To see the other types of publications on this topic, follow the link: Acyl azides.

Journal articles on the topic 'Acyl azides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Acyl azides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Balci, Metin. "Acyl Azides: Versatile Compounds in the Synthesis of Various Heterocycles­." Synthesis 50, no. 07 (February 1, 2018): 1373–401. http://dx.doi.org/10.1055/s-0036-1589527.

Full text
Abstract:
Carbon–nitrogen bond formation is one of the most important reactions in organic chemistry. Various synthetic strategies for the generation of C–N bonds are described in the literature. For example, primary amines can be easily synthesized by the thermal decomposition of an acyl azide to an isocyanate, i.e. the Curtis rearrangement, followed by hydrolysis; the Curtius rearrangement has been used extensively. Furthermore, the advantage of the Curtius rearrangement is the isolation of acyl azides as well as the corresponding isocyanates. The isocyanates can be converted into various nitrogen-containing compounds upon reaction with various nucleophiles that can be used as important synthons for cyclization, in other words, for the synthesis of heterocycles. Therefore, this review demonstrates the importance of acyl azides not only in the synthesis acyclic systems, but also in the synthesis of various nitrogen-containing heterocycles.1 Introduction2 Synthesis of Acyl Azides2.1 Acyl Azides from Carboxylic Acid Derivatives2.2 Acyl Azides by Direct Transformation of Carboxylic Acids2.3 Acyl Azides from Aldehydes2.4 Carbamoyl Azides from Haloarenes, Sodium Azide, and N-Formylsaccharin3 Mechanism of Formation of Isocyanates4 Synthesis of Diacyl Azides5 Synthetic Applications5.1 Synthesis of Pyrimidinone Derivatives5.2 Dihydropyrimidinone and Isoquinolinone Derivatives5.3 Synthesis of Tetrahydroisoquinoline Skeleton5.4 Synthesis of Five-Membered Heterocycles5.5 Heterocycles Synthesized Starting from Homophthalic acid5.6 Heterocycles Synthesized from 2-(Ethoxycarbonyl)nicotinic Acid5.7 Formation of Aza-spiro Compounds5.8 Parham-Type Cyclization5.9 Diazepinone Derivatives5.10 Synthesis of Pyridine Derivatives5.11 Synthesis of Indole Derivatives6 Miscellaneous7 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
2

Mata, Alejandro, Ulrich Weigl, Oliver Flögel, Pius Baur, Christopher A. Hone, and C. Oliver Kappe. "Acyl azide generation and amide bond formation in continuous-flow for the synthesis of peptides." Reaction Chemistry & Engineering 5, no. 4 (2020): 645–50. http://dx.doi.org/10.1039/d0re00034e.

Full text
Abstract:
Acyl azides were safely generated by using nitrous acid in water and reacted in situ within a flow system. The acyl azide was efficiently extracted into the organic phase containing an amine nucleophile for a highly enantioselective peptide coupling.
APA, Harvard, Vancouver, ISO, and other styles
3

Katritzky, Alan R., Khalid Widyan, and Kostyantyn Kirichenko. "Preparation of Polyfunctional Acyl Azides." Journal of Organic Chemistry 72, no. 15 (July 2007): 5802–4. http://dx.doi.org/10.1021/jo070162e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monticelli, Serena, and Vittorio Pace. "Diethylaluminium Azide: A Versatile Reagent in Organic Synthesis." Australian Journal of Chemistry 68, no. 5 (2015): 703. http://dx.doi.org/10.1071/ch14712.

Full text
Abstract:
The unique properties of diethylaluminium azide – arising from the Lewis acid aluminium and the nucleophilicity of the azide – make it a versatile reagent in organic synthesis. Ring-opening of epoxides, Michael-type additions, synthesis of acyl azides, and functionalizations of fullerene C60 will be discussed. Among the recently described uses of the reagent, particular attention will be devoted to the powerful Sedelmeier’s method to access 1H-tetrazol starting from nitriles.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Zongyang, Shiyang Xu, Baoliang Huang, Chenhui Yuan, Wenxu Chang, Bin Fu, Lei Jiao, Peng Wang, and Zhenhua Zhang. "Pd-Catalyzed Carbonylation of Acyl Azides." Journal of Organic Chemistry 84, no. 15 (July 3, 2019): 9497–508. http://dx.doi.org/10.1021/acs.joc.9b01048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rawal, Viresh H., and Hua M. Zhong. "One-step conversion of esters to acyl azides using diethylaluminum azide." Tetrahedron Letters 35, no. 28 (July 1994): 4947–50. http://dx.doi.org/10.1016/s0040-4039(00)73289-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

