stäbchenförmigen Proteinaggregaten, sogenannten „nuclear rods” ist. Für umfassende in vitro Experimente wurden rekombinante Filaktin Konstrukte mithilfe von Sf9 Insektenzellen exprimiert. Die Ergebnisse von fluorometrischen und viskometrischen Experimenten deuten darauf hin, dass die Aktin Domäne von Filaktin Aktinmonomere sequestrieren oder sogar Aktinfilamente verkappen kann. Gelfiltrationsexperimente ergaben zusätzlich, dass Filaktin wohl als Tetramer vorliegt. Außerdem verbinden Protein-Interaktionsstudien Filaktin mit dem ESCRT Signalweg (Endosomal Sorting Complexes Required for Transport), der unter anderem bei der Entstehung von multivesikulären Körpern wichtig ist. Zusammengefasst besteht das Mikrofilamentsystem vermutlich hauptsächlich aus konventionellen Aktinen, wohingegen spezielle Aktinvarianten andere zusätzliche und sogar Zytoskelett-unabhängige Funktionen übernehmen können.
Speldewinde, Shaun. "Prions, autophagy, ageing and actin cytoskeleton in yeast." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/prions-autophagy-ageing-and-actin-cytoskeleton-in-yeast(03085d7f-283a-40e1-bcf7-d9533ff2e2fc).html.
Full textHayot, Caroline. "Mise au point d'une stratégie pharmacologique originale pour l'obtention de composés anti-cancéreux anti-migratoires." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210860.
Full textDans la première partie de notre travail, nous avons analysé les effets anti-angiogéniques et anti-migratoires des agents anti-tubuline. Nous avons confirmé que le Taxol® présentait une action anti-angiogénique à des concentrations non-cytotoxiques. Nous avons ensuite démontré que d’autres agents anti-tubuline exerçaient la même action que le Taxol®, et que cette action leur était spécifique. Nous avons montré que certains de ces agents étaient également capables de réduire la migration de lignées cellulaires tumorales, toujours à des concentrations non-cytotoxiques, et que cette action pouvait s’exercer via une affectation du cytosquelette d’actine.
Dans la deuxième partie du présent travail, nous avons démontré l’importance de la mise au point d’une approche pharmacologique originale permettant l’identification de composés à action anti-migratoire puisque l’outil utilisé par le U.S. National Cancer Institute pour le criblage de nouvelles molécules anti-cancéreuses ne permet pas de discerner l’activité anti-migratoire des molécules testées.
Enfin dans la troisième partie de ce travail, après avoir souligné la raison du choix de l’actine comme cible pour inhiber la migration cellulaire, nous avons développé une stratégie pharmacologique in vitro originale de découverte de composés anti-actine à activité anti-migratoire. Grâce à une approche divisée en plusieurs étapes, à savoir un essai de cytotoxicité, une étude de la dynamique de la polymérisation d’actine en tubes ou sur cellules entières, et des essais de migration bidimensionnelle sur cellules individuelles ou sur population cellulaire, nous avons montré d’une part que des molécules connues pour affecter le cytosquelette actinique étaient capables d’affecter la migration cellulaire, et d’autre part que la méthodologie que nous avons développée permettait bien l’identification de composés affectant l’actine et capables de réduire la migration de cellules tumorales. En conclusion, cette stratégie in vitro pourrait être utilisée dans l’identification de nouvelles molécules à activité anti-migratoire pour lutter contre le cancer.
Doctorat en sciences pharmaceutiques
info:eu-repo/semantics/nonPublished
Thodey, Catherine. "Actin cytoskeleton dynamics mediate sugar response in Arabidopsis thaliana." Thesis, University of East Anglia, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518364.
Full textPrice, Leo Sebastian. "Secretion and the actin cytoskeleton in rat mast cells." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307776.
Full textFilippi, Beatrice Maria. "Cellular effects of phosphoinositide derivatives on the actin cytoskeleton." Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424620.
Full textBooks on the topic "Actin cytoskeleton"
Jockusch, Brigitte M., ed. The Actin Cytoskeleton. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46371-1.
