Academic literature on the topic 'Acute kidney failure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acute kidney failure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acute kidney failure"
Williams, Debra M., Sue S. Sreedhar, John J. Mickell, and James C. M. Chan. "Acute Kidney Failure." Archives of Pediatrics & Adolescent Medicine 156, no. 9 (September 1, 2002): 893. http://dx.doi.org/10.1001/archpedi.156.9.893.
Full textOKUDA, SEIYA. "Kidneys. 2. Acute kidney failure in old people." Nihon Naika Gakkai Zasshi 88, no. 3 (1999): 527–31. http://dx.doi.org/10.2169/naika.88.527.
Full textPei, Juan, Yeoungjee Cho, Yong Pey See, Elaine M. Pascoe, Andrea K. Viecelli, Ross S. Francis, Carolyn van Eps, et al. "Impact of deceased donor with acute kidney injury on subsequent kidney transplant outcomes–an ANZDATA registry analysis." PLOS ONE 16, no. 3 (March 25, 2021): e0249000. http://dx.doi.org/10.1371/journal.pone.0249000.
Full textISHIKAWA, ISAO. "Motion post-acute kidney failure." Nihon Naika Gakkai Zasshi 94, no. 9 (2005): 1949–55. http://dx.doi.org/10.2169/naika.94.1949.
Full textQian, Qi, Karl A. Nath, Yiming Wu, Tarek M. Daoud, and Sanjeev Sethi. "Hemolysis and Acute Kidney Failure." American Journal of Kidney Diseases 56, no. 4 (October 2010): 780–84. http://dx.doi.org/10.1053/j.ajkd.2010.03.025.
Full textDirkes, Susan M. "Acute Kidney Injury vs Acute Renal Failure." Critical Care Nurse 36, no. 6 (December 1, 2016): 75–76. http://dx.doi.org/10.4037/ccn2016170.
Full textCho, Seong, Yu-Ji Lee, and Sung-Rok Kim. "Acute Peritoneal Dialysis in Patients with Acute Kidney Injury." Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 37, no. 5 (September 2017): 529–34. http://dx.doi.org/10.3747/pdi.2016.00264.
Full textKwong, Y. Diana, Kathleen D. Liu, and Raymond K. Hsu. "Kidney Dysfunction After Acute Heart Failure: Is Acute Kidney Disease the New Acute Kidney Injury?" Kidney International Reports 7, no. 3 (March 2022): 378–80. http://dx.doi.org/10.1016/j.ekir.2021.12.034.
Full textAkhmedova Elena Alexandrovna. "Clinical and functional features of the bronchopulmonary system in chronic kidney disease." Texas Journal of Medical Science 16 (January 18, 2023): 57–59. http://dx.doi.org/10.62480/tjms.2023.vol16.pp57-59.
Full textChen, Jia-Jin, Tao-Han Lee, George Kuo, Chieh-Li Yen, Shao-Wei Chen, Pao-Hsien Chu, Pei-Chun Fan, Victor Chien-Chia Wu, and Chih-Hsiang Chang. "Acute Kidney Disease After Acute Decompensated Heart Failure." Kidney International Reports 7, no. 3 (March 2022): 526–36. http://dx.doi.org/10.1016/j.ekir.2021.12.033.
Full textDissertations / Theses on the topic "Acute kidney failure"
Nitescu, Nicoletta. "Studies on pathophysiological mechanisms in experimental models of acute renal failure /." Göteborg : [Nicoletta Nitescu] : Institute of Clinical Sciences, Department of Anesthesiology and Intensive Care, Göteborg University, 2007. http://hdl.handle.net/2077/3101.
Full textWellings, Robert Paul. "Studies of endothelin in the kidney and its relationship to acute renal failure." Thesis, Queen Mary, University of London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309625.
Full textSawhney, Simon Amrit. "Long term outcomes of acute kidney injury : establishing prognosis to design optimal management." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=236457.
Full textNeumayr, Andreas Vipa Thanachartwet. "Malarial acute renal failure at Mae Sot general hospital, Thailand : outcome and associated risk factors for death and dialysis /." Abstract, 2008. http://mulinet3.li.mahidol.ac.th/thesis/2551/cd414/5038610.pdf.
Full textLICL has E-Thesis 0038 ; please contact computer services. LIRV has E-Thesis 0038 ; please contact circulation services.
Prowle, John Richard. "Renal blood flow and the pathophysiology of acute kidney injury." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607649.
