Dissertations / Theses on the topic 'Activity detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Activity detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ent, Petr. "Voice Activity Detection." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-235483.
Full textCROCE, MARCO. "Analog Voice Activity Detection." Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1243909.
Full textThis Thesis presents a Voice Activity Detection (VAD) system, entirely implemented in the analog domain with a 180-nm CMOS technology. The circuit features a current consumption of 0.9 μA from a 1.8-V supply voltage. The VAD system is composed of three main blocks: a preamplifier, a signal energy computation block, and a VAD decision block. The audio signal coming from the microphone is amplified and filtered by a preamplifier that features a variable gain ranging from −12 dB to +12 dB with 6-dB steps and a bandpass transfer function with poles at 300 Hz and 6.8 kHz. The preamplifier has been implemented both with continuous-time resistors to allow large decoupling capacitors at the input, where the gain is set by the resistance ratio, and with switched resistors to reduce the chip area, where the gain is set by capacitance ratio. The second block of the circuit computes the audio signal energy in the analog domain, exploiting the transistor quadratic current-voltage relation to square the signal and integrating the resulting current with a resettable capacitance. The final block produces the VAD signal. In this block the computed signal energy is used for two different purposes: determine the background noise level and the energy average. The noise level is constantly updated and compared with the averaged energy to provide the VAD signal. The measurement results on an integrated prototype demonstrate that the analog VAD can achieve performances comparable with state-of-the-art digital implementations, but with much lower power consumption.
Bashir, Sulaimon A. "Change detection for activity recognition." Thesis, Robert Gordon University, 2017. http://hdl.handle.net/10059/3104.
Full textHao, Shuang. "Early detection of spam-related activity." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53091.
Full textJonas, Gregory David. "On-line detection of optical activity." Thesis, Birkbeck (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286460.
Full textThorell, Hampus. "Voice Activity Detection in the Tiger Platform." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6586.
Full textSectra Communications AB has developed a terminal for encrypted communication called the Tiger platform. During voice communication delays have sometimes been experienced resulting in conversational complications.
A solution to this problem, as was proposed by Sectra, would be to introduce voice activity detection, which means a separation of speech parts and non-speech parts of the input signal, to the Tiger platform. By only transferring the speech parts to the receiver, the bandwidth needed should be dramatically decreased. A lower bandwidth needed implies that the delays slowly should disappear. The problem is then to come up with a method that manages to distinguish the speech parts from the input signal. Fortunately a lot of theory on the subject has been done and numerous voice activity methods exist today.
In this thesis the theory of voice activity detection has been studied. A review of voice activity detectors that exist on the market today followed by an evaluation of some of these was performed in order to select a suitable candidate for the Tiger platform. This evaluation would later become the foundation for the selection of a voice activity detector for implementation.
Finally, the implementation of the chosen voice activity detector, including a comfort noise generator, was done on the platform. This implementation was based on the special requirements of the platform. Tests of the implementation in office environments show that possible delays are steadily being reduced during periods of speech inactivity, while the active speech quality is preserved.
Yanenko, M., and A. Popov. "ECoG Eigenvalues Analysis for Motor Activity Detection." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/47108.
Full textWejdelind, Marcus, and Nils Wägmark. "Multi-speaker Speech Activity Detection From Video." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297701.
Full textEn social robot kommer i många fall tvingasatt hantera konversationer med flera interlokutörer och därolika personer pratar samtidigt. För att uppnå detta är detviktigt att roboten kan identifiera talaren för att i nästa ledkunna bistå eller interagera med denna. Detta projekt harundersökt problemet med en visuell utgångspunkt där ettFaltningsnätverk (CNN) implementerades och tränades medvideo-input från ett redan befintligt dataset (AVA-Speech).Målet för nätverket har varit att för varje ansikte, och i varjetidpunkt, detektera sannolikheten att den personen talar. Vårtbästa resultat vid användning av Optical Flow var 0,753 medanvi lyckades nå 0,781 med en annan typ av förprocessering avdatan. Dessa resultat motsvarade den existerande vetenskapligalitteraturen på området förvånansvärt bra där 0,77 har visatsig vara ett lämpligt jämförelsevärde.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Wu, Xiaorong. "Purification, detection, and mutagenic activity of fusaproliferin /." Search for this dissertation online, 2004. http://wwwlib.umi.com/cr/ksu/main.
