Journal articles on the topic 'AdaBoost (Adaptive Boosting)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'AdaBoost (Adaptive Boosting).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
MENAKA, B., and Dr S. ARULSELVARANI. "Optimizing Cyber Threat Detection Through Bottleneck Feature Extraction and Adaptive Boosting." Indian Journal Of Science And Technology 18, no. 28 (2025): 2246–56. https://doi.org/10.17485/ijst/v18i28.1138.
Full textMendrofa, Rosa Delima, Maria Hosianna Siallagan, Junita Amalia, and Diana Pebrianty Pakpahan. "Credit Risk Analysis With Extreme Gradient Boosting and Adaptive Boosting Algorithm." Journal of Information System,Graphics, Hospitality and Technology 5, no. 1 (2023): 1–7. http://dx.doi.org/10.37823/insight.v5i1.233.
Full textNayab, Durr e., Rehan Ullah Khan, and Ali Mustafa Qamar. "Performance Augmentation of Base Classifiers Using Adaptive Boosting Framework for Medical Datasets." Applied Computational Intelligence and Soft Computing 2023 (December 22, 2023): 1–10. http://dx.doi.org/10.1155/2023/5542049.
Full textSah, Andrian, Chaeroen Niesa, Rhaishudin Rumandan Jafar, and Muhammad Muharrom. "Analisis Model Prediksi Penyakit Jantung Menggunakan Adaptive Boosting, Gradient Boosting, dan Extreme Gradient Boosting." Jurnal Ilmiah FIFO 17, no. 1 (2025): 46. https://doi.org/10.22441/fifo.2025.v17i1.006.
Full textLa, Lei, Qiao Guo, Dequan Yang, and Qimin Cao. "Multiclass Boosting with Adaptive Group-BasedkNN and Its Application in Text Categorization." Mathematical Problems in Engineering 2012 (2012): 1–24. http://dx.doi.org/10.1155/2012/793490.
Full textRiansyah, Muhammad, Saib Suwilo, and Muhammad Zarlis. "Improved Accuracy In Data Mining Decision Tree Classification Using Adaptive Boosting (Adaboost)." SinkrOn 8, no. 2 (2023): 617–22. http://dx.doi.org/10.33395/sinkron.v8i2.12055.
Full textZhang, Jiangnan, Kewen Xia, Ziping He, Zhixian Yin, and Sijie Wang. "Semi-Supervised Ensemble Classifier with Improved Sparrow Search Algorithm and Its Application in Pulmonary Nodule Detection." Mathematical Problems in Engineering 2021 (February 18, 2021): 1–18. http://dx.doi.org/10.1155/2021/6622935.
Full textPrianti, Ade Irma, Rukun Santoso, and Arief Rachman Hakim. "PERBANDINGAN METODE K-NEAREST NEIGHBOR DAN ADAPTIVE BOOSTING PADA KASUS KLASIFIKASI MULTI KELAS." Jurnal Gaussian 9, no. 3 (2020): 346–54. http://dx.doi.org/10.14710/j.gauss.v9i3.28924.
Full textAkazue, Maureen, Anthonia Onovughe, Omede Edith, and John Paul A.C. Hampo. "Use of Adaptive Boosting Algorithm to Estimate User's Trust in the Utilization of Virtual Assistant Systems." International Journal of Innovative Science and Research Technology 8, no. 1 (2023): 502–7. https://doi.org/10.5281/zenodo.7568675.
Full textAnita Desiani, Siti Nurhaliza, Tri Febriani Putri, and Bambang Suprihatin. "Algoritma Extreme Gradient Boosting (XGBoost) dan Adaptive Boosting (AdaBoost) Untuk Klasifikasi Penyakit Tiroid." Jurnal Rekayasa Elektro Sriwijaya 6, no. 2 (2025): 66–75. https://doi.org/10.36706/jres.v6i2.145.
Full textGamal, Heba, Nour Eldin Ismail, M. R. M. Rizk, Mohamed E. Khedr, and Moustafa H. Aly. "A Coherent Performance for Noncoherent Wireless Systems Using AdaBoost Technique." Applied Sciences 9, no. 2 (2019): 256. http://dx.doi.org/10.3390/app9020256.
Full textJang, Seok-Woo, and Sang-Hong Lee. "Harmful Content Detection Based on Cascaded Adaptive Boosting." Journal of Sensors 2018 (October 21, 2018): 1–12. http://dx.doi.org/10.1155/2018/7497243.