Full textKadri, Amer N., Roop Kaw, Yasser Al-Khadra, Hasan Abumasha, Keyvan Ravakhah, Adrian V. Hernandez, and Wai Hong Wilson Tang. "The role of B-type natriuretic peptide in diagnosing acute decompensated heart failure in chronic kidney disease patients." Termedia Publishing House Ltd, 2018. http://hdl.handle.net/10757/624714.
Full textRevisión por pares
Wood, Robin. "Acute dichromate poisoning following the use of toxic purgatives." Master's thesis, Faculty of Health Sciences, 1990. https://hdl.handle.net/11427/31755.
Full textSousa, Ticiana Meireles. "AÃÃes farmacolÃgicas da ser-thr-lys-guanilina em sistema de perfusÃo de rim isolado de rato." Universidade Federal do CearÃ, 2005. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6947.
Full textA guanilina e a uroguanilina foram recentemente descobertas, respectivamente, no intestino e na urina, (Currie et al., 1992; Hamra et al., 1993). Fazem parte da famÃlia de peptÃdeos que ativam a guanilato ciclase de membrana (GC-C), aumentando os nÃveis intracelulares de cGMP (Schulz et al., 1990). EstÃo presentes em diversos tecidos, como respiratÃrio, linfonodos, testÃculos, cÃrebro e medula adrenal (Field et a.l., 1978; Forte et al., 1988, 1989; Hamra et al., 1993; Schulz et al., 1992). Foi comprovado que adicionando uma lisina na porÃÃo N-terminal, obtÃm-se um anÃlogo mais estÃvel e potente que a guanilina. O objetivo desse estudo à pesquisar os efeitos renais de um novo anÃlogo, ser-thr-lys-guanilina em sistema de perfusÃo. Os rins foram perfundidos com a soluÃÃo de Krebs-Henseleit modificada com 6g% de albumina bovina. Os dados foram comparados atravÃs de teste t de Student e ANOVA, com significÃncia p<0,05. Na dose de 0,1 Âg/mL, esse peptÃdeo apresentou efeitos similares aos da uroguanilina, na dose de 0,5 Âg/mL, em todos os parÃmetros testados. Ambas causaram aumento na pressÃo de perfusÃo (PP: de 101,5Â3,7 para 111Â2,9mmHg; de 101,2Â2,6 para 113,4Â2,5mmHg), no fluxo urinÃrio (FU: de 0,158Â0,016 para 0,223Â0,01 mL.g-1.min-1; de 0,16Â0,016 para 0,226Â0,2mL.g-1.min-1) e diminuiÃÃo no transporte tubular total e proximal de sÃdio (%TNa+: de 0,774Â0,06 para 0,724Â0,035; de 0,735Â0,065 para 0,773Â0,084), potÃssio (%TK+: de 66,89Â2,77 para 47,29Â3,34; de 63,54Â3,82 para 42,54Â8,14) e cloreto (%TCl-: de 85,69Â1,19 para 73,59Â2,63). Esses resultados foram similares aos previamente descritos apÃs a administraÃÃo da toxina termo-estÃvel da Escherichia coli (STa), guanilina, uroguanilina e lys-guanilina no mesmo sistema (Lima et al., 1992; Fonteles et al., 1996 e 1998). A dose maior (1 Âg/mL) causou aÃÃo antidiurÃtica (FU: de 0,165Â0,004 para 0,111Â0,009mL.g-1.min-1) e nenhum efeito sobre o transporte de sÃdio, embora a diminuiÃÃo na reabsorÃÃo tubular de potÃssio (%TK+: de 72,29Â1,2 para 49,73Â6,75) e cloreto (%TCl-: de 85,96Â0,79 para 81,9Â1,47) continuassem presentes. Nesta dose, nÃo apenas bloqueou o efeito diurÃtico da uroguanilina, como continuou causando um efeito antidiurÃtico significativo (FU: de 0,168Â0,004 para 0,116Â0,006). No entanto, nÃo foi capaz de bloquear os efeitos natriurÃticos da uroguanilina (%TNa+: de 85,35Â2,55 para 79,92Â1,05). O mecanismo de aÃÃo renal preciso dos peptÃdeos da famÃlia das guanilinas ainda nÃo foi completamente esclarecido. Sabe-se que esses peptÃdeos se ligam aos receptores GC-C (Schulz et al., 1990), porÃm hà indÃcios de que existam outras vias de aÃÃo renal, independentes desse receptor. Hà ainda a possibilidade de que haja duas entidades agindo de modo antagÃnico no sistema. Talvez haja a necessidade de isolÃ-los. A descoberta dos peptÃdeos da famÃlia das guanilinas promoveu avanÃos significativos na compreensÃo da regulaÃÃo endÃgena dos transportes de Ãgua e eletrÃlitos. O completo esclarecimento do seu mecanismo de aÃÃo renal oferece perspectivas reais para o tratamento de doenÃas como a hipertensÃo arterial.