Full textCournapeau, David. "Online unsupervised classification applied to voice activity detection." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/126467.
Full textMcEachern, Matthew. "Neural Voice Activity Detection and its practical use." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119733.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 87-90).
The task of producing a Voice Activity Detector (VAD) that is robust in the presence of non-stationary background noise has been an active area of research for several decades. Historically, many of the proposed VAD models have been highly heuristic in nature. More recently, however, statistical models, including Deep Neural Networks (DNNs) have been explored. In this thesis, I explore the use of a lightweight, deep, recurrent neural architecture for VAD. I also explore a variant that is fully end-to-end, learning features directly from raw waveform data. In obtaining data for these models, I introduce a data augmentation methodology that allows for the artificial generation of large amounts of noisy speech data from a clean speech source. I describe how these neural models, once trained, can be deployed in a live environment with a real-time audio stream. I find that while these models perform well in their closed-domain testing environment, the live deployment scenario presents challenges related to generalizability.
by Matthew McEachern.
M. Eng.
Lum, Victor C. (Victor Cheung-Sing) 1977. "An activity detection system for frequency-encoded pixels." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86538.
Full textMurray, James. "Detection of enzyme activity on self-assembled monolayers." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7503/.
Full textTrauchessec, Vincent. "Local magnetic detection and stimulation of neuronal activity." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS301/document.
Full textInformation transmission in the brain occurs through ionic currents flowing inside the neuronal network. Understanding how the brain operates requires probing this electrical activity by measuring the associated electric or magnetic field. At the cellular scale, electrophysiology techniques are well mastered, but there is no tool to perform magnetophysiology. Mapping brain activity through the magnetic field generated by neuronal communication is done via magnetoencephalography (MEG). This technique is based on SQUIDs (Superconducting Quantum Interference Devices) that operate at liquid Helium temperature. This parameter implies to avoid any contact with living tissue and a shielding system that increases the distance between the neurons and the sensors, limiting spatial resolution. This thesis work aims at providing a new tool to performmagnetic recordings at the neuronal scale. The sensors developed during this thesis are based on the Giant Magneto-Resistance (GMR) effect. Operating at room temperature, they can be miniaturize and shaped according to the experiment, while exhibiting a sensitivity that allows to measure amplitude of 10⁻⁹ T. Before targeting neurons, the use of GMR-based sensors for magnetic recordings of biological activity has been validated through invitro experiments on the mouse soleus muscle. This biological system has been chosen because of its simple organization, allowing for a realistic modelling, and for its robustness, in order to get reliable and replicable results. The perfect agreement between the measurements and the theoretical predictions represents a consistent validation of the GMR technology for biological applications. Then a specially adapted needle-shaped probe carrying micron-sized GMR sensors has been developed for in-vivo experiment in cat visual cortex. The very first magnetic signature of action potentials inside the neuropil has been measured, paving the way towards magnetophysiology
Chen, Wu-Nan. "Multiple microphone voice activity detection and adaptive noise cancellation." Thesis, University of the West of Scotland, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365083.
Full textTaylor, Adrian. "Anomaly-Based Detection of Malicious Activity in In-Vehicle Networks." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36120.
Full textMurrin, Paul. "Objective measurement of voice activity detectors." Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325647.
Full textYu, Jie. "Microfluidic electrochemical detection of prostate cancer using telomerase activity." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30528.
Full textCohen, Doron. "Human fetal phonocardiography and the detection of fetal activity." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235812.
Full textEliasson, Björn. "Voice Activity Detection and Noise Estimation for Teleconference Phones." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-108395.
Full textLoy, Chen Change. "Activity understanding and unusual event detection in surveillance videos." Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/664.
Full textVia, Michelle Frances. "Atmospheric Effects on Radar/Ladar Detection of Seismic Activity." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1440979742.
