To see the other types of publications on this topic, follow the link: Active pharmaceutical ingredient (API) crystallization.

Dissertations / Theses on the topic 'Active pharmaceutical ingredient (API) crystallization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Active pharmaceutical ingredient (API) crystallization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Schaefer, Cédric. "A Process Analytical Technology (PAT) approach involving near infrared spectroscopy to control the manufacturing of an active pharmaceutical ingredient : development, validation and implementation." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4375.

Full text
Abstract:
Les entreprises pharmaceutiques ont progressivement adopté le concept de Process Analytical Technology (PAT) afin de contrôler et d'assurer en temps réel la qualité des produits pharmaceutiques au cours de leur production. Le PAT et un composant central du concept plus général de Quality-by-Design (QbD) promu par les agence régulatrices et visant à construire la qualité des produits via une approche scientifique et la gestion des risques.Une méthode basée sur la spectroscopie proche infrarouge (PIR) a été développée comme un outil du PAT pour contrôler en ligne la cristallisation d'un principe actif pharmaceutique. Au cours du procédé les teneurs en principe actif et en solvant résiduel doivent être déterminées avec précision afin d'atteindre un point d'ensemencement prédéfini. Une méthodologie basée sur les principes du QbD a guidé le développement et la validation de la méthode tout en assurant l'adéquation avec son utilisation prévue. Des modèles basés sur les moindres carrés partiels ont été construits à l'aide d'outils chimiométriques afin de quantifier les 2 analytes d'intérêt. La méthode a été totalement validée conformément aux requis officiels en utilisant les profils d'exactitude. Un suivi du procédé en temps réel a permis de prouver que la méthode correspond à son usage prévu.L'implémentation de cette méthode comme à l'échelle industrielle au lancement de ce nouveau procédé permettra le contrôle automatique de l'étape de cristallisation dans le but d'assurer un niveau de qualité prédéfini de l'API. D'autres avantages sont attendus incluant la réduction du temps du procédé, la suppression d'un échantillonnage difficile et d'analyses hors ligne fastidieuses
Pharmaceutical companies are progressively adopting and introducing the Process Analytical Technology (PAT) concept to control and ensure in real-time product quality in development and manufacturing. PAT is a key component of the Quality-by-Design (QbD) framework promoted by the regulatory authorities, aiming the building of product quality based on both a strong scientific background and a quality risk management approach.An analytical method based on near infrared (NIR) spectroscopy was developed as a PAT tool to control on-line an API (active pharmaceutical ingredient) crystallization. During this process the API and residual solvent contents need to be precisely determined to reach a predefined seeding point. An original methodology based on the QbD principles was applied to conduct the development and validation of the NIR method and to ensure that it is fitted for its intended use. Partial least squares (PLS) models were developed and optimized through chemometrics tools in order to quantify the 2 analytes of interest. The method was fully validated according to the official requirements using the accuracy profile approach. Besides, a real-time process monitoring was added to the validation phase to prove and document that the method is fitted for purpose.Implementation of this method as an in-process control at industrial plant from the launch of this new pharmaceutical process will enable automatic control of the crystallization step in order to ensure a predefined quality level of the API. Other valuable benefits are expected such as reduction of the process time, and suppression of a difficult sampling and tedious off-line analyzes
APA, Harvard, Vancouver, ISO, and other styles
2

Schaefer, Cédric. "A Process Analytical Technology (PAT) approach involving near infrared spectroscopy to control the manufacturing of an active pharmaceutical ingredient : development, validation and implementation." Electronic Thesis or Diss., Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4375.

Full text
Abstract:
Les entreprises pharmaceutiques ont progressivement adopté le concept de Process Analytical Technology (PAT) afin de contrôler et d'assurer en temps réel la qualité des produits pharmaceutiques au cours de leur production. Le PAT et un composant central du concept plus général de Quality-by-Design (QbD) promu par les agence régulatrices et visant à construire la qualité des produits via une approche scientifique et la gestion des risques.Une méthode basée sur la spectroscopie proche infrarouge (PIR) a été développée comme un outil du PAT pour contrôler en ligne la cristallisation d'un principe actif pharmaceutique. Au cours du procédé les teneurs en principe actif et en solvant résiduel doivent être déterminées avec précision afin d'atteindre un point d'ensemencement prédéfini. Une méthodologie basée sur les principes du QbD a guidé le développement et la validation de la méthode tout en assurant l'adéquation avec son utilisation prévue. Des modèles basés sur les moindres carrés partiels ont été construits à l'aide d'outils chimiométriques afin de quantifier les 2 analytes d'intérêt. La méthode a été totalement validée conformément aux requis officiels en utilisant les profils d'exactitude. Un suivi du procédé en temps réel a permis de prouver que la méthode correspond à son usage prévu.L'implémentation de cette méthode comme à l'échelle industrielle au lancement de ce nouveau procédé permettra le contrôle automatique de l'étape de cristallisation dans le but d'assurer un niveau de qualité prédéfini de l'API. D'autres avantages sont attendus incluant la réduction du temps du procédé, la suppression d'un échantillonnage difficile et d'analyses hors ligne fastidieuses
Pharmaceutical companies are progressively adopting and introducing the Process Analytical Technology (PAT) concept to control and ensure in real-time product quality in development and manufacturing. PAT is a key component of the Quality-by-Design (QbD) framework promoted by the regulatory authorities, aiming the building of product quality based on both a strong scientific background and a quality risk management approach.An analytical method based on near infrared (NIR) spectroscopy was developed as a PAT tool to control on-line an API (active pharmaceutical ingredient) crystallization. During this process the API and residual solvent contents need to be precisely determined to reach a predefined seeding point. An original methodology based on the QbD principles was applied to conduct the development and validation of the NIR method and to ensure that it is fitted for its intended use. Partial least squares (PLS) models were developed and optimized through chemometrics tools in order to quantify the 2 analytes of interest. The method was fully validated according to the official requirements using the accuracy profile approach. Besides, a real-time process monitoring was added to the validation phase to prove and document that the method is fitted for purpose.Implementation of this method as an in-process control at industrial plant from the launch of this new pharmaceutical process will enable automatic control of the crystallization step in order to ensure a predefined quality level of the API. Other valuable benefits are expected such as reduction of the process time, and suppression of a difficult sampling and tedious off-line analyzes
APA, Harvard, Vancouver, ISO, and other styles
3

