To see the other types of publications on this topic, follow the link: Activity coefficients at infinite dilution.

Journal articles on the topic 'Activity coefficients at infinite dilution'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Activity coefficients at infinite dilution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hait, Mitchell J., Charles L. Liotta, Charles A. Eckert, et al. "Space predictor for infinite dilution activity coefficients." Industrial & Engineering Chemistry Research 32, no. 11 (1993): 2905–14. http://dx.doi.org/10.1021/ie00023a064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shing, K. S. "Infinite-dilution activity coefficients from computer simulation." Chemical Physics Letters 119, no. 2-3 (1985): 149–51. http://dx.doi.org/10.1016/0009-2614(85)80050-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Viades-Trejo, Josefina, Alfredo Amigo, and J. Gracia-Fadrique. "Activity coefficients at infinite dilution for surfactants." Fluid Phase Equilibria 250, no. 1-2 (2006): 158–64. http://dx.doi.org/10.1016/j.fluid.2006.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sørensen, Esben Lauge, Wen Hao, and Paolo Alessi. "Infinite dilution activity coefficients in poly(ethylene glycol)." Fluid Phase Equilibria 56 (January 1990): 249–56. http://dx.doi.org/10.1016/0378-3812(90)85106-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chialvo, A. C. "Integral method for infinite dilution activity coefficients calculation." Canadian Journal of Chemistry 70, no. 6 (1992): 1645–49. http://dx.doi.org/10.1139/v92-205.