Guanylin and uroguanylin are members of a family of peptides that stimulates cGMP production in several organic tissues, as intestine, kidney, airway, linfonodes, testis, brain and adrenal medulla (Field et a.l., 1978; Forte et al., 1988, 1989; Hamra et al., 1993; Schulz et al., 1992). Their 15 amino acid structures have been identified from rat intestine and opossum urine, respectively (Currie et al., 1992; Hamra et al., 1993), and they seem to be the link between intestine and kidney functions in controling blood pressure, as the âintestinal natriuretic hormoneâ suggested by some authors (Carey, 1978; Lennane et al., 1975). It was demonstrated that a Lysine-1 analog of guanylin is a more potent natriuretic and kaliuretic peptide. The aim of this study was to evaluate the renal effects of a novel analog of guanylin: ser-thr-lys-guanylin. Its effects were examined using isolated perfused kidneys from Wistar rats. All experiments were preceded by a 30 minutes internal control period and an external control group (C), in which the kidneys were perfused only with Krebs-Henseleit solution containing 6g% of a previously dialysed bovine albumine serum. The data was analyzed by Student t-test and ANOVA. The level of significance was set at p<0,05. Ser-thr-lys-guanylin, at the lowest dose (0.1 Âg/mL) and uroguanylin (0.5Âg/mL) caused similar effects. Both groups were able to increase perfusion presure (PP: 101.5Â3.7 to 111Â2.9mmHg; 101.2Â2.6 to 113.4Â2.5 mmHg), urinary flow (UF: 0.158Â0.016 to 0.223Â0.019 mL.g-1.min-1; 0.16Â0.016 to 0.226Â0.2mL.g-1.min-1) and to decrease sodium (%TNa+: 0.774Â0.06 to 0.724Â0.035; 0.735Â0.065 to 0.773Â0.084), potassium (%TK+: 66.89Â2.77 to 47.29Â3.34; 63.54Â3.82 to 42.54Â8.14) and cloride (%TCl-: 85.69Â1.19 to 73.59Â2.63) tubular reabsorption. Similar effects were also found in response to the Escherichia coli heat-stable enterotoxin (STa), guanylin, uroguanylin and lys-guanylin in the same system (Lima et al., 1992; Fonteles et al., 1996 e 1998). However, a greater dose (1Âg/mL), not only caused signifcantly decrease in the urinary flow (UF: 0.165Â0.004 to 0.111Â0.009 mL.g-1.min-1), but was also able to block the diuretic effects of uroguanylin (UF: 0.168Â0.004 to 0.116Â0.006 mL.g-1.min-1), although it still decreased potassium (%TK+: 72.29Â1.2 to 49.73Â6.75) and cloride(%TCl-: 85.96Â0.79 to 81.9Â1.47) tubular reabsorption. The precise renal mecanism of action of this family of peptides has not yet been fully elucidated. Deletion of GC-C genes in transgenic mice reveals that intestinal fluid secretion responses to STa are completely lost (Schulz et al., 1997 & Mann et al., 1997), but the natriuretic responses to STa and uroguanylin are retained (Carrithers et al., 1999), suggesting that other receptors are envolved. There is a possibility that there are to peptides causing antagonic effects. Further isolation may be necessary. Further studies are required to elucidate the specific renal mechanism of action of this new peptide. The discovery of guanylin and its family has promoted significant advances in the understanding of endogenous control of salt, water and eletrolites. The study of its analogs in perfused rat kidneys could help in elucidating their specific renal mecanism of action and bring great perspectives in the control of blood pressure.
Giuliani, Stefano. "AMNIOTIC FLUID STEM CELLS AND KIDNEY REGENERATION." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3426889.