L'abbé, Gerrit, Mitsuo Komatsu, Catherina Martens, Suzanne Toppet, Jean-Paul Declercq, Gabriel Germain, and Maurice Van Meerssche. "Heterocycles from Acyl Isothiocyanates and Alkyl Azides." Bulletin des Sociétés Chimiques Belges 88, no. 4 (September 1, 2010): 245–51. http://dx.doi.org/10.1002/bscb.19790880408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borra, Satheesh, Lodsna Borkotoky, Uma Devi Newar, Anshu Kalwar, Babulal Das, and Ram Awatar Maurya. "Visible light triggered photo-decomposition of vinyl azides to (E)-stilbene derivatives via 1,2-acyl migration." Organic & Biomolecular Chemistry 17, no. 24 (2019): 5971–81. http://dx.doi.org/10.1039/c9ob01035a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

RAWAL, V. H., and H. M. ZHONG. "ChemInform Abstract: One-Step Conversion of Esters to Acyl Azides Using Diethylaluminum Azide." ChemInform 25, no. 46 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199446107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abu-Eittah, Rafie H., Adel A. Mohamed, A. M. Farag, and Ahmed M. Al Omar. "The electronic absorption spectra of some acyl azides." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 70, no. 1 (June 2008): 177–86. http://dx.doi.org/10.1016/j.saa.2007.05.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sridhar, Radhakrishnan, and Paramasivan T. Perumal. "Synthesis of Acyl Azides Using the Vilsmeier Complex." Synthetic Communications 33, no. 4 (January 4, 2003): 607–11. http://dx.doi.org/10.1081/scc-120015815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chakrabarti, Kaushik, Kuheli Dutta, and Sabuj Kundu. "Synthesis of N-methylated amines from acyl azides using methanol." Organic & Biomolecular Chemistry 18, no. 30 (2020): 5891–96. http://dx.doi.org/10.1039/d0ob01303j.

Full text
Abstract:
The Ru(ii) complex catalysed direct transformation of acyl azides into N-methylamines was developed for the first time using methanol via the one-pot Curtius rearrangement and borrowing hydrogen methodology.
APA, Harvard, Vancouver, ISO, and other styles
13

Akhlaghinia, Batool, and Hamed Rouhi-Saadabad. "Direct and facile synthesis of acyl azides from carboxylic acids using the trichloroisocyanuric acid–triphenylphosphine system." Canadian Journal of Chemistry 91, no. 3 (March 2013): 181–85. http://dx.doi.org/10.1139/cjc-2011-0493.

Full text
Abstract:
A mild, efficient, and practical method for the one-step synthesis of acyl azides from carboxylic acids using a safe and inexpensive mixed reagent, trichloroisocyanuric acid–triphenylphosphine, is described.
APA, Harvard, Vancouver, ISO, and other styles
14

Zarchi, Mohammad Ali Karimi, and Saeed Barani. "Rapid and facile synthesis of acyl azides from acyl halides using a polymer-supported azide ion under heterogeneous conditions." Chinese Journal of Polymer Science 31, no. 7 (April 5, 2013): 1002–10. http://dx.doi.org/10.1007/s10118-013-1290-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reddy, P. Satyanarayana, Pendri Yadagiri, Sun Lumin, Dong-Soo Shin, and J. R. Falck. "Modified Pyridinium Chlorochromate Oxidation of Aldehydes to Carbamoyl Azides/Acyl Azides or Carboxylic Acids." Synthetic Communications 18, no. 5 (April 1988): 545–51. http://dx.doi.org/10.1080/00397918808060749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Azeez, Sadaf, Priyanka Chaudhary, Popuri Sureshbabu, Shahulhameed Sabiah, and Jeyakumar Kandasamy. "tert-Butyl nitrite mediated nitrogen transfer reactions: synthesis of benzotriazoles and azides at room temperature." Organic & Biomolecular Chemistry 16, no. 37 (2018): 8280–85. http://dx.doi.org/10.1039/c8ob01950a.

Full text
Abstract:
A conversion of o-phenylenediamines into benzotriazoles is reported with tert-butyl nitrite at room temperature. The optimized condition is also well suited for the transformation of sulfonyl and acyl hydrazines into corresponding azides.
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Jian, Yongjun Liu, and Yongmin Zhang. "Gem-diallylation of Acyl Azides with Allylsamarium Bromide Under Mild Conditions." Journal of Chemical Research 2003, no. 7 (July 2003): 438–39. http://dx.doi.org/10.3184/030823403103174443.