Full text
Abstract:
An integral method to determine infinite dilution activity coefficients [Formula: see text] from data sets of finite concentration activity coefficients is proposed for binary systems. This method is based upon the integration of the experimental dependence of ln [Formula: see text] over different composition ranges. The limiting behavior of this function is analysed, in order to improve the precision of its integration. The accuracy of this method is demonstrated by the calculation of [Formula: see text] for several systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Jian-Bin, Bao, Huang Qiang, Chen Geng-Hua, and Han Shi-Jun. "Determination of Large Value Activity Coefficients at Infinite Dilution." Acta Physico-Chimica Sinica 9, no. 06 (1993): 724–27. http://dx.doi.org/10.3866/pku.whxb19930602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Putnam, R., R. Taylor, A. Klamt, F. Eckert, and M. Schiller. "Prediction of Infinite Dilution Activity Coefficients Using COSMO-RS." Industrial & Engineering Chemistry Research 42, no. 15 (2003): 3635–41. http://dx.doi.org/10.1021/ie020974v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sancho, Martin F., M. A. Rao, and D. L. Downing. "Infinite dilution activity coefficients of apple juice aroma compounds." Journal of Food Engineering 34, no. 2 (1997): 145–58. http://dx.doi.org/10.1016/s0260-8774(97)89919-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bastos, J. C., M. E. Soares, and A. G. Medina. "Infinite dilution activity coefficients predicted by UNIFAC group contribution." Industrial & Engineering Chemistry Research 27, no. 7 (1988): 1269–77. http://dx.doi.org/10.1021/ie00079a030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sadowski, G., L. V. Mokrushina, and W. Arlt. "Finite and infinite dilution activity coefficients in polycarbonate systems." Fluid Phase Equilibria 139, no. 1-2 (1997): 391–403. http://dx.doi.org/10.1016/s0378-3812(97)00142-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tabai, S., M. Rogalski, R. Solimando, and S. K. Malanowski. "Activity Coefficients of Chlorophenols in Water at Infinite Dilution." Journal of Chemical & Engineering Data 42, no. 6 (1997): 1147–50. http://dx.doi.org/10.1021/je960336h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lin, Shiang-Tai, and Stanley I. Sandler. "Infinite dilution activity coefficients from ab initio solvation calculations." AIChE Journal 45, no. 12 (1999): 2606–18. http://dx.doi.org/10.1002/aic.690451217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Morton, David W., and Colin L. Young. "Infinite dilution activity coefficients of C2–C8hydrocarbons in alkylcyclohexanes." Journal of Chemical Thermodynamics 30, no. 2 (1998): 143–51. http://dx.doi.org/10.1006/jcht.1997.0284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cori, L., and P. Delogu. "Infinite dilution activity coefficients of ethanol-n-alkanes mixtures." Fluid Phase Equilibria 27 (January 1986): 103–18. http://dx.doi.org/10.1016/0378-3812(86)87044-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bao, Jian-Bin, and Shi-Jun Han. "Infinite dilution activity coefficients for various types of systems." Fluid Phase Equilibria 112, no. 2 (1995): 307–16. http://dx.doi.org/10.1016/0378-3812(95)02800-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gracia-Fadrique, J., Pilar Brocos, Ángel Piñeiro, and Alfredo Amigo. "Activity Coefficients at Infinite Dilution from Surface Tension Data." Langmuir 18, no. 9 (2002): 3604–8. http://dx.doi.org/10.1021/la011761y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bermudez, Alicia, Gloria Foco, and Susana B. Bottini. "Infinite Dilution Activity Coefficients in Tributyl Phosphate and Triacetin." Journal of Chemical & Engineering Data 45, no. 6 (2000): 1105–7. http://dx.doi.org/10.1021/je000094s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Soave, Giorgio S., Alberto Bertucco, and Luca Vecchiato. "Equation-of-State Group Contributions from Infinite-Dilution Activity Coefficients." Industrial & Engineering Chemistry Research 33, no. 4 (1994): 975–80. http://dx.doi.org/10.1021/ie00028a027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Alessi, P., A. Cortesi, M. Orlandini, M. Napoli, and L. Conte. "Activity coefficients at infinite dilution of organic solvents in hydrofluoroparaffins." Journal of Fluorine Chemistry 58, no. 2-3 (1992): 301. http://dx.doi.org/10.1016/s0022-1139(00)80758-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sandler, S. I. "Infinite dilution activity coefficients in chemical, environmental and biochemical engineering." Fluid Phase Equilibria 116, no. 1-2 (1996): 343–53. http://dx.doi.org/10.1016/0378-3812(95)02905-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Suojiang, Akio Tsuboi, Hiroaki Nakata, and Takeshi Ishikawa. "Infinite Dilution Activity Coefficients in Ethylene Glycol and Ethylene Carbonate." Journal of Chemical & Engineering Data 48, no. 1 (2003): 167–70. http://dx.doi.org/10.1021/je0102107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Foco, Gloria, M. Dolores Bermejo, Aleksandra J. Kotlewska, Fred van Rantwijk, Cor J. Peters, and Susana B. Bottini. "Activity Coefficients at Infinite Dilution in