Full textL’insufficienza renale terminale ha raggiunto ormai proporzioni epidemiche in tutto il mondo e, tutt’oggi, non sono ancora state trovate terapie sostitutive o rigenerative efficaci a lungo termine. Attualmente la terapia dialitica e il trapianto allogenico rimangono le uniche alternative valide da utilizzare in questi pazienti nonostante se ne conoscano i numerosi limiti e complicanze. Recenti dati epidemiologici, in America e in Europa, mostrano che l’insufficienza renale colpisce circa l’8% della popolazione. [1] L’aumentata domanda di organi, in aggiunta all’insufficiente disponibilita’ di donatori, sta spingendo sempre piu’ i ricercatori di tutto il mondo a sviluppare nuove alternative terapeutiche per la sostituzione dei reni non funzionanti. [2] La creazione di organi bio-artificiali, attraverso l’utilizzo delle tecniche di ingegneria tissutale, ha finora dimostrato grandi difficolta’ specialmente nel riprodurre quegli organi e tessuti la cui struttura e funzione risultino particolarmente complesse, come nel caso dei reni. Storicamente gli ingegneri tissutali che si sono cimentati in questo campo hanno potuto utilizzare esclusivamente linee cellulari adulte dando origine a costrutti bidimensionali caratterizzati da limitata funzione e difficile applicabilita’ in vivo. [3] Nell’ultima dacade le cellule staminali stanno ricevendo sempre maggiore attenzione scientifica grazie al loro crescente impiego nella medicina rigenerativa per la ricostruzione e rigenerazione di tessuti bio-artificiali ed organi. Le cellule Staminali Embrionali (SE), derivate dalla blastocisti, hanno come caratteristiche peculiari il fatto che si replichino ampliamente e che siano capaci di formare aggregati (corpi embrioidi) che possono dar luogo ad una varietà di cellule specializzate come, ad esempio, cellule neurali, cardiache e pancreatiche. [3, 4] Il reclutamento di questo tipo di cellule staminali, tuttavia, comporta la distruzione di embrioni umani creando spinosi problemi etici e morali che portano, in molti Paesi, a vietarne l’utilizzo e il progresso scientifico. Per evitare questo tipo di controversie ricercatori di varie discipline hanno identificato potenziali fonti di cellule staminali alternative. [4, 5] E’ ormai ben noto che in molti tessuti adulti esistono cellule progenitrici con il compito di rigenerare o riparare l'organo a seguito dei fisiologici processi di senescenza o in caso di danno. [6, 7] Ci sono sempre piu’ evidenze che questi progenitori d’organo abbiano caratteristiche di plasticità piu’ elevate di quanto si pensasse originariamente. Parallelamente molti ricercatori credono che la rigenerazione di organi adulti derivi principalmente dalla mobilizzazione di cellule staminali provenienti dal midollo osseo. E’ stato dimostrato che cellule staminali del midollo osseo possono attraversare la barriera endolteliale e dar luogo a differenti linee cellulari differenziate, trasformando cellule circolanti in fegato, cervello, pancreas, pelle, intestino e anche rene. [27, 29] Il liquido amniotico e’stato usato per anni come uno strumento sicuro e valido per la ricerca di malattie genetiche e congenite del feto. Tuttavia, il liquido amniotico contiene un grande numero di cellule progenitrici che posono avere un importante ruolo nelle applicazioni della bioingegneria tissutale. Streubel et al. [8] hanno riportato l’utilizzo di cellule non emopoietiche per la conversione di amniociti in miociti. Recentemente una popolazione di cellule staminali c-Kit+, isolate nel liquido amniotico umano e murino, e’ stata caratterizzata e differenziata in tessuti originati dai tre foglietti embrionali: muscolare, neuronale, adipocitario, epatico, osseo ed endoteliale [9] Nel laboratorio diretto dal dr. R.E. De Filippo, Assistant Professor presso il Childrens Hospital di Los Angeles, abbiamo ampiamente studiato e utilizzato questa nuova popolazione di cellule staminali derivate dal liquido amniotico focalizzando le nostre ricerche sul loro utilizzo nella rigenerazione renale. Abbiamo dimostrato che questa popolazione totipotente di cellule mesenchimali e’ capace di riprodurre alcune tappe essenziali della nefrogenesi dopo essere state iniettate in reni embrionici. Tuttavia, le cellule staminali da liquido amniotico rapresentano meno dell’1% dell’intera popolazione cellulare e forse esistono altri progenitori cellulari, nel liquido stesso, gia’ orientati e piu’ proni alla differenziazione di particolari linee cellulari renali che possano essere utilizzate per gli stessi scopi rigenerativi ma con risultati migliori. Il volume e la