Full text
Abstract:
Allylsamarium bromide reacts with acyl azides to give the corresponding gem-diallylation products, 4-alkyl-1,6-heptadienes-4-ols (3), in good to excellent yields. This novel reaction proceeds readily within a few minutes at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
18

Doğan, Sengul Dilem, Eren Demirpolat, Mükerrem Betül Yerer Aycan, and Metin Balci. "Synthesis of new 4-aza-indoles via acyl azides." Tetrahedron 71, no. 2 (January 2015): 252–58. http://dx.doi.org/10.1016/j.tet.2014.11.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yu, Chun-Jiao, Rui Li, and Peiming Gu. "Intermolecular Schmidt reaction of alkyl azides with acyl silanes." Tetrahedron Letters 57, no. 31 (August 2016): 3568–70. http://dx.doi.org/10.1016/j.tetlet.2016.06.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Yang, Yu Liu, Xiao Zhang, Da Lu, Lixin Yang, Junfeng Deng, and Shengqi Deng. "Copper Catalyzed Direct Synthesis of Nitriles from Acyl Azides." ChemistrySelect 3, no. 43 (November 23, 2018): 12325–29. http://dx.doi.org/10.1002/slct.201802918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, Jong Gun, and Ki Hoon Kwak. "Oxidation of aldehydes to acyl azides by chromic anhydride-azidotrimethylsilane." Tetrahedron Letters 33, no. 22 (May 1992): 3165–66. http://dx.doi.org/10.1016/s0040-4039(00)79841-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Abu-Eittah, Rafie H., Hussein Moustafa, and Ahmad M. Al-Omar. "The electronic structure of some acyl azides: cyclic–open tautomerism." Chemical Physics Letters 318, no. 1-3 (February 2000): 276–88. http://dx.doi.org/10.1016/s0009-2614(99)01331-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bandgar, B. P., and S. S. Pandit. "Synthesis of acyl azides from carboxylic acids using cyanuric chloride." Tetrahedron Letters 43, no. 18 (April 2002): 3413–14. http://dx.doi.org/10.1016/s0040-4039(02)00508-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yus, Miguel, Gabriel Radivoy, and Francisco Alonso. "Lithium/DTBB-Induced Reduction of N-Alkoxyamides and Acyl Azides." Synthesis 2001, no. 06 (2001): 0914–18. http://dx.doi.org/10.1055/s-2001-13415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Widyan, Khalid. "An Improved Synthesis of Polyfunctional Acyl Azides in PEG 400." Organic Preparations and Procedures International 53, no. 2 (March 4, 2021): 120–26. http://dx.doi.org/10.1080/00304948.2020.1862029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhu, Yue, Qilin Wang, Haofan Luo, Zijuan Wang, Guolin Zhang, and Yongping Yu. "A Facile and Efficient Approach for the Synthesis of 3-Aryl-4-hydroxy-1,3-thiazolidin-2-ones." Synthesis 51, no. 11 (April 1, 2019): 2397–401. http://dx.doi.org/10.1055/s-0037-1610862.

Full text
Abstract:
A facile and efficient method for the synthesis of 3-aryl-4-hydroxy-1,3-thiazolidin-2-ones by the reaction of 1,4-dithiane-2,5-diol with acyl azides is reported. This reaction proceeded well at 80 °C to afford products in excellent yields for a wide range of substrates. A possible mechanism has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
27