Full textOrosco, Manuel. "Amplified detection of protease activity using porous silicon nanostructures." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3352688.
Full textTitle from first page of PDF file (viewed June 16, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 134-141).
Alshatta, Mohammad Samer. "Real Time Gym Activity Detection using Monocular RGB Camera." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41440.
Full textMcGroggan, N. "Neutral network detection of epileptic seizures in the electroencephalogram." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249426.
Full textLaverty, Stephen William. "Detection of Nonstationary Noise and Improved Voice Activity Detection in an Automotive Hands-free Environment." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-051105-110646/.
Full textVaswani, Namrata. "Change detection in stochastic shape dynamical models with applications in activity modeling and abnormality detection." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1787.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Borelli, Gabriele. "EMG activity detection and conduction velocity estimation from capacitive measurements." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13967/.
Full textBerti, Matteo. "Anomalous Activity Detection with Temporal Convolutional Networks in HPC Systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22185/.
Full textDoukas, Nikolaos. "Voice activity detection using energy based measures and source separation." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245220.
Full textKonn, Daniel Robert. "Direct detection of neuronal activity in the brain using MRI." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396778.
Full textTothill, I. E. "The detection and characterisation of cellulolytic activity in emulsion paint." Thesis, Cranfield University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234507.
Full textJung, Jaeyeon Ph D. Massachusetts Institute of Technology. "Real-time detection of malicious network activity using stochastic models." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37892.
Full textIncludes bibliographical references (p. 115-122).
This dissertation develops approaches to rapidly detect malicious network traffic including packets sent by portscanners and network worms. The main hypothesis is that stochastic models capturing a host's particular connection-level behavior provide a good foundation for identifying malicious network activity in real-time. Using the models, the dissertation shows that a detection problem can be formulated as one of observing a particular "trajectory" of arriving packets and inferring from it the most likely classification for the given host's behavior. This stochastic approach enables us not only to estimate an algorithm's performance based on the measurable statistics of a host's traffic but also to balance the goals of promptness and accuracy in detecting malicious network activity. This dissertation presents three detection algorithms based on Wald's mathematical framework of sequential analysis. First, Threshold Random Walk (TRW) rapidly detects remote hosts performing a portscan to a target network. TRW is motivated by the empirically observed disparity between the frequency with which connections to newly visited local addresses are successful for benign hosts vs. for portscanners. Second, it presents a hybrid approach that accurately detects scanning worm infections quickly after the infected local host begins to engage in worm propagation.
(cont.) Finally, it presents a targeting worm detection algorithm, Rate-Based Sequential Hypothesis Testing (RBS), that promptly identifies high-fan-out behavior by hosts (e.g., targeting worms) based on the rate at which the hosts initiate connections to new destinations. RBS is built on an empirically-driven probability model that captures benign network characteristics. It then presents RBS+TRW, a unified framework for detecting fast-propagating worms independently of their target discovery strategy. All these schemes have been implemented and evaluated using real packet traces collected from multiple network vantage points.
by Jaeyeon Jung.
Ph.D.
Cochran, Theodore O. "Immunology Inspired Detection of Data Theft from Autonomous Network Activity." NSUWorks, 2015. http://nsuworks.nova.edu/gscis_etd/42.
Full textMinotto, Vicente Peruffo. "Audiovisual voice activity detection and localization of simultaneous speech sources." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/77231.
Full textGiven the tendency of creating interfaces between human and machines that increasingly allow simple ways of interaction, it is only natural that research effort is put into techniques that seek to simulate the most conventional mean of communication humans use: the speech. In the human auditory system, voice is automatically processed by the brain in an effortless and effective way, also commonly aided by visual cues, such as mouth movement and location of the speakers. This processing done by the brain includes two important components that speech-based communication require: Voice Activity Detection (VAD) and Sound Source Localization (SSL). Consequently, VAD and SSL also serve as mandatory preprocessing tools for high-end Human Computer Interface (HCI) applications in a computing environment, as the case of automatic speech recognition and speaker identification. However, VAD and SSL are still challenging problems when dealing with realistic acoustic scenarios, particularly in the presence of noise, reverberation and multiple simultaneous speakers. In this work we propose some approaches for tackling these problems using audiovisual information, both for the single source and the competing sources scenario, exploiting distinct ways of fusing the audio and video modalities. Our work also employs a microphone array for the audio processing, which allows the spatial information of the acoustic signals to be explored through the stateof- the art method Steered Response Power (SRP). As an additional consequence, a very fast GPU version of the SRP is developed, so that real-time processing is achieved. Our experiments show an average accuracy of 95% when performing VAD of up to three simultaneous speakers and an average error of 10cm when locating such speakers.