composizione del liquido amniotico cambia durante la gravidanza e dall’ottava settimana di gestazione i reni fetali iniziano a produrre liquido che rapidamente aumenta di volume durante il secondo trimestre. [10] Il contatto tra il liquido amniotico e i diversi tessuti fetali sembra giustificare la presenza dei differenti tipi cellulari disciolti nel liquido stesso. La presenza di cellule mature derivanti dai tre foglietti germinali e’ stata gia’ dimostrata in passato come pure la presenza di progenitori cellulari di origine mesenchimale ed emopoietica prima della 12ma settimana gestazionale nell’uomo. [11,12,13] Cellule esprimenti proteine e markers genetici tipici di tessuti diversi come cervello, cuore, e pancreas sono state ritrovate nel liquido amniotico ma ulteriori indagini sono necessarie per completare la caratterizzazione dei diversi tipi cellulari presenti alle diverse eta’ gestazionali. [14, 15, 16] Lo sviluppo renale e’ un complesso processo di attivazione genica, interazioni cellulari ed extracellulari che devono aver luogo secondo un ordine spazio-temporale preciso e nella quantita’ adeguata. Durante l’embriogenesi, il rene metanefrico origina dall’invasione da parte della gemma ureterale, derivata dal dotto epiteliale di Wolffian, nel mesenchima metanefrico. [17] La gemma ureterale inizia la sua arborizzazione all’interno del mesenchima e portera’ alla formazione dell’intero sistema escretore, dall’uretere ai dotti collettori, mentre il mesenchima metanefrico dara’ luogo alle strutture epiteliali costituenti i nefroni (dal tubulo distale alla capsula di Bowman). CD-24 e Caderina 11 sono due markers di superficie che vengono usati per identificare cellule staminali ancora indifferenziate ma presenti nel mesenchima metanefrico prima di ricevere l’induzione da parte della gemma ureterale. [18] In aggiunta, altri markers di superficie che identificano una sottopopolazione di cellule appartenenti al mesenchima metanefrico nei vari stadi dell’induzione verso la nefrogenesi sono stati recentemente descritti in letteratura: Caderine E, PDGFRα, PDGFRβ, e NGFR ad alta affinita’. [19] Cellule Staminali derivate da liquido amniotico e differenziazione renale in vitro e in vivo Negli ultimi sette anni il gruppo di ricerca di cui ho fatto parte per due anni negli Stati Uniti (University of Southern California - Childrens Hospital Los Angeles) sta studiando una popolazione di cellule staminali ricavate da liquido amniotico (Amniotic Fluid Stem Cells, AFSC), umano e murino. Caratterictiche peculiari di questa popolazione cellulare sono: l’espressione di geni e marcatori di superficie comuni a cellule staminali di origine embrionale e mesenchimale; propagazione in vitro senza necessita’ di feeder-layer; mantenimento della lunghezza dei telomeri; capacità di differenziarsi in vitro e in vivo in molti tipi differenti di cellule e tessuti provenienti da tutti e tre i foglietti embrionali. [7] In particolare, negli ultimi 4 anni, il nostro gruppo si e’ concentrato sull’utilizzo di questa particolare popolazione di cellule staminali derivate da liquido amniotico nella rigenerazione renale in vitro e in vivo. [20, 21] Brevemente, siamo stati in grado di dimostrare, basandoci su un sistema in vitro, come le hAFSC abbiano la capacità di differenziarsi in parenchima renale dopo iniezione diretta in reni embrionici (12.5-16 giorni di gestazione) coltivati in vitro fino a 10 giorni. Le cellule staminali da liquido amniotico erano state precedentemente transfettate con il gene codificante una proteina fluorescente verde (GFP) e un secondo gene codificante per il Lac-Z. Mediante queste transfezioni siamo stati in grado di distinguere le cellule iniettate e dopo aver coltivato gli organi, anche a lungo termine (10 giorni), e’ stato possibile dimostrare la loro integrazione ed assimilazione nelle differenti tappe dello sviluppo renale. Analisi istologica dei reni iniettati con le staminali ha rivelato quanto questa popolazione di cellule sia capace di contribuire alle strutture primordiali del rene a partire dalla vescicola renale fino alle ultime fasi della nefrogenesi (tubuli e glomeruli). Mediante RT-PCR abbiamo quindi dimostrato la neoespressione, da parte delle AFSC iniettate, di geni attivi nelle diverse fasi dello sviluppo embrionale del nefrone. [20] Dopo aver dimostrato questa abilità di integrazione nel tessuto renale in via di sviluppo e la compartecipazione a tutte le tappe utili alla formazione del nefrone maturo in vitro, la nostra idea e’ stata quella di procedere all’applicazione in vivo delle cellule staminali