Martins, Marcos Antonio Pinto, Guilherme Caneppele Paveglio, Leticia Valvassori Rodrigues, Clarissa Piccinin Frizzo, Nilo Zanatta, and Helio Gauze Bonacorso. "Promotion of 1,3-dipolar cycloaddition between azides and β-enaminones by deep eutectic solvents." New Journal of Chemistry 40, no. 7 (2016): 5989–92. http://dx.doi.org/10.1039/c5nj03654b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Arote, Nitin D., and Krishnacharya G. Akamanchi. "Direct conversion of aldehydes to acyl azides using tert-butyl hypochlorite." Tetrahedron Letters 48, no. 32 (August 2007): 5661–64. http://dx.doi.org/10.1016/j.tetlet.2007.06.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Abu-Eittah, Rafie H., Adel A. Mohamed, and Ahmed M. Al-Omar. "Theoretical investigation of the decomposition of acyl azides: Molecular orbital treatment." International Journal of Quantum Chemistry 106, no. 4 (2005): 863–75. http://dx.doi.org/10.1002/qua.20792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, Hailan, Yiqing Zhou, Xiaoyu Yan, Chao Chen, Qingbin Liu, and Chanjuan Xi. "Copper-Mediated Amidation of Alkenylzirconocenes with Acyl Azides: Formation of Enamides." Organic Letters 15, no. 20 (October 2013): 5174–77. http://dx.doi.org/10.1021/ol402212g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Zhenhua, Guanyu Qiao, Zhen Zhang, Baoliang Huang, Liu Zhu, and Fan Xiao. "Palladium-Catalyzed One-Pot Synthesis of N-Sulfonyl, N-Phosphoryl, and N-Acyl Guanidines." Synthesis 50, no. 02 (October 12, 2017): 330–40. http://dx.doi.org/10.1055/s-0036-1588576.

Full text
Abstract:
An efficient palladium-catalyzed cascade reaction of azides with isonitrile and amines is presented; it offers an alternative facile approach toward N-sulfonyl-, N-phosphoryl-, and N-acyl-functionalized guanidines in excellent yield. These series of substituted guanidines exhibit potential biological and pharmacological activities. In addition, the less reactive intermediate benzoyl carbodiimide could be isolated by silica gel column flash chromatography in moderate yield.
APA, Harvard, Vancouver, ISO, and other styles
32

Jang, Doo, and Joong-Gon Kim. "Direct Synthesis of Acyl Azides from Carboxylic Acids by the Combination of Trichloroacetonitrile, Triphenylphosphine and Sodium Azide." Synlett 2008, no. 13 (July 15, 2008): 2072–74. http://dx.doi.org/10.1055/s-2008-1077979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Xuefeng, Zhenhua Zhang, Jiyao Feng, and Zhen Zhang. "Palladium-Catalyzed Carbonylation of Azides and Mechanistic Studies." Synlett 31, no. 11 (April 6, 2020): 1040–49. http://dx.doi.org/10.1055/s-0039-1690859.

Full text
Abstract:
Isocyanates are widely applied in the fields of materials science, drug discovery and chemical industry processes. Palladium-catalyzed carbonylation of azides with carbon monoxide (CO) is reported as a powerful method for simple and efficient access to isocyanates, which are important precursors for preparing structurally meaningful urea, carbamate and amidine derivatives. In this account, we provide an overview on the synthesis of isocyanates and their subsequent reactions to obtain diverse nucleophilic addition products. In addition, with particular emphasis on our mechanistic studies of the Pd-catalyzed carbonylation process, we outline the identification of the actual catalytic species, the possible intermediates and some key factors in the catalytic cycle.1 Introduction2 Palladium-Catalyzed Reaction of Azides with CO and Subsequent Nucleophilic Additions3 Mechanistic Studies on the Palladium-Catalyzed Reaction of Azides with CO3.1 Studies on the Actual Catalytic Species and the Key Intermediates in the Activation and Carbonylation of Acyl Azides3.2 Study of the Sulfonylurea Product Self-Catalyzed Carbonylation of Sulfonyl Azides3.3 Study of the Actual Catalytic Pattern of the Pd/C Catalyst4 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Wenjun, Manjaly J. Ajitha, Ming Lang, Kuo-Wei Huang, and Jian Wang. "Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums." ACS Catalysis 7, no. 3 (February 20, 2017): 2139–44. http://dx.doi.org/10.1021/acscatal.6b03674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shah, Tariq A., Pinaki Bhusan De, Sourav Pradhan, Sonbidya Banerjee, and Tharmalingam Punniyamurthy. "Cp*Co(III)-Catalyzed Regioselective C2 Amidation of Indoles Using Acyl Azides." Journal of Organic Chemistry 84, no. 24 (November 27, 2019): 16278–85. http://dx.doi.org/10.1021/acs.joc.9b02244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bandgar, B. P., and S. S. Pandit. "ChemInform Abstract: Synthesis of Acyl Azides from Carboxylic Acids Using Cyanuric Chloride." ChemInform 33, no. 32 (May 20, 2010): no. http://dx.doi.org/10.1002/chin.200232054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Broggini, Gianluigi, Luisa Garanti, Giorgio Molteni, and Gaetano Zecchi. "Thermal Behaviour of Dipolarophile-containing Acyl Azides: Intramolecular Cycloaddition versus Curtius Rearrangement." Journal of Chemical Research, no. 11 (1998): 688–89. http://dx.doi.org/10.1039/a802931h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kubicki, Jacek, Yunlong Zhang, Jiadan Xue, Hoi Ling Luk, and Matthew Platz. "Ultrafast time resolved studies of the photochemistry of acyl and sulfonyl azides." Physical Chemistry Chemical Physics 14, no. 30 (2012): 10377. http://dx.doi.org/10.1039/c2cp40226b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yus, Miguel, Gabriel Radivoy, and Francisco Alonso. "ChemInform Abstract: Lithium/DTBB-Induced Reduction of N-Alkoxyamides and Acyl Azides." ChemInform 32, no. 32 (May 25, 2010): no. http://dx.doi.org/10.1002/chin.200132049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, Dongeun, Prithwish Ghosh, Na Yeon Kwon, Sang Hoon Han, Sangil Han, Neeraj Kumar Mishra, Saegun Kim, and In Su Kim. "Deoxygenative Amination of Azine-N-oxides with Acyl Azides via [3 + 2] Cycloaddition." Journal of Organic Chemistry 85, no. 4 (January 6, 2020): 2476–85. http://dx.doi.org/10.1021/acs.joc.9b03173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bao, Weiliang, and Qiang Wang. "Preparation of acyl azides from aromatic carboxylic acids using triphosgene in ionic liquids." Journal of Chemical Research 2003, no. 11 (November 1, 2003): 700–701. http://dx.doi.org/10.3184/030823403322862987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