Methylimidazolium Nitrate Ionic Liquids." Journal of Chemical & Engineering Data 56, no. 3 (2011): 517–20. http://dx.doi.org/10.1021/je100998r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alessi, P., A. Cortesi, M. Napoli, and L. Conte. "Activity coefficients at infinite dilution of organic solvents in hydrofluoroparaffins." Journal of Fluorine Chemistry 72, no. 1 (1995): 43–47. http://dx.doi.org/10.1016/0022-1139(94)03178-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vega, Aurelio, and José Coca. "Activity coefficients at infinite dilution determined by gas—liquid chromatography." Journal of Chromatography A 586, no. 2 (1991): 303–7. http://dx.doi.org/10.1016/0021-9673(91)85137-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tämm, Kaido, and Peeter Burk. "QSPR analysis for infinite dilution activity coefficients of organic compounds." Journal of Molecular Modeling 12, no. 4 (2005): 417–21. http://dx.doi.org/10.1007/s00894-005-0062-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Krummen, Michael, Detlef Gruber, and Jürgen Gmehling. "Measurement of Activity Coefficients at Infinite Dilution in Solvent Mixtures Using the Dilutor Technique." Industrial & Engineering Chemistry Research 39, no. 6 (2000): 2114–23. http://dx.doi.org/10.1021/ie990830p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Krummen, Michael, Peter Wasserscheid, and Jürgen Gmehling. "Measurement of Activity Coefficients at Infinite Dilution in Ionic Liquids Using the Dilutor Technique." Journal of Chemical & Engineering Data 47, no. 6 (2002): 1411–17. http://dx.doi.org/10.1021/je0200517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Eike, David M., Joan F. Brennecke, and Edward J. Maginn. "Predicting Infinite-Dilution Activity Coefficients of Organic Solutes in Ionic Liquids." Industrial & Engineering Chemistry Research 43, no. 4 (2004): 1039–48. http://dx.doi.org/10.1021/ie034152p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Orbey, Hasan, and Stanley I. Sandler. "Relative measurements of activity coefficients at infinite dilution by gas chromatography." Industrial & Engineering Chemistry Research 30, no. 8 (1991): 2006–11. http://dx.doi.org/10.1021/ie00056a051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Haidl, Jan, and Vladimír Dohnal. "Activity Coefficients of Water at Infinite Dilution in Common Oxygenated Solvents." Journal of Chemical & Engineering Data 65, no. 5 (2020): 2790–97. http://dx.doi.org/10.1021/acs.jced.0c00108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sadafian, A., and J. Crouzet. "Infinite dilution activity coefficients and relative volatilities of some aroma compounds." Flavour and Fragrance Journal 2, no. 3 (1987): 103–7. http://dx.doi.org/10.1002/ffj.2730020305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Economou, Ioannis G., P. Vimalchand, and Marc D. Donohue. "Measurement of infinite dilution activity coefficients using high performance liquid chromatography." Fluid Phase Equilibria 68 (November 1991): 131–49. http://dx.doi.org/10.1016/0378-3812(91)85013-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Proust, Patricio, Eduardo Meyer та Zahira Jaque. "Infinite-dilution activity coefficients for systems with α- and β-pinene". Fluid Phase Equilibria 73, № 1-2 (1992): 139–46. http://dx.doi.org/10.1016/0378-3812(92)85044-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nikolic, Aleksandar, Djendji Vastag, Marija Rozsa-Tarjani, and Slobodan Petrovic. "Infinite Dilution Activity Coefficients of Organic Solutes in N,N-Diethyldodecanamide." Journal of Chemical & Engineering Data 39, no. 3 (1994): 618–20. http://dx.doi.org/10.1021/je00015a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Juang, Michi, George K. Morgan, and David W. Arnold. "Infinite-dilution activity coefficients of organic solutes in fluorene and dibenzofuran." Journal of Chemical & Engineering Data 34, no. 2 (1989): 161–65. http://dx.doi.org/10.1021/je00056a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhenggang, Wang, Liang Zhiyong, and Zhong Yunxiao. "Infinite dilution activity coefficients of nitrotoluene isomers in liquid crystal PBHpB." Journal of Chemical Physics 96, no. 9 (1992): 7099–101. http://dx.doi.org/10.1063/1.462542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gidley, M. A., and D. Stubley. "Activity coefficients at infinite dilution of solutes in liquid-crystalline solvents." Journal of Chemical Thermodynamics 18, no. 6 (1986): 595–600. http://dx.doi.org/10.1016/0021-9614(86)90145-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Poe, Russell B., Sarah C. Rutan, Mitchell J. Hait, Charles A. Eckert, and Peter W. Carr. "Developing models for infinite dilution activity coefficients using factor analysis methods." Analytica Chimica Acta 277, no. 2 (1993): 223–38. http://dx.doi.org/10.1016/0003-2670(93)80436-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Brandani, Stefano, Vincenzo Brandani, Glovanni Del Re, and Gabriele Di Giacomo. "Activity coefficients from a virial expansion about their infinite-dilution values." Chemical Engineering Journal 46, no. 1 (1991): 35–42. http://dx.doi.org/10.1016/0300-9467(91)80006-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

