Academic literature on the topic 'Actin filaments'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Actin filaments.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Actin filaments"
Cano, M. L., D. A. Lauffenburger, and S. H. Zigmond. "Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution." Journal of Cell Biology 115, no. 3 (November 1, 1991): 677–87. http://dx.doi.org/10.1083/jcb.115.3.677.
Full textMORIYAMA, Kenji, and Ichiro YAHARA. "The actin-severing activity of cofilin is exerted by the interplay of three distinct sites on cofilin and essential for cell viability." Biochemical Journal 365, no. 1 (July 1, 2002): 147–55. http://dx.doi.org/10.1042/bj20020231.
Full textArikawa, K., J. L. Hicks, and D. S. Williams. "Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors." Journal of Cell Biology 110, no. 6 (June 1, 1990): 1993–98. http://dx.doi.org/10.1083/jcb.110.6.1993.
Full textBraun, Tatjana, Albina Orlova, Karin Valegård, Ann-Christin Lindås, Gunnar F. Schröder, and Edward H. Egelman. "Archaeal actin from a hyperthermophile forms a single-stranded filament." Proceedings of the National Academy of Sciences 112, no. 30 (June 29, 2015): 9340–45. http://dx.doi.org/10.1073/pnas.1509069112.
Full textStokes, DL, and DJ DeRosier. "The variable twist of actin and its modulation by actin-binding proteins." Journal of Cell Biology 104, no. 4 (April 1, 1987): 1005–17. http://dx.doi.org/10.1083/jcb.104.4.1005.
Full textBearer, E. L. "Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ." Journal of Cell Biology 115, no. 6 (December 15, 1991): 1629–38. http://dx.doi.org/10.1083/jcb.115.6.1629.
Full textHartwig, J. H., and P. Shevlin. "The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages." Journal of Cell Biology 103, no. 3 (September 1, 1986): 1007–20. http://dx.doi.org/10.1083/jcb.103.3.1007.
Full textIjpma, Gijs, Ahmed M. Al-Jumaily, Simeon P. Cairns, and Gary C. Sieck. "Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle." Journal of Applied Physiology 111, no. 3 (September 2011): 735–42. http://dx.doi.org/10.1152/japplphysiol.00114.2011.
Full textLuo, Weibo, Benjamin Lin, Yingfei Wang, Jun Zhong, Robert O'Meally, Robert N. Cole, Akhilesh Pandey, Andre Levchenko, and Gregg L. Semenza. "PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility." Molecular Biology of the Cell 25, no. 18 (September 15, 2014): 2788–96. http://dx.doi.org/10.1091/mbc.e14-02-0775.
Full textSmall, J. V., M. Herzog, and K. Anderson. "Actin filament organization in the fish keratocyte lamellipodium." Journal of Cell Biology 129, no. 5 (June 1, 1995): 1275–86. http://dx.doi.org/10.1083/jcb.129.5.1275.
Full textDissertations / Theses on the topic "Actin filaments"
Niedermayer, Thomas. "On the depolymerization of actin filaments." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6360/.
Full textAktin ist eines der am häufigsten vorkommenden und am stärksten konservierten Proteine in eukaryotischen Zellen. Dieses globuläre Protein bildet lange Filamente, die zu einer großen Vielfalt von Netzwerken innerhalb des Zellskeletts führen. Die dynamische Reorganisation dieser Netzwerke, die entscheidend für Zellbewegung, Zelladhäsion, und Zellteilung ist, basiert auf der Polymerisation (dem Aufbau) und der Depolymerisation (dem Abbau) von Aktinfilamenten. Aktin bindet ATP, welches innerhalb des Filaments auf einer Zeitskala von einigen Minuten in ADP hydrolysiert wird. Da ADP-Aktin schneller vom Filamentende dissoziiert als ATP-Aktin, sollte ein Filament mit der Zeit instabiler werden. Neuere Experimente, in denen abrupte dynamische Änderungen während der Filamentdepolymerisation beobachtet wurden, deuten jedoch auf ein gegenteiliges Verhalten hin: Die Aktinfilamente werden mit der Zeit zunehmend stabiler. Mehrere Mechanismen für diese Stabilisierung wurden bereits vorgeschlagen, von strukturellen Übergängen des gesamten Filaments bis zu Wechselwirkungen der Filamentenden mit dem experimentellen Aufbau. Das zentrale Thema der vorliegenden Dissertation ist die Aufklärung der unerwarteten Unterbrechungen der Depolymerisation. Dies geschieht durch eine Kombination von experimentellen und theoretischen Untersuchungen. Mit Hilfe neuer Depolymerisationexperimente mit einzelnen Filamenten bestätigen wir zunächst, dass die Filamente plötzlich aufhören zu schrumpfen und bestimmen die Zeit, die von der Einleitung der Depolymerisation bis zum Auftreten der ersten Unterbrechung vergeht. Diese Zeit unterscheidet sich von Filament zu