Zhang, Yuning. "Unsupervised Motion Artifact Detection in Wrist-Measured Electrodermal Activity Data." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501876131092933.
Full textGiglio, Louis. "Detection, evaluation, and analysis of global fire activity using MODIS data." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3490.
Full textThesis research directed by: Geography. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Breitenmoser, Sabina. "Evaluation and implementation of neural brain activity detection methods for fMRI." Thesis, Linköping University, Department of Biomedical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3069.
Full textFunctional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique used to study brain functionality to enhance our understanding of the brain. This technique is based on MRI, a painless, noninvasive image acquisition method without harmful radiation. Small local blood oxygenation changes which are reflected as small intensity changes in the MR images are utilized to locate the active brain areas. Radio frequency pulses and a strong static magnetic field are used to measure the correlation between the physical changes in the brain and the mental functioning during the performance of cognitive tasks.
This master thesis presents approaches for the analysis of fMRI data. The constrained Canonical Correlation Analysis (CCA) which is able to exploit the spatio-temporal nature of an active area is presented and tested on real human fMRI data. The actual distribution of active brain voxels is not known in the case of real human data. To evaluate the performance of the diagnostic algorithms applied to real human data, a modified Receiver Operating Characteristics (modified ROC) which deals with this lack of knowledge is presented. The tests on real human data reveal the better detection efficiency with the constrained CCA algorithm.
A second aim of this thesis was to implement the promising technique of constrained CCA into the software environment SPM. To implement the constrained CCA algorithms into the fMRI part of SPM2, a toolbox containing Matlab functions has been programmed for the further use by neurological scientists. The new SPM functionalities to exploit the spatial extent of the active regions with CCA are presented and tested.
Ruiz, Calvo Felix. "Towards a Highly Accurate Mental Activity Detection by Electroencephalography Sensor Networks." Thesis, KTH, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98873.
Full textJames, Christopher J. "Detection of epileptiform activity in the electroencephalogram using artificial neural networks." Thesis, University of Canterbury. Electrical and Electronic Engineering, 1997. http://hdl.handle.net/10092/6760.
Full textCoulson, D. T. R. "Detection and characterisation of proteolytic activity in the cystic fibrosis lung." Thesis, Queen's University Belfast, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246455.
Full textFahlgren, Anton. "Combining Acoustic Echo Cancellation and Voice Activity Detection in Social Robotics." Thesis, KTH, Matematik (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-248001.
Full textVi ger en teoretisk introduktion till grundläggande koncept inom kontinuerlig och diskret signalhantering som Fourier-transformen, linjära tidsinvarianta system och spektralanalys av slumpsignaler. En andra del behandla teori och tillämpningar för ekokansellering och röstdetektion i så kallad social robotik. Existerande metoder presenteras tillsammans med nya specialiserade metoder och samtliga utvärderas
Avgerinakis, Konstantinos. "Video processing and background subtraction for change detection and activity recognition." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/807437/.
Full textEwell, Cris Vincent. "Detection of Deviations From Authorized Network Activity Using Dynamic Bayesian Networks." NSUWorks, 2011. http://nsuworks.nova.edu/gscis_etd/146.
Full textVale, Sérgio Daniel Rodrigues. "Sistema Pessoal de Deteção de Atividade: PADS - Personal Activity Detection System." Master's thesis, [s.n.], 2013. http://hdl.handle.net/10284/3825.