Full textIrma Prianti, Ade. "Pebandingan Metode K-Nearest Neighbor dan Adaptive Boosting pada Kasus Klasifikasi Multi Kelas." J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika 13, no. 1 (2020): 39–47. http://dx.doi.org/10.36456/jstat.vol13.no1.a3269.
Full textMortara, Alda Amalia, Mitta Permatasari, Anita Desiani, Yuli Andriani, and Muhammad Arhami. "Perbandingan Algoritma C4.5 dan Adaptive Boosting dalam Klasifikasi Penyakit Alzheimer." Jurnal Teknologi dan Informasi 13, no. 2 (2023): 196–207. http://dx.doi.org/10.34010/jati.v13i2.10525.
Full textSeo, Youngmin, Kwanghyun Choi, Yuseong Lim, Byungjoon Lee, and Yunyoung Choi. "Application of Machine Learning Models for Water Pipeline Leakage Detection." Crisis and Emergency Management: Theory and Praxis 19, no. 4 (2023): 45–54. http://dx.doi.org/10.14251/crisisonomy.2023.19.4.45.
Full textRiswandhana, Wahyu Aji Tri, and Alva Hendi Muhammad. "Optimalisasi Akurasi Algoritma C4.5 dengan Metode Adaptive Boosting Memprediksi Siswa dalam Menerima Dana Pendidikan." G-Tech: Jurnal Teknologi Terapan 8, no. 4 (2024): 2895–902. http://dx.doi.org/10.70609/gtech.v8i4.5612.
Full textSudarto, Sudarto, Muhammad Zarlis, and Pahala Sirait. "Integrasi Density Based Feature Selection dan Adaptive Boosting dalam Mengatasi Ketidakseimbangan Kelas." Jurnal SIFO Mikroskil 17, no. 2 (2016): 193–206. http://dx.doi.org/10.55601/jsm.v17i2.336.
Full textWang, Jinghui, and Shugang Tang. "Time series classification based on arima and adaboost." MATEC Web of Conferences 309 (2020): 03024. http://dx.doi.org/10.1051/matecconf/202030903024.
Full textTariq, Irfan, Qiao Meng, Shunyu Yao, et al. "Adaboost-DSNN: an adaptive boosting algorithm based on deep self normalized neural network for pulsar identification." Monthly Notices of the Royal Astronomical Society 511, no. 1 (2022): 683–90. http://dx.doi.org/10.1093/mnras/stac086.
Full textPutri, Tita Aulia Edi, Tatik Widiharih, and Rukun Santoso. "PENERAPAN TUNING HYPERPARAMETER RANDOMSEARCHCV PADA ADAPTIVE BOOSTING UNTUK PREDIKSI KELANGSUNGAN HIDUP PASIEN GAGAL JANTUNG." Jurnal Gaussian 11, no. 3 (2022): 397–406. http://dx.doi.org/10.14710/j.gauss.11.3.397-406.
Full textAhmad, Mahmood, Herda Yati Katman, Ramez A. Al-Mansob, Feezan Ahmad, Muhammad Safdar, and Arnold C. Alguno. "Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier." Complexity 2022 (May 5, 2022): 1–10. http://dx.doi.org/10.1155/2022/6156210.
Full textElena, Felice, Robyn Irawan, and Benny Yong. "APPLICATION OF THE SUPPORT VECTOR MACHINE, LIGHT GRADIENT BOOSTING MACHINE, ADAPTIVE BOOSTING, AND HYBRID ADABOOST-SVM MODEL ON CUSTOMERS CHURN DATA." BAREKENG: Jurnal Ilmu Matematika dan Terapan 19, no. 3 (2025): 1957–72. https://doi.org/10.30598/barekengvol19iss3pp1957-1972.
Full textOnoma, Paul Avweresuo, Joy Agboi, Victor Ochuko Geteloma, et al. "Investigating an Anomaly-based Intrusion Detection via Tree-based Adaptive Boosting Ensemble." Journal of Fuzzy Systems and Control 3, no. 1 (2025): 90–97. https://doi.org/10.59247/jfsc.v3i1.279.
Full textLi, Yuan. "Quantum AdaBoost algorithm via cluster state." International Journal of Modern Physics B 31, no. 06 (2017): 1750040. http://dx.doi.org/10.1142/s0217979217500400.
Full textTsehay, Admassu Assegie, Lakshmi Tulasi R., and Komal Kumar N. "Breast cancer prediction model with decision tree and adaptive boosting." International Journal of Artificial Intelligence (IJ-AI) 10, no. 1 (2021): 184–90. https://doi.org/10.11591/ijai.v10.i1.pp184-190.
Full textAssegie, Tsehay Admassu, R. Lakshmi Tulasi, and N. Komal Kumar. "Breast cancer prediction model with decision tree and adaptive boosting." IAES International Journal of Artificial Intelligence (IJ-AI) 10, no. 1 (2021): 184. http://dx.doi.org/10.11591/ijai.v10.i1.pp184-190.
Full textLi, Ping, Zichen Zhang, and Jiming Gu. "Prediction of Concrete Compressive Strength Based on ISSA-BPNN-AdaBoost." Materials 17, no. 23 (2024): 5727. http://dx.doi.org/10.3390/ma17235727.
Full textHeba Gamal, Nour Eldin Ismail, M. R. M. Rizk, Mohamed E. Khedr, and Moustafa H. Aly. "AdaBoost Algorithm-Based Channel Estimation: Enhanced Performance." Journal of Advanced Research in Applied Sciences and Engineering Technology 32, no. 3 (2023): 296–306. http://dx.doi.org/10.37934/araset.32.3.296306.
Full textRamadhani, Eva Fadilah, Adji Achmad Rinaldo Fernandes, and Ni Wayan Surya Wardhani. "Comparison of Discriminant Analysis and Adaptive Boosting Classification and Regression Trees on Data with Unbalanced Class." WSEAS TRANSACTIONS ON MATHEMATICS 20 (December 14, 2021): 650–56. http://dx.doi.org/10.37394/23206.2021.20.69.
Full textBei, Honghan, Yajie Wang, Zhaonuo Ren, Shuo Jiang, Keran Li, and Wenyang Wang. "A Statistical Approach to Cost-Sensitive AdaBoost for Imbalanced Data Classification." Mathematical Problems in Engineering 2021 (October 23, 2021): 1–20. http://dx.doi.org/10.1155/2021/3165589.
Full textSaputro, Dewi Retno Sari, Krisna Sidiq, Harun Al Rasyid, and Sutanto Sutanto. "TEXT CLASSIFICATION USING ADAPTIVE BOOSTING ALGORITHM WITH OPTIMIZATION OF PARAMETERS TUNING ON CABLE NEWS NETWORK (CNN) ARTICLES." BAREKENG: Jurnal Ilmu Matematika dan Terapan 18, no. 2 (2024): 1297–306. http://dx.doi.org/10.30598/barekengvol18iss2pp1297-1306.
Full textLi, Kewen, Guangyue Zhou, Jiannan Zhai, Fulai Li, and Mingwen Shao. "Improved PSO_AdaBoost Ensemble Algorithm for Imbalanced Data." Sensors 19, no. 6 (2019): 1476. http://dx.doi.org/10.3390/s19061476.
Full textXue, Guanghui, Peng Hou, Sanxi Li, Xiaoling Qian, Sicong Han, and Song Gao. "Coal Gangue Recognition during Coal Preparation Using an Adaptive Boosting Algorithm." Minerals 13, no. 3 (2023): 329. http://dx.doi.org/10.3390/min13030329.
Full textLamba, Rohit, Pooja Rani, Ravi Kumar Sachdeva, et al. "An Optimized Predictive Machine Learning Model for Lung Cancer Diagnosis." Biomedical and Pharmacology Journal 18, December Spl Edition (2025): 85–98. https://doi.org/10.13005/bpj/3075.
Full textAdeboye, Nureni Olawale, and Olawale Victor Abimbola. "An overview of cardiovascular disease infection: A comparative analysis of boosting algorithms and some single based classifiers." Statistical Journal of the IAOS 36, no. 4 (2020): 1189–98. http://dx.doi.org/10.3233/sji-190609.
Full textTaser, Pelin Yildirim. "Application of Bagging and Boosting Approaches Using Decision Tree-Based Algorithms in Diabetes Risk Prediction." Proceedings 74, no. 1 (2021): 6. http://dx.doi.org/10.3390/proceedings2021074006.
Full textFraiwan, Luay, and Omnia Hassanin. "Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers." PLOS ONE 16, no. 6 (2021): e0252380. http://dx.doi.org/10.1371/journal.pone.0252380.