Conté, Jennifer. "Intensification of pharmaceutical production : from the raw materials to the crystallized active pharmaceutical ingredient." Thesis, Toulouse, INPT, 2016. http://www.theses.fr/2016INPT0015.

Full text
Abstract:
L’un des nombreux défis pour l’industrie pharmaceutique est de développer des procédés compétitifs pour produire des principes actifs de hautes qualités à bas coût. Pour ce faire, plusieurs sociétés se tournent vers la chimie en flux continu et les avantages qu’elle présente comparé au batch traditionnel. C’est pourquoi ces travaux de thèse se centrent sur le développement d’un procédé continu allant des matières premières au principe actif. La première étape pour parvenir à ce but fut de collecter des données sur le procédé batch industriel actuel. Il se compose de trois étapes de réactions chimiques, une de séparation chromatographique et une étape de cristallisation. A partir de là, la chimie de chaque réaction a été adaptée pour profiter au mieux des avantages du flux continu. La dissipation de chaleur étant plus efficace qu’en batch il fut possible de développer une réaction exothermique sans solvant à haute température. Une étude cinétique a été réalisée afin de modéliser cette réaction. Ensuite, cet outil fut utilisé pour déterminer les conditions opératoires optimales théoriques de la réaction et en guider l’optimisation ainsi que la conception du futur réacteur. La deuxième partie de ce travail se focalise sur la cristallisation en continu du principe actif avec la technique des jets impactant. Il est nécessaire d’avoir un contrôle précis sur la distribution de taille de particules (DTP) et la morphologie des cristaux. En effet, le principe actif peut cristalliser sous deux formes compétitives : cristaux cubiques ou en forme d’aiguilles. Les cubes sont la forme désirée. La technique des jets impactant a été sélectionnée car c’est un procédé continu qui permet la génération de fines particules avec une DTP resserrée. La sursaturation est généralement crée en impactant un jet de solution de principe actif avec un jet d’anti-solvant. Ici, le solvant et l’anti-solvant sont les mêmes. Seule une large différence de température entre les deux jets génère la sursaturation. En testant différentes conditions opératoires, une « zone cubique » a été définie, où seuls des cristaux de forme désirée sont générés. Une fois la nucléation maîtrisée, le murissement et la séparation solide-liquide furent étudiés pour développer un procédé complet de cristallisation. En combinant les recherches sur le développement des réactions chimiques et l’étape de cristallisation, un procédé continu complet fut proposé et comparé au procédé batch actuel afin d’évaluer les bénéfices apportés par la transposition en flux continu à la production du principe actif
One of the many challenges in the pharmaceutical industry is to develop competitive processes to generate high quality active pharmaceutical ingredient (API) at low cost. To achieve this goal, many companies are looking towards flow chemistry and the advantages it affords, compared to traditional batch production. It is why this PhD work is focused on developing a continuous process from the raw materials to the API. The first step to achieve this goal was to collect data on the actual industrial batch process. It is composed of five steps, three steps of chemical reactions, one chromatographic separation and a crystallization step. From this starting point, the chemistry of each reaction was adapted to better use the advantages of flow chemistry. Thus, as the heat recovery in a continuous reactor is more efficient than in batch, it was possible to develop an exothermal reaction in neat conditions and at high temperature. A kinetic study was undertaken to gather knowledge on the reaction and develop a reaction model. This tool was used to find theoretical optimal operating conditions (temperature, residence time…) to guide the optimisation of the reaction and to design the future industrial reactor. The second part of this work is focused on the continuous crystallization of the API using the two impinging jets technology. It is required to have a tight control upon the morphology of the crystals and the particle size distribution (CSD). Indeed, the targeted API may crystallize under two competitive forms: cubic and needle crystals. The cubic form is the desired one. The two impinging jets technique was selected, since it is a continuous process able to generate small particles with a narrow CSD. The supersaturation is traditionally generated by impacting a jet of API solution with an anti-solvent one. Here, the solvent and the antisolvent are identical and only a large temperature difference between both streams is used to create the supersaturation. By screening different operating conditions, a “cubic zone” could be defined. Within this zone, only the desired crystal form is generated. Once the nucleation was under control, crystal growth and solid-liquid separation were studied to develop a complete crystallization process. By combining the research on the development of the chemical reactions and the crystallization step a full continuous process was proposed and was compared to the current batch one in order to evaluate the benefits brought by the flow chemistry to the API production
APA, Harvard, Vancouver, ISO, and other styles
4

Nechlani, Rajkumar aka Rahul Shankarlal. "Improvement of cleaning effectiveness through Statistical Process Control in active pharmaceutical ingredient (API) manufacturing." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117971.