Full textVivemos numa era em que a esperança média de vida tem aumentado, traduzindo-se diretamente num crescimento cada vez mais significativo da população na faixa etária da terceira idade. Este fenómeno faz com que cada vez mais pessoas idosas vivam sozinhas em casa e tenham dificuldade em encontrar pessoas que as possam acompanhar e ajudar no seu dia-a-dia. Reconhece-se ainda que a atividade e o exercício físico são fundamentais para manter e promover a saúde, em particular nesta faixa etária, permitindo em geral melhorar a qualidade de vida e segurança das pessoas. Neste sentido têm vindo a ser desenvolvidos vários sistemas comerciais para monitorizar a atividade de pessoas, em particular idosos, por forma a acompanhar o que estes fazem durante o dia, recolhendo dados estatísticos de atividade bem como permitindo identificar potenciais situações de perigo (e.g., quedas). Contudo, as soluções existentes envolvem normalmente a aquisição de equipamentos com custos geralmente elevados e que baseiam o seu funcionamento na análise de apenas um tipo de informação ou fenómeno físico (e.g., acelerómetro, análise de cenas, etc.), limitando desta forma o resultado e a fidelidade da monitorização. Neste contexto, o trabalho aqui apresentado propõe a utilização de um sistema de monitorização económico, baseado na fusão de vários tipos de informação (e.g., atividade física, localização do utilizador, etc.) recolhida num espaço inteligente preparado para o efeito. Este sistema combina informação recolhida e processada por vários componentes. Utiliza, por exemplo, dispositivos móveis hoje em dia vulgarizados e disponíveis por custos razoáveis (cf. smartphones) e que vêm equipados com um conjunto de sensores e capacidades de processamento adequados; utiliza ainda outros componentes vulgarmente existentes em contextos residenciais (cf. computador e câmaras de baixa resolução apontadas aos locais a monitorizar) e que podem ser integrados e reutilizados na solução proposta. Esta dissertação propõe e descreve a estrutura física e lógica do sistema PADS (Personal Activity Detection System). O protótipo desenvolvido organiza-se em vários componentes talhados para a recolha e fusão de diferentes tipos de informação: i) uma aplicação Android que identifica e regista cinco atividades físicas distintas (cf. parado, andar, correr, deitado e queda); ii) uma aplicação desenvolvida em C++ para deteção da presença do utilizador com base no reconhecimento de faces; iii) uma aplicação que utiliza serviços da nuvem da Google para consultar as tomas de medicamentos do utilizador que se encontram agendadas; iv) uma aplicação em C++ que faz a fusão de toda a informação obtida pelos módulos anteriores e permite determinar a atividade do utilizador. Apresenta-se a arquitetura global do sistema e os vários componentes envolvidos, descrevendo-se com pormenor todos os algoritmos e os detalhes de implementação. Procedeu-se ainda à avaliação do módulo de deteção de atividade bem como da aplicação de fusão. Procurou-se analisar e comparar diferentes técnicas de determinação de atividade que podem ser consideradas como alternativa à opção aplicada neste projeto; analisaram-se ainda outros trabalhos relacionados na deteção de atividade recorrendo a várias fontes de informação, procurando comparar as diferentes vertentes e mais-valias de cada alternativa.