da Silva, Eirik F. "Use of free energy simulations to predict infinite dilution activity coefficients." Fluid Phase Equilibria 221, no. 1-2 (2004): 15–24. http://dx.doi.org/10.1016/j.fluid.2004.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Marcinkowski, Łukasz, Joachim Eichenlaub, Elham Ghasemi, Żaneta Polkowska, and Adam Kloskowski. "Measurements of Activity Coefficients at Infinite Dilution for Organic Solutes in the Ionic Liquids N-Ethyl- and N-Octyl-N-methylmorpholinium Bis(trifluoromethanesulfonyl)imide. A Useful Tool for Solvent Selection." Molecules 25, no. 3 (2020): 634. http://dx.doi.org/10.3390/molecules25030634.

Full text
Abstract:
In recent years, many papers describing ionic liquids (IL) as promising solvents in separation techniques have been published. The conscious choice of appropriate ionic liquid as absorption media in effective extraction of selected types of analytes requires deeper understanding of the analyte−IL interactions. Therefore, intensive research is conducted to determine the values of activity coefficient at infinite dilution, which allows us to characterize the nature of these interactions. Based on the inverse gas chromatography retention data, activity coefficients at infinite dilution γ 13 ∞ of 48 different organic compounds in the ionic liquids N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [C2C1Mor][TFSI] and N-octyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [C8C1Mor][TFSI] were determined. The measurements covered a broad range of volatile organic compounds, including n-alkanes, n-alkenes, n-alkynes, alcohols, aldehydes, ketones, aromatic compounds and common polar solvents, representing different types of interactions. Activity coefficients at infinite dilution were measured in the temperature range from 313.15 to 363.15 K. The excess partial molar enthalpies and entropies at infinite dilution were determined. Selectivity at infinite dilution was also calculated for exemplary separation processes in the hexane/benzene system. The obtained results were analyzed and compared with literature data for ionic liquids containing the same anion [TFSI]¯ and different cations. The study results indicate that some potential applications of the investigated ionic liquids in separation problems exist.
APA, Harvard, Vancouver, ISO, and other styles
42

Xiong, Jie Ming, Chen Chen, and Ming Lan Ge. "Quantitative Relationship between Organic Molecular Structure and Infinite Dilution Activity Coefficients in 1-Ethyl-3-Methylimidazolium Tetrafluoroborate." Advanced Materials Research 524-527 (May 2012): 1848–51. http://dx.doi.org/10.4028/www.scientific.net/amr.524-527.1848.

Full text
Abstract:
Base on structural descriptors including dipole moments (μ), Energy gap (∆ε), hydration energy (∆H), and hydrophobic parameter lg P of 25 organic solutes, the quantitative structure-property relationship (QSPR) method was used to correlate the values of activity coefficients at infinite dilution, , for the solutes in ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) at 323.15 K. The result showed that the QSPR model had a good correlation and could successfully describe . The quantitative relationship between organic molecular structure and in [EMIM][BF4] was obtained and the correlation parameters were analyzed to understand the interactions that affect activity coefficients at infinite dilution.
APA, Harvard, Vancouver, ISO, and other styles
43

Gerber, Renan P., and Rafael de P. Soares. "Prediction of Infinite-Dilution Activity Coefficients Using UNIFAC and COSMO-SAC Variants." Industrial & Engineering Chemistry Research 49, no. 16 (2010): 7488–96. http://dx.doi.org/10.1021/ie901947m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fukuchi, Kenji, Katsumi Miyoshi, Toru Watanabe, Setsuko Yonezawa, and Yasuhiko Arai. "Measurement and correlation of infinite dilution activity coefficients of ethers in alkanols." Fluid Phase Equilibria 156, no. 1-2 (1999): 197–206. http://dx.doi.org/10.1016/s0378-3812(99)00037-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fukuchi, Kenji, Katsumi Miyoshi, and Yasuhiko Arai. "Measurement and correlation of infinite dilution activity coefficients of ethers in alkanes." Fluid Phase Equilibria 136, no. 1-2 (1997): 135–39. http://dx.doi.org/10.1016/s0378-3812(97)00115-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Slusher, Joseph T. "Estimation of infinite dilution activity coefficients in aqueous mixtures via molecular simulation." Fluid Phase Equilibria 153, no. 1 (1998): 45–61. http://dx.doi.org/10.1016/s0378-3812(98)00399-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abildskov, J., R. Gani, P. Rasmussen, and J. P. O’Connell. "Analysis of infinite dilution activity coefficients of solutes in hydrocarbons from UNIFAC." Fluid Phase Equilibria 181, no. 1-2 (2001): 163–86. http://dx.doi.org/10.1016/s0378-3812(01)00491-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Foco, G., A. Bermudez, and S. Bottini. "Infinite Dilution Activity Coefficients in Mono-, Di-, and Tripalmitin and Palmitic Acid." Journal of Chemical & Engineering Data 41, no. 5 (1996): 1071–74. http://dx.doi.org/10.1021/je960098q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Demirel, Y. "Calculation of infinite dilution activity coefficients by the NRTL and UNIQUAC models." Canadian Journal of Chemical Engineering 68, no. 4 (1990): 697–701. http://dx.doi.org/10.1002/cjce.5450680424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jian-Bin, Bao, Hang Lai-Lai, and Han Shi-Jun. "Infinite-dilution activity coefficients of (propanone + an n-alkane) by gas stripping." Journal of Chemical Thermodynamics 26, no. 7 (1994): 673–80. http://dx.doi.org/10.1006/jcht.1994.1078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!