Full textMannherz, Hans Georg, ed. The Actin Cytoskeleton and Bacterial Infection. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50047-8.
Full textD, Lappalainen Pekka Ph, ed. Actin-monomer-binding proteins. Austin, Tex: Landes Bioscience, 2007.
Find full textE, Estes James, Higgins Paul J, and International Conference on the Biophysics, Biochemistry, and Cell Biology of Actin (1992 : Troy, N.Y.), eds. Actin: Biophysics, biochemistry, and cell biology. New York: Plenum Press, 1994.
Find full textG, Dos Remedios Cristobal, and Chhabra Deepak, eds. Actin-binding proteins and disease. New York: Springer, 2008.
Find full textG, Dos Remedios Cristobal, and Chhabra Deepak, eds. Actin-binding proteins and disease. New York: Springer, 2008.
Find full textJ, Staiger C., ed. Actin: A dynamic framework for multiple plant cell functions. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textSing, Cierra Nicole. Aging Actin' Up: A novel aging determinant regulates the actin cytoskeleton, nutrient sensing, and lifespan in Saccharomyces cerevisiae. [New York, N.Y.?]: [publisher not identified], 2021.
Find full text1933-, Sugi Haruo, and Pollack Gerald H, eds. Mechanism of myofilament sliding in muscle contraction. New York: Plenum Press, 1993.
Find full textMalapitan, Irish Ann. Mapping an F-actin and cytoskeletal binding region in the basic domain of the mouse LSP1 protein. Ottawa: National Library of Canada, 1994.
Find full textBook chapters on the topic "Actin cytoskeleton"
Isenberg, Gerhard. "Actin and Actin-Associated Proteins." In Cytoskeleton Proteins, 25–149. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79632-6_8.
Full textWang, Juan, Ruihui Zhang, Ming Chang, Xiaolu Qu, Min Diao, Meng Zhang, and Shanjin Huang. "Actin Cytoskeleton." In Cell Biology, 1–28. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-7881-2_6-1.
Full textBershadsky, Alexander D., and Juri M. Vasiliev. "Systems of Actin Filaments." In Cytoskeleton, 13–78. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5278-5_2.
Full textBaluška, F., and S. Mancuso. "Actin Cytoskeleton and Action Potentials: Forgotten Connections." In The Cytoskeleton, 63–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33528-1_5.
Full textDugina, Vera, Richard Arnoldi, Paul A. Janmey, and Christine Chaponnier. "ACTIN." In Cytoskeleton and Human Disease, 3–28. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-788-0_1.
Full textNoegel, A. A., B. Köppel, U. Gottwald, W. Witke, R. Albrecht, and M. Schleicher. "Actin and Actin-Binding Proteins in the Motility of Dictyostelium." In The Cytoskeleton, 117–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79482-7_13.
Full textKelber, Jonathan A., and Richard L. Klemke. "The Actin Cytoskeleton." In Cellular Domains, 197–212. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015759.ch12.
Full textAmos, Linda A., and W. Bradshaw Amos. "Actin Filaments." In Molecules of the Cytoskeleton, 42–55. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21739-7_3.
Full textAktories, Klaus, Carsten Schwan, and Alexander E. Lang. "ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins." In The Actin Cytoskeleton, 179–206. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/164_2016_26.
Full textViita, Tiina, and Maria K. Vartiainen. "From Cytoskeleton to Gene Expression: Actin in the Nucleus." In The Actin Cytoskeleton, 311–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/164_2016_27.
Full textConference papers on the topic "Actin cytoskeleton"
Liu, Yi, and Juan Ren. "Modeling and Control of Dynamic Cellular Mechanotransduction: Part I — Actin Cytoskeleton Quantification." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9180.
Full textWen, Shin-Min, and Pen-hsiu Grace Chao. "Spatial Actin Structure Does Not Correlate With Nuclear Organization." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14167.
Full textDutta, Surjendu Bikash, Anders Kokkvoll Engdahl, Stefan Belle, Wolfgang Hübner, Mark Schüttpelz, Thomas Huser, and Francesco Dell'Olio. "Waveguide chip based super-resolution microscopy for T cell imaging." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.itu1b.6.