We live in an era in which the average life expectancy has increased, resulting directly in a growth each time more significant of senior population. This phenomenon makes that more and more elderly people live at home alone and have difficulty finding people who can attend and help in their daily lives. It is also recognized that activity and physical exercise are essential to maintain and promote health, in particular in this age group, allowing to, in general, improve the quality of life and people’s safety. In this way, many commercial systems have been developed in order to monitor people’s activity, in particular elderly, to follow what they do during the day, collecting statistical data of activity, as well as identifying potential dangerous situations (e.g. falls). However, the existing solutions involve, usually, the acquisition of equipment with generally high cost and they base their operation in the analysis of just one kind of information or physical phenomenon (e.g. accelerometer, scene analysis, etc.), which limits, in this way, the results and the monitoring fidelity. In this context, the work presented here proposes the use of an economic monitoring system, based in the fusion of several kinds of information (e.g. physical activity, user’s location, etc.) collected in a smart place set for this purpose. This system combines information collected and processed by several components. It uses, for example, mobile devices that are ordinary nowadays and that are available for reasonable costs (cf. smartphones) and that are equipped with a set of sensors and adequate processing abilities; it also uses other components commonly existents in residential contexts (cf. computer and low resolution cameras oriented to the places to monitor) and that can be integrated and reused in the proposed solution. This dissertation proposes and describes the physical and logical structure of the PADS (Personal Activity Detection System) system. The developed prototype is organized in several components that are able to collect and fuse different kinds of information: i) an Android application that identifies and records 5 distinctive physical activities (cf. standing, walking, running, lying down and fall); ii) an application developed in C++ to detect the user’s presence, based in the face recognition; iii) an application that uses Google Cloud services to consult the user’s drug doses that are scheduled; iv) an application in C++ that fuses all the information obtained by the previous modules and allows to determinate the user’s activity. It is presented the global architecture of the system and the various involved components, describing with detail all of the algorithms and the details of implementation. We also proceeded to the evaluation of the detection of activities module, as well as the fusion application. We sought to analyze and compare different techniques of activities determination that could be considered as an alternative to the applied option in this project. We also analyzed other works related to activity detection, recurring to several information sources, trying to compare several sides and strengths of each alternative.
Nous vivons une époque où l'espérance de vie augmente considérablement, tout en ayant comme conséquence directe une croissance importante de la population de personne âgé. Les raisons de ce phénomène font que, de plus en plus de personne âgées vivent seules ayant du mal à trouver des personnes qui puisse surveiller et aider leur vie au quotidien. Aussi, il est reconnu que les activités et l’exercice physique sont essentiels pour maintenir et promouvoir la santé, en particulier dans ce groupe d'âge, ce qui permet en général d'améliorer la qualité de vie et la sécurité des personnes. C’est pour ce fait que l’apparition et le développement de divers systèmes commercial pour la surveillance des personnes sont conçus, en particulier pour les personnes âgées, afin de garder une “empreinte“ de leurs quotidien, recueillant les données des activités, tout en permettent d'identifier des situations potentiellement dangereuses (p. ex., les chutes). Cependant, les équipements existantes sont très couteux à l’achat et fonctionne ayant comme base l’analyse d’un seul et unique type d’information ou phénomène physiques, (p.ex. accéléromètre, analyse de scène, etc.), limitant ainsi le résultat et la précision des même. Dans ce contexte, le travail présenté propose l'utilisation d'un système de surveillance économique, ayant comme base la fusion de différents types d'informations (par exemple, localisation de l'utilisateur, l'activité physique, etc.) recueillie dans un espace intelligent préparé pour cette effet. Ce système assimile les informations réunies et par moyen de plusieurs composants, traites ces mêmes informations. Ce système utilise des appareils mobiles disponibles de nos jours et à des prix accessible au grand public (p.ex. Smartphones, etc.) qui sont équipées d'un ensemble de capteurs et des capacités de traitement d’informations appropriées. Aussi, ce système utilise aussi d’autres composants qui se trouvent couramment dans les maisons de nos jours (tels qu’ordinateur et caméras basse résolution qui sont dirigée vers les locaux a surveillé) et qui peuvent être intégrées et réutilisées dans la solution proposée. Cette dissertation propose et décrit la structure physique et logique du système PADS (Personal Activity Detection System). Le prototype développé est conçus avec différents composants scrupuleusement choisi pour la recueille et fusion des différents types d'informations: i) Une application Android qui identifie et enregistre 5 activités physiques distinctes (debout, marche, courir, couchée et tomber); ii) Une application développée en C++ pour la détection de présence de l'utilisateur, basée sur la reconnaissance de visage; iii) Une application qui utilise les services “Cloud“ de Google pour consulter quelle sont les médicaments, après une correct calendarisation, à prendre par l’utilisateur; IV) Une application en C++ qui permet la fusion de toutes les informations obtenues par les modules précédents et qui permet de déterminer l'activité de l'utilisateur. Il est présenté l'architecture globale du système et les différents composants impliqués, décrivant avec détail tous les algorithmes et les détails de mise en oeuvre. De plus, il fut effectué une évaluation du module de détection de l'activité, tout comme pour l’application de fusion. Le but de cette même évaluation fut analyser et comparer les différentes techniques de détermination de l'activité qui peut être considérée comme une alternative à l'option appliquée dans ce projet. Nous avons également examiné d’autres travaux liés à la détection de mouvement, à l'aide de plusieurs sources d'information, cherchent à comparer les différents aspects et les plus-values de chaque solution.