da liquido amniotico. L’obiettivo e’ stato quello di dimostrare la loro reale capacità di sopravvivere, replicarsi ed integrarsi attivamente nei reni danneggiati di un modello di topo immunodepresso. Cellule staminali da liquido amniotico di topo (mouse Amniotic Fluid Stem Cells, mAFSC), esprimenti Lac-z e Luciferasi come marcatori, sono quindi state iniettate per via endovenosa (vena della coda) in un modello di topi immunodepressi con tubulonecrosi acuta. Il nostro ultimo obiettivo e’ stato quello di dimostrare se le cellule staminali venissero utilizzate dai reni danneggiati per riparare il danno e quindi fossero in grado di velocizzare la ripresa funzionale dell’organo. I risultati di tali esperimenti hanno dimostrato che le AFSC hanno una buona capacita’, anche in vivo, di integrarsi e partecipare attivamente alla riparazione del danno. Esse hanno iniziato ad esprimere GDNF, un fattore di trascrizione precoce presente nello sviluppo renale e in particolare nella formazione tubulare e glomerulare, e diversi altri markers tubulari quali Acquaporina-2, Agglutinina P, Agglutinina DB. Dagli esperimenti in vivo e’ quindi emerso che la popolazione di cellule staminali totipotenti, derivata da liquido amniotico (hAFSC), e’ capace di differenziarsi in diversi tipi cellulari appartenenti sia a strutture glomerulari (capsula di Bowman) che tubulari (tubulo distale e prossimale) senza dimostrare una chiara specificita’ per una delle due strutture. [9] In accordo con recenti pubblicazioni, abbiamo dimostrato un effetto immuno-modulartorio delle cellule staminali. Lo studio approfondito delle citochine, endogene ed esogene (prodotte dalle hAFSC iniettate), e il loro effetto nel migliorare la porzione infiammatoria del danno renale sono il passo successivo delle nostre ricerche. Un limite potenziale all’utilizzo terapeutico di questa popolazione cellulare totipotente risiede nel fatto che la maggior parte delle malattie renali che portano ad insufficienza renale terminale, colpiscono primariamente le strutture tubulari o quelle glomerulari, ma difficilmente entrambe contemporaneamente. Utilizzando dunque cellule staminali troppo indifferenziate, e quindi totipotenti, si rischierebbe di perdere efficacia terapeutica a causa del fatto che esse riceverebbero troppi segnali contemporaneamente in senso differenziativo e sarebbero indotte a seguire petterns riparativi non mirati e meno efficaci nella riparazione del danno principale. Se infatti avessimo bisogno di trattare selettivamente un danno tubulare piuttosto che uno glomerulare, l’utilizzo di cellule staminali totipotenti non sarebbe cosi’ ottimale come invece l’utilizzo di progenitori tubulo specifici opportunamente espansi ed eventualmente modificati. Questo concetto insieme al fatto che il liquido amniotico e’ composto da differenti popolazioni cellulari ha spinto a considerare la possibilita’ che ci possano essere linee cellulari maggiormente orientate in senso renale (progenitori organo specifici) che possano essere utilizzate in modo piu’ vantaggioso per la rigenerazione di strutture renali specifiche (id. cellule tubulari prossimali o distali, podociti, cellule mesangiali, cellule endoteliali e altro) Caratterizzazione cellulare del liquido amniotico e ricerca di progenitori renali specifici o gia’ parzialmente differenziati L’ultima parte della tesi si e’ concentrata nello studiare ed identificare le varie popolazioni cellulari presenti nel liquido amniotico a diverse settimane di gestazione. I campioni, di eta’ compresa tra le 15 e le 20 settimane di gestazione, sono stati ottenuti tramite amniocentesi, tecnica usata per studiare il cariotipo del feto durante lo sviluppo. Sono stati valutati differenti terreni di coltura, indagando proliferazione e conservazione della morfologia nei campioni ottenuti. L’analisi e la caratterizzazione della popolazione totale presente nel liquido amniotico e’ stata effettuata utilizzando RT-PCR, Real Time PCR e Western Blotting, analizzando l’espressione specifica di geni che sono coinvolti nel mantenimento della pluripotenzialita’, geni che identificano specificatamente i tre foglietti embrionali ed infine geni che identificano progenitori organo-specifici. Sono state inoltre identificate popolazioni specifiche renali, tramite immunoseparazione con biglie magnetiche (MASC). L’espressione di marcatori per i foglietti embrionali endoderma e mesoderma e’ piu’ alta in campioni piu’ giovani rispetto a campioni con tempo di gestazione maggiore mentre, per l’ectoderma, rimane pressoche’ invariata nel tempo. La presenza di cellule pluripotenti