Full textKiran, Kranthi, Sanjay Govindjee, and Mohammad R. K. Mofrad. "On the Cytoskeleton and Soft Glassy Rheology." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176736.
Full textAllen, Kathleen B., and Bradley Layton. "A Mechanical Model for Cytoskeleton and Membrane Interactions in Neuronal Growth Cones." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42008.
Full textDangaria, Jhanvi H., and Peter J. Butler. "Interaction of Shear Stress, Myosin II, and Actin in Dynamic Modulation of Endothelial Cell Microrheology." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192947.
Full textShibatay, N., K. Tanaka, K. Okamoto, and T. Onji. "REORGANIZATION OF ACTIN AND MYOSIN IN THE ACTIVATED PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643539.
Full textBidone, Tamara C., Marco A. Deriu, Francesco Mastrangelo, Giacomo Di Benedetto, Monica Soncini, and Umberto Morbiducci. "Elastic Network Modeling of Actin Filaments." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19074.
Full textHoriguchi, Atsushi, and Toshihiko Shiraishi. "Study on a Cell Mechanosensing System by Measuring Structural Deformation and Biochemical Response." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51456.
Full textOswald, Elizabeth S., Pen-hsiu Grace Chao, J. Chloe Bulinski, Gerard A. Ateshian, and Clark T. Hung. "The Role of Microtubule Organization in Chondrocyte Response to Osmotic Loading." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176634.
Full textReports on the topic "Actin cytoskeleton"
Sadot, Einat, Christopher Staiger, and Zvi Kam Weizmann. functional genomic screen for new plant cytoskeletal proteins and the determination of their role in actin mediated functions and guard cells regulation. United States Department of Agriculture, January 2003. http://dx.doi.org/10.32747/2003.7587725.bard.
Full textRamesh, Vijaya. Neurofibromatosis 2 Tumor Suppressor Protein, Merlin, in Cellular Signaling to Actin Cytoskeleton. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada395581.
Full textPhilosoph-Hadas, Sonia, Peter B. Kaufman, Shimon Meir, and Abraham H. Halevy. Inhibition of the Gravitropic Shoot Bending in Stored Cut Flowers Through Control of Their Graviperception: Involvement of the Cytoskeleton and Cytosolic Calcium. United States Department of Agriculture, December 2005. http://dx.doi.org/10.32747/2005.7586533.bard.
Full textSyed, Aleem. Spatial and temporal dynamics of receptor for advanced glycation endproducts, integrins, and actin cytoskeleton as probed with fluorescence-based imaging techniques. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1342583.
Full textStoyanova, Tihomira, Veselina Uzunova, Albena Momchilova, Rumiana Tzoneva, and Iva Ugrinova. The Treatment of Breast Cancer Cells with Erufosine Leads to Actin Cytoskeleton Reorganization, Inhibition of Cell Motility, Cell Cycle Arrest and Apoptosis. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2021. http://dx.doi.org/10.7546/crabs.2021.01.11.
Full textPhilosoph-Hadas, Sonia, Peter Kaufman, Shimon Meir, and Abraham Halevy. Signal Transduction Pathway of Hormonal Action in Control and Regulation of the Gravitropic Response of Cut Flowering Stems during Storage and Transport. United States Department of Agriculture, October 1999. http://dx.doi.org/10.32747/1999.7695838.bard.
Full textSadot, Einat, Christopher Staiger, and Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7592652.bard.
Full textChew, Teng-Leong. Regulation of Actin-Myosin Cytoskeletal Changes Involved in Cancer Metastasis. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada396798.
Full textFriedman, Haya, Julia Vrebalov, and James Giovannoni. Elucidating the ripening signaling pathway in banana for improved fruit quality, shelf-life and food security. United States Department of Agriculture, October 2014. http://dx.doi.org/10.32747/2014.7594401.bard.
Full textHansen, Peter J., and Amir Arav. Embryo transfer as a tool for improving fertility of heat-stressed dairy cattle. United States Department of Agriculture, September 2007. http://dx.doi.org/10.32747/2007.7587730.bard.
Full text