L'abbé, Gerrit, Ingrid Sannen, and Wim Dehaen. "Synthesis of fused dihydro-1,2,4-thiadiazolimines from cyano-substituted azides and acyl isothiocyanates." J. Chem. Soc., Perkin Trans. 1, no. 1 (1993): 27–29. http://dx.doi.org/10.1039/p19930000027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wentrup, Curt, and Holger Bornemann. "The Curtius Rearrangement of Acyl Azides Revisited - Formation of Cyanate (R-O-CN)." European Journal of Organic Chemistry 2005, no. 21 (November 2005): 4521–24. http://dx.doi.org/10.1002/ejoc.200500545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nandi, Ganesh Chandra, and Irfana Jesin. "Direct Synthesis of N -Acyl Sulfonimidamides and N -Sulfonimidoyl Amidines from Sulfonimidoyl Azides." Advanced Synthesis & Catalysis 360, no. 13 (May 15, 2018): 2465–69. http://dx.doi.org/10.1002/adsc.201800215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Roeske, Y., and W. Abraham. "ChemInform Abstract: The Photochemistry of Acyl Azides. Part 10. Aroylnitrenes for Heterocycle Synthesis." ChemInform 32, no. 43 (May 24, 2010): no. http://dx.doi.org/10.1002/chin.200143044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Hailan, Yiqing Zhou, Xiaoyu Yan, Chao Chen, Qingbin Liu, and Chanjuan Xi. "ChemInform Abstract: Copper-Mediated Amidation of Alkenylzirconocenes with Acyl Azides: Formation of Enamides." ChemInform 45, no. 11 (February 27, 2014): no. http://dx.doi.org/10.1002/chin.201411053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Elmorsy, Saad S. "Oxidation of aldehydes to acyl azides using triazidochlorosilane (TACS)-active manganese dioxide reagent." Tetrahedron Letters 36, no. 8 (February 1995): 1341–42. http://dx.doi.org/10.1016/0040-4039(94)02472-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Bao-Juan, Ping Xue, and Peiming Gu. "Intramolecular Schmidt reaction of acyl chlorides with alkyl azides: preparation of pyrrolizine by intramolecular capture of intermediates with alkenes or alkynes." Chemical Communications 51, no. 12 (2015): 2277–79. http://dx.doi.org/10.1039/c4cc07166b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fr⊘yen, Paul. "One-Flask Synthesis of Acyl Azides from Carboxylic Acids; A Facile Route to Iminophosphoranes." Phosphorus, Sulfur, and Silicon and the Related Elements 89, no. 1-4 (April 1994): 57–61. http://dx.doi.org/10.1080/10426509408020432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

L'ABBE, G., I. SANNEN, and W. DEHAEN. "ChemInform Abstract: Synthesis of Fused Dihydro-1,2,4-thiadiazolimines from Cyanosubstituted Azides and Acyl Isothiocyanates." ChemInform 24, no. 16 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199316196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography