Academic literature on the topic 'Adams-Bashforth'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adams-Bashforth.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Adams-Bashforth"

1

Murni, Delvitri, Bukti Ginting, and Narwen . "PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN." Jurnal Matematika UNAND 5, no. 2 (2016): 21. http://dx.doi.org/10.25077/jmu.5.2.21-25.2016.

Full text
Abstract:
Abstrak. Persamaan diferensial linier homogen orde tiga koesien konstan direduksimenjadi persamaan diferensial biasa orde-1, yaitu y0= f(x; y) dengan syarat awaly(x0) = y. Persamaan diferensial biasa orde-1 diselesaikan menggunakan metodeRunge-Kutta orde empat untuk menentukan nilai pendekatan y01; y2; dan y. Selanjutnya,digunakan metode Adams-Bashforth orde empat untuk menentukan nilai pendekatany; ; dst sebagai prediktor. Nilai yang ditampilkan oleh metode Adams-Bashforthorde empat digunakan pada metode Adams-Moulton orde empat sebagai korektor. Prosesmetode Adams-Bashforth orde empat dan me
APA, Harvard, Vancouver, ISO, and other styles
2

Misirli, Emine, and Yusuf Gurefe. "Multiplicative Adams Bashforth–Moulton methods." Numerical Algorithms 57, no. 4 (2010): 425–39. http://dx.doi.org/10.1007/s11075-010-9437-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ewald, Brian. "Weak Versions of Stochastic Adams-Bashforth and Semi-implicit Leapfrog Schemes for SDEs." Computational Methods in Applied Mathematics 12, no. 1 (2012): 23–31. http://dx.doi.org/10.2478/cmam-2012-0002.

Full text
Abstract:
AbstractWe consider the weak analogues of certain strong stochastic numerical schemes, namely an Adams-Bashforth scheme and a semi-implicit leapfrog scheme. We show that the weak version of the Adams-Bashforth scheme converges weakly with order 2, and the weak version of the semi-implicit leapfrog scheme converges weakly with order 1. We also note that the weak schemes are computationally simpler and easier to implement than the corresponding strong schemes, resulting in savings in both programming and computational effort.
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Shichang, Yufeng Xu, and Wei Yue. "Numerical Solutions of a Variable-Order Fractional Financial System." Journal of Applied Mathematics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/417942.

Full text
Abstract:
The numerical solution of a variable-order fractional financial system is calculated by using the Adams-Bashforth-Moulton method. The derivative is defined in the Caputo variable-order fractional sense. Numerical examples show that the Adams-Bashforth-Moulton method can be applied to solve such variable-order fractional differential equations simply and effectively. The convergent order of the method is also estimated numerically. Moreover, the stable equilibrium point, quasiperiodic trajectory, and chaotic attractor are found in the variable-order fractional financial system with proper order
APA, Harvard, Vancouver, ISO, and other styles
5

Hahm, Nahm-Woo, and Bum-Il Hong. "A GENERALIZATION OF THE ADAMS-BASHFORTH METHOD." Honam Mathematical Journal 32, no. 3 (2010): 481–91. http://dx.doi.org/10.5831/hmj.2010.32.3.481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kar, Sajal K. "An Explicit Time-Difference Scheme with an Adams–Bashforth Predictor and a Trapezoidal Corrector." Monthly Weather Review 140, no. 1 (2012): 307–22. http://dx.doi.org/10.1175/mwr-d-10-05066.1.

Full text
Abstract:
Abstract A new predictor-corrector time-difference scheme that employs a second-order Adams–Bashforth scheme for the predictor and a trapezoidal scheme for the corrector is introduced. The von Neumann stability properties of the proposed Adams–Bashforth trapezoidal scheme are determined for the oscillation and friction equations. Effectiveness of the scheme is demonstrated through a number of time integrations using finite-difference numerical models of varying complexities in one and two spatial dimensions. The proposed scheme has useful implications for the fully implicit schemes currently e
APA, Harvard, Vancouver, ISO, and other styles
7

Peinado, J., J. Ibáñez, E. Arias, and V. Hernández. "Adams–Bashforth and Adams–Moulton methods for solving differential Riccati equations." Computers & Mathematics with Applications 60, no. 11 (2010): 3032–45. http://dx.doi.org/10.1016/j.camwa.2010.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Segarra, Jaime. "MÉTODOS NUMÉRICOS RUNGE-KUTTA Y ADAMS BASHFORTH-MOULTON EN MATHEMATICA." Revista Ingeniería, Matemáticas y Ciencias de la Información 7, no. 14 (2020): 13–32. http://dx.doi.org/10.21017/rimci.2020.v7.n14.a81.

Full text
Abstract:
n este estudio, el objetivo principal es realizar el análisis de los métodos numéricos Runge-Kutta y Adams Bashforth-Moulton. Para cumplir con el objetivo se utilizó el sistema de ecuaciones diferenciales del modelo Lotka-Volterra y se usó el software matemático Wolfram Mathematica. En los resultados se realiza la comparación de los métodos RK4, AB4 y AM4 con el comando NDSolve utilizando el modelo Lotka-Volterra. Los resultados obtenidos en los diagramas de fase y la tabla de puntos de la iteración indicaron que el método RK4 tiene mayor precisión que los métodos AB4 y AM4.
APA, Harvard, Vancouver, ISO, and other styles
9

JANKOWSKA, MAŁGORZATA, and ANDRZEJ MARCINIAK. "ON EXPLICIT INTERVAL METHODS OF ADAMS-BASHFORTH TYPE." Computational Methods in Science and Technology 8, no. 2 (2002): 46–57. http://dx.doi.org/10.12921/cmst.2002.08.02.46-57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Sunil, Ali Ahmadian, Ranbir Kumar, et al. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets." Mathematics 8, no. 4 (2020): 558. http://dx.doi.org/10.3390/math8040558.

Full text
Abstract:
In this paper, the operational matrix based on Bernstein wavelets is presented for solving fractional SIR model with unknown parameters. The SIR model is a system of differential equations that arises in medical science to study epidemiology and medical care for the injured. Operational matrices merged with the collocation method are used to convert fractional-order problems into algebraic equations. The Adams–Bashforth–Moulton predictor correcter scheme is also discussed for solving the same. We have compared the solutions with the Adams–Bashforth predictor correcter scheme for the accuracy a
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!