Filament und stellt eine stochastische Größe dar. Wir untersuchen daraufhin verschiedene hypothetische Mechanismen, welche die beobachteten Unterbrechungen verursachen könnten. Die Mechanismen können experimentell nicht direkt unterschieden werden, haben jedoch verschiedene Verteilungen für die Zeit bis zur ersten Unterbrechung zur Folge. Wir berechnen die jeweiligen Verteilungen, indem wir die zugrundeliegenden stochastischen Prozesse modellieren. Ein Vergleich mit der gemessenen Verteilung zeigt, dass der plötzliche Abbruch des Depolymerisationsprozesses weder auf eine Blockade der Enden, noch auf einen kollektiven strukturellen Übergang des gesamten Filaments zurückzuführen ist. An Stelle dessen postulieren wir einen lokalen Übergangsprozess, der an zufälligen Stellen innerhalb des Filaments auftritt. Die Kombination von weiteren experimentellen Ergebnissen und unserem theoretischen Ansatz bestätigt die Vorstellung eines lokalen Übergangsmechanismus und identifiziert den Übergang als die photo-induzierte Bildung eines Aktindimers innerhalb des Filaments. Nicht fluoreszenzmarkierte Aktinfilamente zeigen keine Unterbrechungen, woraus folgt, dass ältere Filamente in vivo durch die ATP-Hydrolyse destabilisiert werden. Die Destabilisierung zeigt sich durch die Beschleunigung der Depolymerisation vor der Unterbrechung. Im letzten Teil der vorliegenden Arbeit untersuchen wir diese Beschleunigung mit theoretischen Methoden, um auf den Mechanismus der ATP-Hydrolyse zu schließen. Wir zeigen, dass die Hydrolyserate von ATP innerhalb des Filaments konstant ist, was dem sogenannten zufälligen Hydrolysemechanismus entspricht und im Gegensatz zum sogenannten vektoriellen Mechanismus steht.
Murtagh, Michael Stephen. "Electron microscopy of actin and thin filaments." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421969.
Full textStrehle, Dan. "Bundles of Semi-flexible Cytoskeletal Filaments." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-144750.
Full textBeing the most basic unit of living organisms, the cell is a complex entity comprising thousands of different proteins. Yet only very few of which are considered to play a leading part in the cell’s mechanical integrity. The biopolymers actin, intermediate filaments and microtubules constitute the so-called cytoskeleton – a highly dynamic, constantly restructuring scaffold endowing the cell not only with integrity to sustain mechanical perturbations but also with the ability to rapidly reorganize or even drive directed motion. Actin has been regarded to be the protagonist and tremendous efforts have been made to understand passive actin networks using concepts from polymer rheology and statistical mechanics. In bottom-up approaches isotropic, homogeneous actin-gels are well-characterized with rheological methods that measure elastic and viscous properties on different time scales. Cells, however, are not exclusively isotropic networks of any of the mentioned filaments. Rather, actin alone can already be organized into heterogeneous and highly anisotropic structures like bundles. These heterogeneous structures have only come into focus recently with theoretical work addressing bundle networks. and, in the case of the worm-like bundle theory, individual bundles. This work aims at characterizing bundles and bundle-crosslinker systems mechanically in two complementary approaches – in the time as well as in the frequency domain. In addition, it illuminates a bundle formation mechanism that leads to bundle networks displaying higher ordering
Saeed, Mezida Bedru. "Nanoscale rearrangements in cortical actin filaments at lytic immunological synapses." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/nanoscale-rearrangements-in-cortical-actin-filaments-at-lytic-immunological-synapses(8d00dd58-7b1a-435b-ad6c-016b12ff34d9).html.
Full textWisanpitayakorn, Pattipong. "Understanding Mechanical Properties of Bio-filaments through Curvature." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/584.
Full textNiedermayer, Thomas Verfasser], and Reinhard [Akademischer Betreuer] [Lipowsky. "On the depolymerization of actin filaments / Thomas Niedermayer. Betreuer: Reinhard Lipowsky." Potsdam : Universitätsbibliothek der Universität Potsdam, 2013. http://d-nb.info/1030155208/34.
Full textFulzele, Keertik S. "ROLE OF ACTIN CYTOSKELETON FILAMENTS IN MECHANOTRANSDUCTION OF CYCLIC HYDROSTATIC PRESSURE." MSSTATE, 2004. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07122004-171347/.