Lyka, Erasmia. "Passive acoustic mapping for improved detection and localisation of cavitation activity." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:d99dd0b6-3777-4506-9ef5-1b613433de58.
Full textRajna, Z. (Zalan). "Detection of activity avalanches and speeding up seek in MREG data." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201509071960.
Full textUusimmat tutkimukset osoittavat, että MEG/EEG-datasta on visuaalisesti havaittavissa neuraalisia verkkoja joissa tapahtuu avalanssi-ilmiöitä. Lisäksi klassisessa fMRI-datassa on havaittu neuronaalisiin avalansseihin liittyviä hemodynaamisia jälkiä, jotka ilmenevät äkillisinä voimakkaina piikkeinä datassa. Neuraalisen avalanssin havaitsemisen automatisointi on kuitenkin hyvin haastavaa, koska data sisältää myös merkittäviä fysiologista kohinakomponentteja. Tämän tutkimuksen tavoitteena oli kehittää laskennallinen menetelmä havaita aivojen aktiviteetin leviämisen dynaamisia rakenteita hyödyntäen ultranopeaa magneettisen resonanssin enkefalografiaa (MREG). MREG kykenee saavuttamaan aivojen näytteistyksen 10 Hz taajuudella, mikä mahdollistaa neuraalisen avalanssin spatiaalisen leviämisen havaitsemisen. Työssä kehitettiin menetelmä erottaa neuraalinen avalanssi liikkeen ja fysiologisten pulsaatioiden tuottamista signaalikomponenteista, sekä havaita aktiviteettiavalanssi ihmisaivojen lepotilan aikaisessa neuraalisessa verkossa (default mode network, DMN). Menetelmä identifioi aivojen aktiviteettipiikkejä DMN-verkosta, normalisoi piikkien ympärillä olevan aktiviteettidatan yksilöllisesti ja lopulta esittää avalanssin leviämisen videona. Verkon toiminnan tutkimiseksi yksilölliset avalanssivideot määrätyistä DMN-verkon osista keskiarvoistettiin koehenkilöryhmän ylitse, jolloin ryhmäkäyttäytymisestä pääteltiin identifioitujen piikkien todella liittyvän DMN-verkosta alkaneisiin tai sen ylittäviin avalansseihin. Lisäksi työssä kehitettiin menetelmä nopeuttaa fMRI/MREG-datan käsittelyaikoja merkittävästi, mistä on suurta etua käsiteltäessä kompressoituja NIfTI-muodossa tallennettuja suuria neurokuvantamisen aineistoja. Menetelmä perustuu uudenlaiseen indeksointimenetelmään, jolla kompressoitua aineistoa voidaan selata nopeudella, joka ylittää monisatakertaisesti tai jopa monituhatkertaisesti perinteellisen menetelmän nopeuden. Konfiguroimalla indeksirakenne sopivasti voidaan asettaa toimintapiste menetelmälle siten, että haluttu kompromissi nopeuden ja indeksirakenteen viemän muistitilan kesken saavutetaan
Nyströmer, Carl. "Musical Instrument Activity Detection using Self-Supervised Learning and Domain Adaptation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280810.