Full text
Abstract:
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2018.
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 92-95).
This thesis presents work that was done to improve the effectiveness of cleaning processes at an active pharmaceutical ingredient (API) manufacturing site that was in the phase of engineering trials and cleaning cycle development. Cleaning cycles executed on the site prior to the project were found to be inconsistent in cleaning the equipment to the desired specifications. Lack of repeatability of cleaning processes was hypothesized to be a resultant of inadequate process control and monitoring. Statistical Process Control (SPC) implemented using process automation was found to improve the success rate of cleaning processes significantly. SPC introduction required breaking down the cleaning operation into component steps, identifying critical process parameters (CPPs) and calculation of control limits using Shewhart Control Charts for these CPPs. Significant modifications were done to the automation controls for the recipe to ensure deviations from recipe are captured and appropriate actions are taken by the system or the operator to bring the process back in control. The success rate of cleaning processes improved from 38% to 72% post the implementation of Phase I of SPC with the newer non-conformances being associated to special external causes outside the control of the process. Real-time Multivariate Statistical Process Monitoring (RT-MSPM) was also introduced and piloted as a future opportunity for enhanced control and continuous quality improvement. Multivariate statistical process control eliminates the need to monitor multiple control charts (one for each variable) at the same time accounting for the correlations among process variables.
by Rajkumar aka Rahul Shankarlal Nechlani.
M.B.A.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
5

Douieb, Selim. "Étude de l’influence de l’écoulement sur la cristallisation en solution :Applications aux hydrates de dioxyde de carbone et à une substance pharmaceutique." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/229010.