Full textNiedermayer, Thomas [Verfasser], and Reinhard [Akademischer Betreuer] Lipowsky. "On the depolymerization of actin filaments / Thomas Niedermayer. Betreuer: Reinhard Lipowsky." Potsdam : Universitätsbibliothek der Universität Potsdam, 2013. http://d-nb.info/1030155208/34.
Full textLui, John. "The stoichiometry of caldesmon and actin in chicken gizzard thin filaments." Thesis, Boston University, 1988. https://hdl.handle.net/2144/38067.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
Regulation of smooth muscle contraction has been known to inovlve two distinct mechanisms. The role of myosin phosphorylation and dephosphorylation in the control of vertebrate smooth muscle contraction has been well documented. Recent evidence also suggests the existence of a thin filament-linked regulatory system in smooth muscle. Dual regulation of smooth muscle contraction may allow smooth muscle to vary tension output over a wide range of stretch and to maintain developed tension at low energy cost. Since the discovery of caldesmon in chicken gizzard smooth muscles, this protein was subsequently shown to be an actin and calmodulin binding protein. Since this protein was shown to be present in the thin filaments of smooth muscle in relatively large amounts, it has been proposed that caldesmon may be involved in thin filament linked regulation of smooth muscle contraction. While caldesmon has been shown to inhibit actin-activated myosin ATPase activity and to crosslink F-actin filaments in vitro, the precise function and action of caldesmon in vivo is uncertain. One approach to understand the mechanism of caldesmon mediated effects in smooth muscle is to construct a thin filament structural model. A model of thin filaments may provide insight on how contractile proteins interact during contraction and how thin filament associated proteins, possibily caldesmon may regulate this process. In this study, the stoichiometry of thin filament components of chicken gizzard smooth muscles is evaluated by quantitative gel densitometry. This showed an actin:tropomyosin:caldesmon ratio of 28:4:1. Together with results obtained from electron microscopic and biochemical studies, the stoichiometry obtained in this study will be used to formulate possible model of smooth muscle thin filaments.
2031-01-01
Gressin, Laurène. "Désassemblage de réseaux de filaments d'actine : rôle de l'architecture et du confinement." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY068/document.
Full textThe actin cytoskeleton is a major component of the internal architecture of eukaryotic cells. Actin filaments are organized into different structures, the dynamics of which is spatially and temporally controlled by the polymerization and disassembly of filaments. Most actin structures are in a dynamic steady state regime where the assembly is balanced by the disassembly, which maintains a high concentration of intracellular actin monomers. In vivo the pool of actin monomers is limited and the formation of new actin filament structures is dependent on an effective disassembly of the older structures. The goal of my thesis was to study the influence of different architectures of actin by the disassembly machinery made of ADF/cofilin and its cofactor Aip1.Firstly, I showed that the efficiency of the disassembly was dependent on the architecture of actin filaments organizations. Although the branched networks need only ADF/cofilin to be efficiently disassembled, the actin cables require the simultaneous action of ADF/cofilin and Aip1. Further investigations at the molecular scale indicate that the cooperation between ADF/cofilin and Aip1 is optimal above a certain threshold of molecules of ADF/cofilin bound to actin filaments. During my PhD I demonstrated that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, the stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. We propose a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.Secondly, I developed an experimental system made of cell-sized microwells. This technology allowed us to develop experiments in a closed environment in which the actin pool is limited in the same way as the cellular environment. I used this experimental system to study how a limited pool of components limits both the assembly and the disassembly of a branched network.This thesis highlights the importance of developing new tools to obtain more “physiological” reconstituted systems in vitro to establish some of the general principles governing actin dynamics
Books on the topic "Actin filaments"
Yang, Po Fong. Filamentous actin disruption and diminished inositol phosphate response in gingival fibroblasts caused by Treponema denticola. [Toronto: University of Toronto, Faculty of Dentistry], 1998.
Find full textE, Estes James, Higgins Paul J, and International Conference on the Biophysics, Biochemistry, and Cell Biology of Actin (1992 : Troy, N.Y.), eds. Actin: Biophysics, biochemistry, and cell biology. New York: Plenum Press, 1994.
Find full text(Editor), James E. Estes, and Paul J. Higgins (Editor), eds. Actin: Biophysics, Biochemistry and Cell Biology (Advances in Experimental Medicine and Biology). Springer, 1994.
Find full text1933-, Sugi Haruo, and Pollack Gerald H, eds. Mechanism of myofilament sliding in muscle contraction. New York: Plenum Press, 1993.
Find full textFilamentous Actin within neuronal interphase nuclei in vitro and in vivo: An ultrastructural study. Ottawa: National Library of Canada, 1993.