e’ costante cosi’ come le cellule staminali mesenchimali mentre le cellule progenitrici ematopoietiche, investigate tramite CD34, fanno la loro comparsa successivamente alle 17 settimane di gestazione. La presenza di progenitori tessuto specifici già “committed” e’ evidente nei campioni di gestazione più avanzata sia per quantitita’ che per specificità dell’organo preso in esame. E’ stata approfondita l’analisi di cellule progenitrici renali, utilizzando un ampio pannello di marcatori che identificano sia la componente tubulare che quella glomerulare del nefrone, struttura fondamentale per la filtrazione renale. I risultati ottenuti confermano la presenza di cellule progenitrici renali dopo le 18 settimane di gestazione. E’ stata identifica e studiata una popolazione esprimente CD24 e Caderin 11 isolata da campioni di liquido amniotico di 18 o piu’ settimane. CD24 e OB-cadehrin sono stati identificati nel topo come co-espressi in vivo nel mesenchima metanefrico. Dal mesenchima metanefrico ha origine il nefrone ed e’ una delle due strutture embrionali fondamentali per lo sviluppo del rene. Da questa popolazione principale sono state ottenute 4 nuove sottopopolazioni che identificano sottocompartimenti del glomerulo, come per esempio le cellule corticali stromogeniche (tramite selezione per la Tyrosin Kinase, TrKA), i podociti (selezionati per la Nefrina), le cellule del mesangio (con selezione positiva per PDGFR Alpha) e le cellule in transizione mesenchima-epitelio (con selezione per la Cadherina-E). Tramite PCR e Real Time PCR e’ stata dimostrata la forte specificita’ di ogni singola linea cellulare. E’ necessario uno studio approfondito che preveda per le AKPC differenziazioni in vitro ed in vivo, utilizzando fattori di crescita nefro-specifici e diversi modelli di danno renale acuto e cronico, in modo tale da confermare la loro possibile completa differenziazione in cellule renali mature. Un approfondimento sul meccanismo d’azione e sulle migliori tempisitiche di somministrazione, infine, sono i punti fondamentali da chiarire per comprendere il meccanismo d’azione delle hAFSC in vivo. Queste ricerche sono una base fondamentale per future applicazioni cliniche in pazienti che soffrono di nefropatie acute e croniche
Butt, Muhammad U. "AGGRESSIVE DIURESIS AND SEVERITY-ADJUSTED LENGTH OF HOSPITAL STAY IN ACUTE CONGESTIVE HEART FAILURE PATIENTS." UKnowledge, 2018. https://uknowledge.uky.edu/crd_etds/2.
Full textBooks on the topic "Acute kidney failure"
1937-, Brenner Barry M., and Lazarus J. Michael, eds. Acute renal failure. 2nd ed. New York: Churchill Livingstone, 1988.
Find full textMichael, Lazarus J., and Brenner Barry M. 1937-, eds. Acute renal failure. 3rd ed. New York: Churchill Livingstone, 1993.
Find full textAdrogué, Horacio J. Renal failure. Cambridge, Mass., USA: Blackwell Science, 1995.
Find full textS, Goligorsky Michael, ed. Acute renal failure: New concepts and therapeutic strategies. New York: Churchill Livingstone, 1995.
Find full textSara, Blakeley, ed. Renal failure and replacement therapies. London: Springer, 2008.
Find full textGriffiths, Harry J. Radiology of renal failure. 2nd ed. Philadelphia: Saunders, 1990.
Find full textRotellar, Carlos. Acute renal insufficiency made ridiculously simple. Miami, FL: MedMaster, 1992.
Find full textAlberto, Amerio, ed. Acute renal failure: Clinical and experimental. New York: Plenum, 1987.
Find full textP, Paganini Emil, ed. Acute continuous renal replacement therapy. Boston: M. Nijhoff, 1986.
Find full textBook chapters on the topic "Acute kidney failure"
Champion, Howard R., Nova L. Panebianco, Jan J. De Waele, Lewis J. Kaplan, Manu L. N. G. Malbrain, Annie L. Slaughter, Walter L. Biffl, et al. "Acute Kidney Failure." In Encyclopedia of Intensive Care Medicine, 65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_1063.
Full textBoerrigter, Guido, Fernando L. Martin, and John C. Burnett. "Kidney in Acute Heart Failure." In Acute Heart Failure, 751–62. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84628-782-4_68.
Full textSever, Mehmet Sükrü, and Raymond Vanholder. "Myoglobinuric Acute Kidney Failure." In Management of Acute Kidney Problems, 373–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69441-0_38.
Full textHoste, Eric A. J. "Prerenal Acute Kidney Failure." In Management of Acute Kidney Problems, 33–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69441-0_4.
Full textSchindler, Ralf. "Acute Kidney Transplant Failure." In Management of Acute Kidney Problems, 439–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69441-0_44.