Full text
Abstract:
La cristallisation en solution est une opération unitaire essentielle du génie chimique. Les conditions opératoires dans lesquelles cette opération est menée déterminent sa productivité et la qualité des cristaux produits, par le biais de l’influence qu’elles ont sur les cinétiques de germination et de croissance. De nombreuses études ont mis en évidence que les conditions d’écoulement influencent significativement ces deux cinétiques. Néanmoins, une compréhension profonde de la nature de cette influence n’a, à l’heure actuelle, pas encore été atteinte. Ceci cause bien souvent des problèmes tant au niveau du procédé que du produit et a également pour conséquence que l’effet des conditions d’écoulement sur les cinétiques de cristallisation est rarement exploité de manière à en tirer le meilleur avantage.La première partie de ce travail a été consacrée à l’étude de l’effet des conditions d’écoulement sur les cinétiques de cristallisation en solution (germination et croissance), avec pour cas pratique la cristallisation d’hydrates de dioxyde de carbone (CO2), une solution émergeante pour la capture et la séquestration du CO2 (gaz à effet de serre majeur).De manière à étudier l’impact des conditions d’écoulement sur le taux de formation des hydrates de CO2, des expériences de formation d’hydrates de CO2 ont été réalisées dans un réacteur de type cuve agitée de 20 L mis en œuvre de manière semi-continue dans des conditions d’écoulement variées, produites à l’aide de trois mobiles d’agitations différents (une turbine à pales inclinées, un MaxblendTM et un DispersimaxTM) opérés à différentes vitesses de rotations. Un modèle mathématique original de l'ensemble du processus de formation des hydrates de CO2 attribuant une résistance à chacune de ses étapes constitutives a été établi. Pour chaque condition expérimentale, le taux de formation est mesuré et l’étape limitante est déterminée sur base de la valeur des différentes résistances. Les trois mobiles d’agitations étudiés sont comparés relativement à leur efficacité et, pour chaque mobile, l’influence de la vitesse de rotation sur l’étape limitante est discutée. En l’occurrence, il est montré que des limitations dues aux transferts de chaleur peuvent se produire à l'échelle relativement petite utilisée dans cette étude.L’étude de l’impact des conditions d’écoulement sur la cinétique de germination des hydrates de CO2 s’est concentrée sur la caractérisation de l’effet du taux de cisaillement sur le temps d’induction associé à cette formation (proportionnel à cette cinétique). Cette étude a été basée sur la réalisation de mesure de temps d’induction au cours d’expériences de formation d’hydrates de gaz, utilisant le système CO2-H2O-tetrahydrofuran comme système modèle, réalisées dans un réacteur de type Couette-Taylor. L’application, à la phase liquide dans laquelle prend place la formation des hydrates de gaz, de différents taux de cisaillement (entre 50 et 300 s-1), maintenus constants tout au long de l’expérience de formation, a révélé que le temps d’induction moyen diminuait significativement lorsque le taux de cisaillement appliqué à la phase liquide augmentait. Il a été montré que cette diminution peut être principalement attribuée à une diminution du temps nécessaire à l’apparition de germes stables d’hydrates et à leurs croissances jusqu’à une taille macroscopiquement détectable. Il a également été montré que le temps d’induction moyen peut également être significativement réduit par l’application, à la phase liquide, d’un haut taux de cisaillement (900 s-1) durant une période relativement courte et définie.La seconde partie de ce travail a été dédiée au développement d’une stratégie permettant d’améliorer le contrôle des procédés de cristallisation de substances pouvant cristalliser sous plusieurs formes cristallines, et ce, relativement à la forme cristalline générée au cours et à l’issue de ces procédés. Le cas pratique de cette partie du travail est le développement d’un procédé de cristallisation en solution par refroidissement en mode batch d’un principe actif, récemment développé par la société pharmaceutique UCB, présentant deux formes cristallines connues. La robustesse et la reproductibilité de ce procédé vis-à-vis de la production de la forme cristalline d’intérêt et de la prévention de l’occurrence d’un phénomène de prise en masse, dû à une formation massive de cristaux de la forme cristalline indésirable, sont deux impératifs ayant guidés son développement.Le procédé qui a été envisagé dans le cadre de la deuxième partie de ce travail est basé sur la production de semences cristallines de forme I (la forme d’intérêt) par germination primaire au sein d’un réacteur tubulaire suivie d’une croissance de ces semences en milieu agité contrôlé en température. Les propriétés particulières de l’écoulement mis en œuvre au sein du réacteur tubulaire permettent d’y contrôler finement l’allure des champs de température et de concentration (et donc de sursaturation) et, de manière inédite, de circonscrire l’apparition de cristaux à la partie centrale de l’écoulement (afin de prévenir tout risque d’incrustation de la paroi interne du réacteur). Les expériences réalisées dans ce travail montrent que, associé aux conditions expérimentales utilisées, ce dispositif permet de produire des semences cristallines de forme I de manière reproductible. Elles montrent également qu’un contrôle adéquat des conditions initiales dans lesquelles les semences cristallines de forme I sont amenées à croitre ainsi que du taux de refroidissement utilisé pour entretenir cette croissance permet de garantir que celle-ci se déroule sans que le phénomène de prise en masse ne prenne place. Il est mis en évidence que ce contrôle repose sur la prévention de toute formation indésirable de cristaux de forme II par un maintient, en tout temps, d’un niveau de sursaturation ne dépassant pas une valeur critique donnée. Enfin, ces expériences montrent aussi que le type d’agitation utilisée dans ce travail n’a pas d’influence sur l’occurrence de la prise en masse mais a une influence majeure sur l’état de surface, la taille moyenne et la distribution en taille des cristaux produits.
Solution crystallization is an essential unit operation in the chemical engineering field. Through their effect on the nucleation and growth kinetics, the operating conditions of such an operation determine its productivity and the quality of the produced crystals. An important number of studies have shown that the flow conditions have a significant influence on these two kinetics. Nonetheless, a deep understanding of the nature of this effect is still lacking, which often leads to severe difficulties in the development and operation of crystallization processes and impedes the emergence of positive applications of this effect.The first part of this work has been dedicated to the study of the effect of the flow conditions on the solution crystallization kinetics (nucleation and growth). Carbon dioxide (CO2) hydrate crystallization, an emerging method for the separation and capture of CO2, was used as a practical case.CO2 hydrate formation experiments have been performed in a 20 L semi-batch stirred tank reactor using three different impellers (a down-pumping pitched blade turbine, a Maxblend™, and a Dispersimax™) at various rotational speeds to examine the impact of the flow conditions on the CO2 hydrate formation rate. An original mathematical model of the CO2 hydrate formation process that assigns a resistance to each of its constitutive steps has been established. For each experimental condition, the formation rate is measured and the rate-limiting step is determined on the basis of the respective values of the resistances. The efficiencies of the three considered impellers are compared and, for each impeller, the influence of the rotational speed on the rate-limiting step is discussed. For instance, it is shown that a formation rate limitation due to heat transfer can occur at the relatively small scale used to perform our experiments.The investigation of the impact of the flow conditions on the nucleation kinetics of CO2 hydrates was focused on the characterization of the effect of the fluid shear rate on the induction time of gas hydrate formation (proportional to this kinetics). This study was based on induction time measurements during gas hydrate formation experiments, using the CO2-H2O-tetrahydrofuran system as model system, realized in a Couette-Taylor reactor. The investigation of the effect of the application of a constant shear rate (50 to 300 s-1) to the liquid phase from which the hydrates are formed revealed that the mean induction time decreases significantly as the applied shear rate increases. This could primarily be attributed to a decrease in the time required for stable gas hydrate nuclei to be generated and to grow to a macroscopically detectable size. The induction time could also be significantly reduced by the application of a high shear rate (900 s-1) to the liquid phase for a relatively short, defined period of time.The second part of this work has been dedicated to the development of a strategy for the improvement of the control of crystallization processes involving compounds able to crystallize under several crystalline forms, relatively to the crystalline form generated during and at the end of these processes. The strategy examined in this work was applied to the development of a batch cooling solution crystallization process of an active pharmaceutical ingredient, recently developed by the pharmaceutical company UCB, exhibiting two known crystalline forms. The robustness and the reproducibility of this process relatively to production of the desired crystalline form produced and the prevention of caking, due to the massive formation of crystals of the undesired crystalline form, were the two main priorities that have driven its development.The process considered in the second part of this work is based on the production of form I (the desired form) crystalline seeds through nucleation in a tubular reactor followed by the growth of these seeds in an agitated medium controlled in temperature. The particular properties of the flow conditions in the tubular reactor enable the temperature and the concentration fields, and therefore the supersaturation field, to be finely tuned and, in an original manner, to confine the emergence of new crystals in the center part of the flow (to prevent any fouling of the inner surface of the reactor). The experiments performed in this work showed that, coupled to the experimental conditions used, this device enables to reproducibly generate form I crystalline seeds. The experiments also revealed that a proper control of the initial conditions in which these seeds are brought to grow and of the cooling rate used to sustain this growth allows ensuring that this growth takes place without caking. It is shown that such a control lies on the inhibition of the formation of undesired form II crystals by keeping, at all times, the supersaturation level under a defined critical value. Finally, the experiments showed that the type of agitation used in this work does not influence the occurrence of caking but has a significant impact on the crystals surface quality, mean size, and size distribution.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
6

Arnroth, Cornelia. "A study of protein aggregation processes using Dynamic Light Scattering : Validation of the technique and experimental trial with an active pharmaceutical ingredient." Thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-422862.