Find full textBook chapters on the topic "Actin filaments"
Pavelka, Margit, and Jürgen Roth. "Actin Filaments." In Functional Ultrastructure, 148–49. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_78.
Full textAmos, Linda A., and W. Bradshaw Amos. "Actin Filaments." In Molecules of the Cytoskeleton, 42–55. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21739-7_3.
Full textDashek, William V. "Microtubules, intermediate filaments, and actin filaments." In Plant Cells and their Organelles, 110–24. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118924846.ch6.
Full textBershadsky, Alexander D., and Juri M. Vasiliev. "Systems of Actin Filaments." In Cytoskeleton, 13–78. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5278-5_2.
Full textKroeger, M. "Dynamics of Actin Filaments." In Progress and Trends in Rheology V, 338–39. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-51062-5_160.
Full textKinosita, Kazuhiko, Naoya Suzuki, Shin’ichi Ishiwata, Takayuki Nishizaka, Hiroyasu Itoh, Hiroyuki Hakozaki, Gerard Marriott, and Hidetake Miyata. "Orientation of Actin Monomers in Moving Actin Filaments." In Mechanism of Myofilament Sliding in Muscle Contraction, 321–29. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2872-2_31.
Full textSiccardi, Stefano, and Andrew Adamatzky. "Models of Computing on Actin Filaments." In Emergence, Complexity and Computation, 309–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33921-4_14.
Full textFarkas, Zeno, Imre Derényi, and Tomas Vicsek. "Dynamics of Actin Filaments in Motility Assays." In Structure and Dynamics of Confined Polymers, 327–32. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0401-5_20.
Full textLindberg, Uno, Clarence E. Schutt, Robert D. Goldman, Maria Nyåkern-Meazza, Louise Hillberg, Li-Sophie Zhao Rathje, and Staffan Grenklo. "Tropomyosins Regulate the Impact of Actin Binding Proteins on Actin Filaments." In Advances in Experimental Medicine and Biology, 223–31. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-85766-4_17.
Full textLetourneau, Paul C. "Actin in Axons: Stable Scaffolds and Dynamic Filaments." In Results and Problems in Cell Differentiation, 265–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/400_2009_15.
Full textConference papers on the topic "Actin filaments"
Chaudhuri, Ovijit, Sapun H. Parekh, Allen Liu, and Daniel A. Fletcher. "Viscoelasticity of Growing Actin Networks." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60076.
Full textBidone, Tamara C., Marco A. Deriu, Francesco Mastrangelo, Giacomo Di Benedetto, Monica Soncini, and Umberto Morbiducci. "Elastic Network Modeling of Actin Filaments." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19074.
Full textBidone, Tamara Carla, Haosu Tang, and Dimitrios Vavylonis. "Insights Into the Mechanics of Cytokinetic Ring Assembly Using 3D Modeling." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39006.
Full textBidone, Tamara C., Marco A. Deriu, Giacomo Di Benedetto, Diana Massai, and Umberto Morbiducci. "Insights Into the Molecular Mechanisms of Actin Dynamics: A Multiscale Modeling Approach." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53417.
Full textBidone, Tamara C., TaeYoon Kim, Marco A. Deriu, Umberto Morbiducci, and Roger D. Kamm. "Multiscale Biomechanics of Actin Filaments and Crosslinked Networks." In Biomedical Engineering. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.764-175.
Full textChang, Leda, Fransiska S. Franke, Paula Flicker, and David Keller. "Left and right topography of F-actin filaments." In Photonics West '95, edited by Mehdi Vaez-Iravani. SPIE, 1995. http://dx.doi.org/10.1117/12.205937.
Full textKroon, Martin. "A Theoretical Assessment of the Influence of Myosin Filament Dispersion on Smooth Muscle Contraction." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53071.
Full textUjihara, Yoshihiro, Masanori Nakamura, Hiroshi Miyazaki, and Shigeo Wada. "Effects of the Initial Alignment and Passive Reorientation of Actin Fibers on the Tensile Stiffness of Whole Cells." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19669.
Full textShibatay, N., K. Tanaka, K. Okamoto, and T. Onji. "REORGANIZATION OF ACTIN AND MYOSIN IN THE ACTIVATED PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643539.
Full textLeon, Lenin J., Yongkuk Lee, Ming-Yuan Wei, R. Lloyd Carroll, and Parviz Famouri. "Selective photoimmobilization of actin filaments for developing an intelligent nanodevice." In 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO). IEEE, 2010. http://dx.doi.org/10.1109/nano.2010.5697858.
Full textReports on the topic "Actin filaments"
Sadot, Einat, Christopher Staiger, and Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7592652.bard.
Full text