Full textI och med de ständigt växande media- och musikkatalogerna krävs verktyg för att söka och navigera i dessa. För mer komplexa sökförfrågningar så behövs det metadata, men att manuellt annotera de enorma mängderna av ny data är omöjligt. I denna uppsats undersöks automatisk annotering utav instrumentsaktivitet inom musik, med ett fokus på bristen av annoterad data för modellerna för instrumentaktivitetsigenkänning. Två metoder för att komma runt bristen på data föreslås och undersöks. Den första metoden bygger på självövervakad inlärning baserad på automatisk annotering och slumpartad mixning av olika instrumentspår. Den andra metoden använder domänadaption genom att träna modeller på samplade MIDI-filer för detektering av instrument i inspelad musik. Metoden med självövervakning gav bättre resultat än baseline och pekar på att djupinlärningsmodeller kan lära sig instrumentigenkänning trots att ljudmixarna saknar musikalisk struktur. Domänadaptionsmodellerna som endast var tränade på samplad MIDI-data presterade sämre än baseline, men att använda MIDI-data tillsammans med data från inspelad musik gav förbättrade resultat. En hybridmodell som kombinerade både självövervakad inlärning och domänadaption genom att använda både samplad MIDI-data och inspelad musik gav de bästa resultaten totalt.
Zoetgnandé, Yannick. "Fall detection and activity recognition using stereo low-resolution thermal imaging." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S073.
Full textNowadays, it is essential to find solutions to detect and prevent the falls of seniors. We proposed a low-cost device based on a pair of thermal sensors. The counterpart of these low-cost sensors is their low resolution (80x60 pixels), low refresh rate, noise, and halo effects. We proposed some approaches to bypass these drawbacks. First, we proposed a calibration method with a grid adapted to the thermal image and a framework ensuring the robustness of the parameters estimation despite the low resolution. Then, for 3D vision, we proposed a threefold sub-pixel stereo matching framework (called ST for Subpixel Thermal): 1) robust features extraction method based on phase congruency, 2) matching of these features in pixel precision, and 3) refined matching in sub-pixel accuracy based on local phase correlation. We also proposed a super-resolution method called Edge Focused Thermal Super-resolution (EFTS), which includes an edge extraction module enforcing the neural networks to focus on the edge in images. After that, for fall detection, we proposed a new method (called TSFD for Thermal Stereo Fall Detection) based on stereo point matching but without calibration and the classification of matches as on the ground or not on the ground. Finally, we explored many approaches to learn activities from a limited amount of data for seniors activity monitoring
Samad, Sarah. "Contactless detection of cardiopulmonary activity for a person in different scenarios." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0030/document.
Full textNowadays, contact-less monitoring patient's heartbeat using Doppler radar has attracted considerable interest of researchers, especially when the traditional electrocardiogram (ECG) measurements with fixed electrodes is not practical in some cases like infants at risk or sudden infant syndrome or burn victims. Due to the microwave sensitivity toward tiny movements, radar has been employed as a noninvasive monitoring system of human cardiopulmonary activity. According to Doppler effect, a constant frequency signal reflected off an object having a varying displacement will result in a reflected signal, but with a time varying phase. In our case, the object is the patient's chest; the reflected signal of the person's chest contains information about the heartbeat and respiration. The system is based on a vector network analyzer and 2 horn antennas. The S21 is computed using a vector network analyzer. The phase variation of S21 contains information about cardiopulmonary activity. Processing techniques are used to extract the heartbeat signal from the S21 phase. This thesis presents a comparative study in heartbeat detection, considering different radiated powers and frequencies. The radiated powers used are between 3 and -17 dBm and the operational frequencies used are 2.4, 5.8, 10 and 20 GHz. This helps to make a compromise between the minimum power emitted and the complexity of the measurement system. In addition, a comparative study of several signal processing methods is proposed to extract the best technique for heartbeat measurement and thus to extract its parameters. Processing techniques are based on wavelet transforms and conventional filtering in order to make a comparison between them. The parameter extracted in this thesis is the heartbeat rate HR. Measurements were performed simultaneously with a PC-based electrocardiograph to validate the heartbeat rate measurement. Since the person can move from a room to another inside his home, measurements from the four sides of the person and behind a wall are performed. In addition, a modeling approach based on cardio-respiratory measurement for a person who is walking forward is presented. Furthermore, a comparison between single and two-antenna microwave systems for a non-breathing person is carried out to test the accuracy of the single-antenna system relative to the two antenna microwave system. After that, measurements are performed using one antenna microwave system for a person who breathes normally