Full text
Abstract:
Protein pharmaceuticals is one of the fastest growing class of therapeutics today. However, they pose a lot of challenges in production lines due to their poor stability. Protein aggregation is one of the most common results of protein instability and is a risk factor regarding the quality of therapeutics. This master thesis at RISE focused on validating the techniques Dynamic Light Scattering (DLS) and multi angle DLS (MADLS) with respect to detection of aggregation. The model protein B-lactoglobulin was used to assess the robustness and accuracy of DLS. A comparison between two instruments from Malvern, Zetasizer Nano (2006) and Zetasizer Ultra (2018) was done with respect to DLS. It was determined that they were in many ways equivalent, but the newer model Ultra was favourable due to reduced noise and its ability to detect a lower concentration of aggregates. MADLS produced more precise results which is reflected in narrower distributions and has a higher sensitivity than DLS with regards to separating particles near in size. Both techniques proved sensitive enough to differentiate between aggregates and native protein. Experimental trials were performed with an active pharmaceutical ingredient, API. The experimental trials with the API aimed to investigate what conditions and surface-interfaces that might pose a risk for aggregation. Despite efforts put in creating an environment where aggregation could be monitored, aggregation could not be established. Measurements with the API generated less reliable results due to noisy data and a lack of reproducibility between individual measurements.
APA, Harvard, Vancouver, ISO, and other styles
7

Mohammed, Warda. "Optimizing Sample Dissolution Methods of Low Water Soluble Intermediate Organic Compounds to Support Environmental Risk Assessment during Active Pharmaceutical Ingredient Manufacturing." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-93416.

Full text
Abstract:
This project focus on investigating the dissolution of low water-soluble intermediate organic compounds called active pharmaceutical ingredients (API) and organic substances that are manufactured by a pharmaceutical company, Cambrex Karlskoga in Sweden. Several dissolution methods were used and evaluated using methods including total organic carbon (TOC), chemical oxygen demand (COD), biochemical oxygen demand (BOD) and Microtox toxicity test. The selection of solvents were based on previous studies and specifications from the Swedish Institute of Standards, SIS.The performance of eight solvents for different organic substances were evaluated using the above mentioned methods. Solvents that are highly volatile and have low solubility in water were excluded. Therefore, dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and Pluronic F-68, that had highest water solubility, low acute toxicity and not degradable by microorganisms, were further used to dissolve four organic substances. Furthermore, DMSO and DMF were then also used to dissolve four censored chemicals with addition of physical treatment and solvent mixtures (DMF:DMSO with ratio 1:2).Results from each method were discussed and statistical tests were also performed in order to compare different dissolution methods. In addition, quality control and quality assurance were made in order to ensure the quality of measured values from analytical methods. Four organic substances were dissolve in DMSO, DMF and Pluronic F-68 with dissolution ≥79% using six ratios of DMSO and DMF and five ratios of Pluronic F-68 which were analyzed using TOC. Physical treatment increased dissolution of two APIs with 40%. Using BOD, para-aminobenzonic acid (PABA) and 5-nitroisophthalic acid (5-NIPA) had values higher than the guideline values, which indicate high biodegradability of these organic substances. PABA, 5-NIPA and bupivacaine base were acute toxic where PABA showed EC50 values of 27.9 mg/L using DMSO and 36.0 mg/L using DMF, and EC50 values of 5-NIPA were 102 mg/L using DMSO and 84.0 mg/L using DMF, and bupivacaine base had EC50 value of 174 mg/L using solvent mixture (DMF:DMSO with ratio 1:2). With increasing amount of Pluronic F-68, 5-NIPA had increased values of EC50, thereby Pluronic F-68 was not appropriate to use.In conclusion, DMSO and DMF were most appropriate solvents to use in order to dissolve APIs and organic substances with analyte: DMSO ratio of 1:0.5 and analyte: DMF ratio of 1:0.25. In addition, physical treatment could be used in order to increase dissolution of the APIs.
APA, Harvard, Vancouver, ISO, and other styles
8

Redha, Batul H. "Impact of mixed solvent on co-crystal solubility, ternary diagrams and crystallisation scale-up. Crystallisations of Isonicotinamide ¿Benzoic Acid Co-crystals from Ethanol ¿Water Co-solvent System." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5683.

Full text
Abstract:
The production of stable solid crystalline material is an important issue in the pharmaceutical industry and the challenge to control the desired active pharmaceutical ingredient (API) with the specific chemical and physical properties has led to more development in the drug industry. Increasing the solubility and the dissolution of the drug will increase its bioavailability; therefore the solubility can be improved with the change in the preparation method. The formation of co-crystals has emerged as a new alternate to the salts, hydrates and solvate methods since the molecules that cannot be formed by the usual methods might crystallise in the form of co-crystals. Co-crystals are multicomponent crystals which can be known as supramolecules and are constructed by the non covalent bonds between the desired former and co-former. Therefore the synthon approach was utilised to design co-crystals with the specific properties, this involves the understanding of the intermolecular interactions between these synthons. These interaction forces can be directed to control the crystal packing in the design of the new crystalline solid with the desired chemical and physical properties. The most familiar synthon was the amide group with its complementary carboxylic group, in this work isonicotinamide and benzoic acid were chosen to design co-crystal and much literature exist that introduce the determination of co-crystal growth from these two compounds. The growth of co-crystals was carried out in water, ethanol and ethanol / water mixed solvent (30 - 90 % ethanol) by utilising the Cryo-Compact circulator. Co-crystals (1:1) and (2:1) were grown in ethanol and water respectively and a mixture of both phases were grown in the mixed solvent. All the phases were examined by powder X-ray diffraction (PXRD), Raman, Infrared and 1H-NMR spectroscopy. The solubility of isonicotinamide, benzoic acid, co-crystals (1:1) and (2:1) in water, ethanol and ethanol/water mixed solvent (30 - 90 % ethanol) were determined at 25 °C, 35 °C and 40 °C by utilising the React-Array Microvate. It was important to understand some of the thermodynamic factors which control the formation of these polymorphs such as the change in the enthalpy and the change in the entropy. Also it was important to study the pH behaviour during dissolution of the former, co-former and co-crystals in water, ethanol and ethanol/water mixed solvent (30 - 90 % ethanol) in-order to examine the affect of the solvent composition on the solubility and to identify if some ions were formed during the dissociation and how this could affects the formation of co-crystals. A discussion has been introduced in this research of how similar solubility of the compounds maps the formation of the typical ternary phase diagram of the mixture of 1:1 while compounds with different solubility maps the formation of skewed phase diagram as shown in section 1.6.2.3. In this project an isotherm ternary phase diagram at 20 °C and 40 °C was constructed to map the behaviour of benzoic acid and isonicotinamide and to show all possible phases formed and the regions where all phases are represented in the ternary phase diagram were determined by the slurry method. The ternary phase diagram was used to design a drawn out and cooling crystallisation at 100 cm3 solution of 50 % ethanol / water mixed solvent and a study of the impact of seeds of co-crystals 1:1 on the cooling crystallisation method.
APA, Harvard, Vancouver, ISO, and other styles
9