Full textPertuiset, Nathalie, Dominique Ganeval, and Jean-Pierre Grünfeld. "Acute Renal Failure in Pregnancy." In The Kidney in Pregnancy, 165–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2619-9_10.
Full textIzzedine, Hassane. "AIDS and Acute Kidney Failure." In Management of Acute Kidney Problems, 393–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69441-0_40.
Full textMariano, Filippo, Ezio Nicola Gangemi, Daniela Bergamo, Zsuzsanna Hollo, Maurizio Stella, and Giorgio Triolo. "Burns and Acute Kidney Failure." In Management of Acute Kidney Problems, 429–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69441-0_43.
Full textZappitelli, Michael, and Stuart L. Goldstein. "Acute Kidney Failure in Children." In Management of Acute Kidney Problems, 459–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69441-0_46.
Full textZappitelli, Michael, and Stuart L. Goldstein. "Management of Acute Kidney Failure." In Pediatric Nephrology, 1619–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76341-3_66.
Full textConference papers on the topic "Acute kidney failure"
Saeed, M., M. Saliaj, M. Khan, A. Khan, M. Bachan, Z. Khan, and R. Siegel. "Inguino-Scrotal Bladder Herniation Leading to Post Obstructive Acute Kidney Failure." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1720.
Full textQuintanilla, B., D. Sacoto, O. Oluaderounmu, Y. Al-Khazraji, and M. Velasquez. "An Emergent Infectious Cause of Rhabdomyolysis With Acute Kidney Failure: Legionella Pneumonia." In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a2423.
Full textWu, Kai, Ee Heng Chen, Felix Wirth, Keti Vitanova, Rüdiger Lange, and Darius Burschka. "Continuous Risk Estimation of Acute Kidney Failure with Dense Temporal Data for ICU Patients." In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2023. http://dx.doi.org/10.1109/embc40787.2023.10340113.
Full textSathe, N. A., L. Zelnick, E. D. Morrell, W. C. Liles, L. E. Evans, P. Bhatraju, and M. M. Wurfel. "Effect of Arterial Oxygen Concentrations on Acute Kidney Injury Among Critically Ill Patients With Respiratory Failure." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a4570.
Full textHartl, L., M. Jachs, B. Simbrunner, DJ Bauer, G. Semmler, M. Trauner, M. Mandorfer, and T. Reiberger. "Risk evaluation for acute kidney injury and acute-on-chronic liver failure via a blood-based biomarker panel in patients with cirrhosis." In 54. Jahrestagung & 31. Fortbildungskurs der Österreichischen Gesellschaft für Gastroenterologie & Hepatologie – ÖGGH (Hybrid Veranstaltung). Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1734280.
Full textBishopp, Abigail, Nadia Sayeed, Biman Chakraborty, Ben Beauchamp, Amy Oakes, and Rahul Mukherjee. "Effect of chronic kidney disease on duration of non-invasive ventilation required in acute hypercapnic respiratory failure." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa2179.
Full textChi, Shengqiang, Tianshu Zhou, Weiwei Zhu, Xueyao Li, and Jingsong Li. "A Knowledge-based and Data-driven Approach for Predicting Acute Kidney Injury in Patients with Heart Failure*." In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2023. http://dx.doi.org/10.1109/embc40787.2023.10340347.
Full textDormish, P. E., K. Corbitt, and E. Bondarsky. "Multiorgan Failure in Systemic Lupus Erythematous: The Use of Eculizumab in a Patient with Cardiomyopathy, Acute Kidney Injury, and Pancytopenia." In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a4254.
Full textTie, H., H. Welp, S. Martens, M. Seiler, P. Albers, K. M. Müller, Z. Li, and S. Martens. "Impact of Cardiac Fibrosis and Collagens on Right Ventricular Failure and Acute Kidney Injury in Patients after Continuous-Flow Left Ventricular Assist Devices." In 50th Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery (DGTHG). Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1725647.
Full textKhalid, M. "169 A challenge in the management of lupus nephritis with acute kidney injury, heart failure on hemodialysis and oral warfarin therapy: a case report." In LUPUS 2017 & ACA 2017, (12th International Congress on SLE &, 7th Asian Congress on Autoimmunity). Lupus Foundation of America, 2017. http://dx.doi.org/10.1136/lupus-2017-000215.169.
Full textReports on the topic "Acute kidney failure"
Ru, Song-Chao, Lv, and Zhi-Juan Li. Incidence,Mortality and Predictors of Acute Kidney Injury in Patients with Heart Failure: A Systematic Review and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2022. http://dx.doi.org/10.37766/inplasy2022.12.0095.
Full text