Full textAbrori, Mohammad Ahmad Maidanul, Abdul Syukur, Affandy Affandy, and Moch Arief Soeleman. "Improving C4.5 Algorithm Accuracy With Adaptive Boosting Method For Predicting Students in Obtaining Education Funding." Journal of Development Research 6, no. 2 (2022): 137–40. http://dx.doi.org/10.28926/jdr.v6i2.205.
Full textLukas, Samuel, Osvaldo Vigo, Dion Krisnadi, and Petrus Widjaja. "PERBANDINGAN PERFORMA BAGGING DAN ADABOOST UNTUK KLASIFIKASI DATA MULTI-CLASS." Journal Information System Development (ISD) 7, no. 2 (2022): 7. http://dx.doi.org/10.19166/isd.v7i2.547.
Full textTao, Hongli. "Exploring the impact of data analysis on identifying key predictors of student performance and improving outcomes for diverse groups." Journal of Computational Methods in Sciences and Engineering 25, no. 2 (2024): 1811–25. https://doi.org/10.1177/14727978241305756.
Full textKhan, Adeel, Irfan Tariq, Haroon Khan, et al. "Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network." Journal of Oncology 2022 (September 26, 2022): 1–12. http://dx.doi.org/10.1155/2022/5682451.
Full textYoo, Gilsang, Hyeoncheol Kim, and Sungdae Hong. "Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network." Bioengineering 10, no. 3 (2023): 361. http://dx.doi.org/10.3390/bioengineering10030361.
Full textMaulana, Azka, Sarwido Sarwido, and Adi Sucipto. "OPTIMASI ALGORITMA SUPPORT VECTOR MACHINES(SVM) MENGGUNAKAN ADAPTIVE BOOSTING(ADABOOST) UNTUK MENINGKATKAN AKURASI PREDIKSI PENYAKIT BRAIN STROKE." JATI (Jurnal Mahasiswa Teknik Informatika) 9, no. 5 (2025): 7614–20. https://doi.org/10.36040/jati.v9i5.14779.
Full textNabipour, M., P. Nayyeri, H. Jabani, A. Mosavi, E. Salwana, and Shahab S. "Deep Learning for Stock Market Prediction." Entropy 22, no. 8 (2020): 840. http://dx.doi.org/10.3390/e22080840.
Full textMuhammad Nadim Mubaarok, Triando Hamonangan Saragih, Muliadi, Fatma Indriani, Andi Farmadi, and Achmad Rizal. "Comparison of the Adaboost Method and the Extreme Learning Machine Method in Predicting Heart Failure." Journal of Electronics, Electromedical Engineering, and Medical Informatics 6, no. 3 (2024): 253–63. https://doi.org/10.35882/jeeemi.v6i3.440.
Full textCao, Hui, Aiai Wang, Erol Yilmaz, and Shuai Cao. "Machine Learning Algorithm-Based Prediction Model and Software Implementation for Strength Efficiency of Cemented Tailings Fills." Minerals 15, no. 4 (2025): 405. https://doi.org/10.3390/min15040405.
Full textAprihartha, Moch Anjas, Salwa Paramita Azzahro, Rahmatul Azizah, and Muhammad Rafly Andrianza. "Comparison of Discrete Adaptive Boosting Algorithms for Classification and Regression Tree and Naive Bayes in Pistachio Nut Classification." International Journal of Engineering Technology and Natural Sciences 7, no. 1 (2025): 28–36. https://doi.org/10.46923/ijets.v7i1.396.
Full textGao, Feng, Yage Xing, Jialong Li, et al. "Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables." Molecules 30, no. 7 (2025): 1543. https://doi.org/10.3390/molecules30071543.
Full textWu, Xiaohong, Ziteng Yang, Yonglan Yang, Bin Wu, and Jun Sun. "Geographical Origin Identification of Chinese Red Jujube Using Near-Infrared Spectroscopy and Adaboost-CLDA." Foods 14, no. 5 (2025): 803. https://doi.org/10.3390/foods14050803.
Full textLiang, Yun-Chia, Yona Maimury, Angela Hsiang-Ling Chen, and Josue Rodolfo Cuevas Juarez. "Machine Learning-Based Prediction of Air Quality." Applied Sciences 10, no. 24 (2020): 9151. http://dx.doi.org/10.3390/app10249151.
Full text