Monville, Daniel. "Etude de procédés de séparation par cristallisation de matériaux d'interêt pharmaceutique relevant du polymorphisme cristallin." Rouen, 1989. http://www.theses.fr/1989ROUES011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Thi Yen. "Polymorphism of Organic Molecular Crystals." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18812.

Full text
Abstract:
Die Kristallisation ist ein wichtiger Teilprozess bei der industriellen Herstellung vieler Materialien und Medikamente. Es ist jedoch ein vielschichtiger, physikalischer Vorgang, der noch nicht vollständig aufgeklärt ist. Der Schwerpunkt dieser Arbeit liegt auf der Kristallisation von organischen, polymorphen Verbindungen aus unterschiedlichen Lösungsmitteln. Die Kristallisationsstudien wurden in einem akustischen Levitator mit Klimakammer, der den Einfluss von Temperatur, Feuchtigkeit und festen Oberflächen steuert, durchgeführt. Verschiedene analytische in-situ-Methoden und deren Kopplung kamen für die Analyse der Kristallisationsabläufe zum Einsatz. Als Unterstützung für die Interpretation der beobachteten Phänomene wurden unter äquivalenten Bedingungen Moleküldynamik-Simulationen vorgenommen. Die Kristallisation der Modellverbindungen zeigte verschiedene spezifische Kristallisationspfade, die nicht dem klassischen Kristallisationsmodell entsprachen. Zunächst verdampfte das Lösungsmittel, was mit einer Konzentrationszunahme der Lösung und der Ausbildung von charakteristischen amorphen Phasen (Polyamorphismus) einherging, und schließlich trat die Kristallisation ein. Durch die oberflächenfreie Kristallisation wurde ausschließlich nur ein Polymorph ein- und derselben Verbindung als Kristallisationsprodukt isoliert. Die gezielte Wahl der Ausgangskonzentration und eines Lösungsmittels ermöglichte die Steuerung des Kristallisationsverlaufs hin zu einer gewünschten Kristallstruktur des untersuchten Materials. Die Ergebnisse dieser Arbeit unterstützen das Verständnis über den komplexen Ablauf des Kristallisationsvorgangs, gleichzeitig zeigen sie weitere Ansätze auf, die Kristallisation zu untersuchen. Die neuen Erkenntnisse sind hilfreich bei der Optimierung der Herstellungsprozesse verschiedener Materialien.
Crystallization is a complex process, which is used in different processes in the industrial production of various materials. The limited understanding about its fundamental mechanisms challenges the control of crystallization and influences the quality of the materials. The research of this work concentrates on the crystallization studies of organic model systems (active pharmaceutical ingredients) from different organic solvents in an acoustic levitator. This specific sample environment regulates the influence that solid surfaces, temperature, and humidity have on the crystallization process. The investigations were performed with in situ analytical techniques and theoretical simulations to gain a comprehensive insight into processes, occurring intermediates, and required reaction conditions. The results show that the model systems follow specific crystallization pathways different than those predicted by the classical nucleation theory. The crystallization proceeded via the evaporation of the solvent and the formation of characteristic amorphous phases (polyamorphism) into one crystalline structure of the compound. The targeted choice of the solvent and the concentration enabled the guidance of the pathways, therefore, resulting in the isolation of one desired crystalline structure. The findings are of great interest and they help explain the crystallization mechanisms on a molecular level, which is a fundamental contribution for the optimization of manufacturing processes.
APA, Harvard, Vancouver, ISO, and other styles
11

Gana, Inès. "Caractérisation physique et chimique des substances à activité thérapeutique : application aux études de profil de stabilité et de préformulation." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB164/document.

Full text
Abstract:
Le développement d’un médicament pour une cible thérapeutique donnée passe par plusieurs étapes qui se résument en une étape de criblage, une phase préclinique et plusieurs phases cliniques. Ces étapes permettent de sélectionner une substance active et de démontrer son efficacité thérapeutique et sa sécurité toxicologique. Ces deux critères définissent la qualité du médicament qui, une fois démontrée, doit être garantie pendant toute sa durée de validité. La qualité est évaluée au moyen d’études de stabilité qui sont réalisées d’abord sur la matière première de la substance active au cours de la phase de pré-développement du médicament, ensuite sur le produit fini. La stabilité intrinsèque de la substance active concerne à la fois ses propriétés chimiques et ses propriétés physiques qui sont liées à la nature de la substance. L’étude de stabilité repose d’abord sur la caractérisation de ces propriétés, et ensuite sur l’étude de la sensibilité de la substance à l’égard des facteurs environnementaux pouvant modifier les propriétés intrinsèques de la substance. L’approche adoptée dans ce travail repose d’une part sur l’évaluation de la stabilité chimique c’est à dire de la réactivité chimique des substances à usage pharmaceutique au travers des études de pureté chimique et des études de dégradation forcée de ces substances en solution, et d’autre part, sur l’évaluation de la stabilité physique. Dans ce cadre, l’étude du polymorphisme cristallin revêt une grande importance, tout comme l’aptitude à la formation d’hydrates ou de solvates. Cette étude, basée sur la thermodynamique, consiste pour l’essentiel à construire un diagramme de phases pression-température permettant de définir les domaines de stabilité relative des différentes formes cristallines. Cinq substances actives, existant à l’état solide et entrant dans la composition de médicaments administrés par voie orale, ont été étudiées dans le cadre de ce travail. L’analyse chimique du tienoxolol, présentant un effet anti-hypertenseur, a montré qu’il est très sensible à l’hydrolyse et à l’oxydation. Sept produits de dégradation ont été identifiés pour ce produit dont un schéma probable de fragmentation a été établi. Des diagrammes de phases pression-température ont été construits pour le bicalutamide et le finastéride, médicaments du cancer de prostate, en utilisant une approche topologique basée simplement sur les données disponibles dans la littérature. Cette étude a montré que la relation thermodynamique (énantiotropie ou monotropie) entre les formes cristallines sous conditions ordinaires peut être modifiée en fonction de la température et de la pression. Ce résultat est important pour la production des médicaments car il montre comment une telle information peut être obtenue par des mesures simples et accessibles aux laboratoires de recherche industrielle, sans que ces derniers soient contraints d’expérimenter sous pression. La méthode topologique de construction de diagramme de phases a été validée ensuite en la comparant à une méthode expérimentale consistant à suivre, par analyse thermique, des transitions de phases en fonction de la pression. La méthode expérimentale a été appliquée à deux composés, la benzocaine, anesthésique local, et le chlorhydrate de cystéamine, médicament utilisé pour les cystinoses. Les deux formes étudiées de benzocaine présentent une relation énantiotrope qui se transforme en relation monotrope à haute pression. Une nouvelle forme cristalline (forme III) du chlorhydrate de cystéamine a été découverte au cours de ce travail. La relation thermodynamique entre cette forme III et la forme I est énantiotrope dans tout le domaine de température et de pression. De plus, le chlorhydrate de cystéamine, classé hygroscopique, a fait l’objet d’une étude quantitative de sa sensibilité à l’eau, montrant qu’il devient déliquescent sans formation préalable d’hydrate (...)
The development of a drug for a given therapeutic target requires several steps, which can be summarized by drug screening, a preclinical phase and a number of clinical phases. These steps allow the selection of an active substance and a verification of its therapeutic efficacy and toxicological safety. The latter two criteria define the quality of the drug, which once demonstrated, must be guaranteed throughout its shelf life. Quality is assessed through stability studies that are carried out with the raw material of the active substance (preformulation phase) and with the final product. The intrinsic stability of the active substance depends on its chemical and physical properties and their characterization is the core of the stability studies, which in addition consists of sensitivity studies of the active pharmaceutical ingredient (API) for environmental factors that can modify the intrinsic properties of the substance. The approach presented in this work is based on the one hand on the assessment of the chemical stability, i.e. the reactivity of APIs through chemical purity studies and forced degradation in solution, and on the other hand on the assessment of the physical stability. For the latter, crystalline polymorphism is of great importance, as is the ability of the API to form hydrates or solvates. The study of crystalline polymorphism is based on the construction of pressure-temperature phase diagrams in accordance with thermodynamic requirements leading to the stability condition domains of the different crystalline forms. The stability behavior of five APIs used or meant for oral applications has been studied as part of this work. The chemical analysis of tienoxolol, an antihypertensive drug, has demonstrated its sensitivity for hydrolysis and oxidation. Seven degradation products were identified and patterns of fragmentation have been established. Pressure-temperature phase diagrams have been constructed for bicalutamide and finasteride, drugs against prostate cancer, using a topological approach based on data available in the literature. The study demonstrates that the thermodynamic relationship (enantiotropy or monotropy) between crystalline forms under ordinary conditions can change depending on the pressure. This is important for drug development as it demonstrates how stability information can be obtained by standard laboratory measurements accessible to industrial research laboratories without the necessity to carry out experiments under pressure. The topological approach for the construction of phase diagrams has subsequently been validated by measuring transition temperatures as a function of pressure. Experiments have been carried out with benzocaine, a local anesthetic, and with cysteamine hydrochloride, a drug used against cystinosis. Two crystalline forms were observed in the case of benzocaine. They exhibit an enantiotropic relationship that becomes monotropic at high pressure. For cysteamine hydrochloride, a new crystalline form (form III) was discovered. The thermodynamic relationship between the new form III and the known form I is enantiotropic for the entire temperature and pressure range. Cysteamine hydrochloride’s sensitivity to water has been studied, as it is hygroscopic. It has been demonstrated that it becomes deliquescent in the presence of water and no trace of a hydrate has been found. Finally, a study combining thermal and chromatographic methods showed that, under the effect of temperature, cysteamine hydrochloride turns into cystamine in the solid as well as in the liquid state, The latter is known to be an important impurity of cysteamine hydrochloride. In conclusion, the approach developed in this work allowed to characterize the stability properties of a number of APIs and to determine the factors that may change these properties and influence the intrinsic stability (...)
APA, Harvard, Vancouver, ISO, and other styles
12

Constantino, Ana Carina Martins. "Synthesis and characterization of a generic active pharmaceutical ingredient for inhalation." Master's thesis, 2014. http://hdl.handle.net/10362/101392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Canelas, Ana Rita de Paiva. "Dosing the active ingredient in pharmaceutical powder mixtures using near-infrared spectroscopy (NIRS)." Master's thesis, 2014. http://hdl.handle.net/10451/17843.

Full text
Abstract:
Tese de mestrado, Engenharia Farmacêutica, Universidade de Lisboa, Faculdade de Farmácia, 2014
O primeiro objectivo desta tese foi o desenvolvimento de um método de quantificação por espectroscopia de infravermelho próximo de modo a optimizar um processo de fabrico da OM Pharma numa fase crítica de produção: fase final da mistura. Em seguida avaliou-se a aplicabilidade do mesmo tipo de estratégia ao controlo (identificação, qualificação e quantificação) de outros pontos críticos do processo. A necessidade da implementação desta metodologia incide no facto de a este processo estar associado um volume de trabalho significativo de trabalho do Controlo de Qualidade. O modelo de quantificação desenvolvido permite a determinação do parâmetro de qualidade crítico do processo de fabrico do produto: a conformidade do teor em API na mistura; após a verificação da conformidade processo produtivo evolui para outra fase – produto final. A aplicação desta técnica desenvolvida permite, em rotina, a redução do tempo despendido em análise pelo Controlo de Qualidade. O modelo obtido foi validado de acordo com as Guidelines em vigor. Um segundo objectivo, foi o de generalizar a aprendizagem anterior e desenvolver uma biblioteca para diversas matérias-primas (princípios activos farmacêuticos) que permitisse a sua identificação e no futuro possivelmente a sua qualificação; esta necessidade surge devido à elevada quantidade de lotes de matériaprima recepcionada periodicamente na OM Pharma. A criação da biblioteca consiste no desenvolvimento de um método que permita identificar o princípio activo referido no modelo de quantificação, o que acarreta a construção de uma Biblioteca de Princípios Activos (API) obtida pela aquisição de espectros NIR de todos os API´s da OM Pharma. A biblioteca desenvolvida foi sujeita a validação interna e externa de acordo com os requisitos das Guidelines em vigor. Concluiu-se que a espectroscopia de infravermelho próximo é um método preciso e benéfico para a análise e controlo de qualidade no controlo da fase final de produção e na identificação de matérias-primas na Indústria Farmacêutica. Associada à utilização desta técnica, o aumento da produtividade através da redução do tempo de análise e, consequentemente, a redução dos custos operativos é sem dúvida um factor muito positivo.
The first goal of this thesis was the development of a near infrared quantification method in order to optimize the mixing process in OM Pharma’s production phase, followed by the application of this method in controlling other critical processes such as identification, qualification and quantification. The fact that this process is associated with a significant part in Quality Control’s work volume justified the implementation of this methodology. The developed quantification PLS model allows the determination of a product manufacturing process critical quality parameter: the compliance of the API content; after checking this production phase conformity, the process evolves into another phase - final product. The application of this technique allows the reduction of the spent time on routine analysis. The model was validated according to the guidelines. A second goal consisted in developing a library allowing to identify several raw materials (pharmaceutical active ingredients) and in the future it’s possible qualification. This need arose due to the high amount of raw material batches periodically received in OM Pharma. The library development is based on a method developed for identification of the active principle in said quantization model which leads to the construction of a library of active ingredients (API) obtained by the acquisition of NIR spectrum. The developed library was subjected to internal and external validation according to the requirements of the Guidelines in effect. The near infrared spectroscopy method proved itself as an accurate and beneficial method for the analysis and quality control in controlling the final stages of production and raw materials identification in the pharmaceutical industry. Associated to the use of this technique, increased productivity by reducing the analysis time and, consequently, the reduction of operating costs is without a doubt very positive.
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Hongtao. "Study of polymer hydration and drug release: texture analysis and model evaluation." 2012. http://hdl.handle.net/1993/8115.

Full text
Abstract:
Hydrophilic polymers in a swellable matrix tablet hydrate quickly to form a hydrogel layer on the exterior of the dosage once in contact with water or biologic fluid. The resultant hydrogel serves as a barrier to regulate water permeation into the matrix and drug diffusion from the preparation. It is therefore important to understand how the polymer is hydrated and what mechanism exists between hydrogel formation and drug dissolution from a swellable matrix tablet. In this thesis, a TA texture analyzer was utilized to monitor and characterize matrix swelling properties during dissolution process. Multiple regression models were employed to analyze the quantitative relationship between drug dissolution or hydrogel thickness and major formulation factors (polymer ratio, drug solubility). Modified release matrix tablets were prepared using four APIs with a range of aqueous solubility, i.e., acetaminophen (ACE), chlorpheniramine (CHL), ibuprofen (IBU), and pseudoephedrine hydrochloride (PSE). Two hydrophilic polymers, polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) were selected and tested as primary matrix polymers for the formulations. It was found from the experiments that multiple regression model was capable of estimating drug dissolution for both PEO and HPMC matrix preparations. Based on major formulation factors the regression models provide satisfactory prediction of drug release, which could further aid in formulation development and optimization.
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Yu-Chi, and 林育琪. "Study on Pharmaceutical Reverse Engineering among the Active Pharma-ceutical Ingredient (API) Particle Size, Crystal, and Surfactant in Reference Listed Drug (RLD)." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/k3r269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography