Journal articles on the topic 'Adams spectral sequences. Homotopy groups'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 journal articles for your research on the topic 'Adams spectral sequences. Homotopy groups.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kato, Ryo, and Katsumi Shimomura. "The first line of the Bockstein spectral sequence on a monochromatic spectrum at an odd prime." Nagoya Mathematical Journal 207 (September 2012): 139–57. http://dx.doi.org/10.1017/s0027763000022339.
Full textBaues, Hans-Joachim, and Mamuka Jibladze. "Dualization of the Hopf algebra of secondary cohomology operations and the Adams spectral sequence." Journal of K-Theory 7, no. 2 (2011): 203–347. http://dx.doi.org/10.1017/is010010029jkt133.
Full textSmirnov, V. A. "Bott’s periodicity theorem and differentials of the Adams spectral sequence of homotopy groups of spheres." Mathematical Notes 84, no. 5-6 (2008): 710–17. http://dx.doi.org/10.1134/s0001434608110126.
Full textBendersky, Martin, and John R. Hunton. "ON THE COALGEBRAIC RING AND BOUSFIELD–KAN SPECTRAL SEQUENCE FOR A LANDWEBER EXACT SPECTRUM." Proceedings of the Edinburgh Mathematical Society 47, no. 3 (2004): 513–32. http://dx.doi.org/10.1017/s0013091503000518.
Full textHu, Po, Igor Kriz, and Kyle Ormsby. "Remarks on motivic homotopy theory over algebraically closed fields." Journal of K-Theory 7, no. 1 (2010): 55–89. http://dx.doi.org/10.1017/is010001012jkt098.
Full textRay, Nigel. "BORDISM, STABLE HOMOTOPY AND ADAMS SPECTRAL SEQUENCES (Fields Institute Monographs 7)." Bulletin of the London Mathematical Society 30, no. 1 (1998): 109–11. http://dx.doi.org/10.1112/s0024609397263459.
Full textIsaksen, Daniel C., Guozhen Wang, and Zhouli Xu. "Stable homotopy groups of spheres." Proceedings of the National Academy of Sciences 117, no. 40 (2020): 24757–63. http://dx.doi.org/10.1073/pnas.2012335117.
Full textGreenlees, J. P. C. "Homotopy equivariance, strict equivariance and induction theory." Proceedings of the Edinburgh Mathematical Society 35, no. 3 (1992): 473–92. http://dx.doi.org/10.1017/s0013091500005757.
Full textLin, Wen-Hsiung. "Some infinite families in the stable homotopy of spheres." Mathematical Proceedings of the Cambridge Philosophical Society 101, no. 3 (1987): 477–85. http://dx.doi.org/10.1017/s0305004100066858.
Full textDíaz, Antonio, Albert Ruiz, and Antonio Viruel. "Cohomological uniqueness of some p-groups." Proceedings of the Edinburgh Mathematical Society 56, no. 2 (2012): 449–68. http://dx.doi.org/10.1017/s0013091512000247.
Full textIsaksen, Daniel C., and Armira Shkembi. "Motivic connective K-theories and the cohomology of A(1)." Journal of K-theory 7, no. 3 (2011): 619–61. http://dx.doi.org/10.1017/is011004009jkt154.
Full textXiugui, Liu, and Jin Yinglong. "Detection of a new nontrivial family in the stable homotopy of spheres $ \mbf{\pi_{\ast}S} $." Tamkang Journal of Mathematics 39, no. 1 (2008): 75–83. http://dx.doi.org/10.5556/j.tkjm.39.2008.47.
Full textGreenlees, J. P. C. "Generalized Eilenberg–Moore spectral sequences for elementary abelian groups and tori." Mathematical Proceedings of the Cambridge Philosophical Society 112, no. 1 (1992): 77–89. http://dx.doi.org/10.1017/s0305004100070778.
Full textCuevas-Rozo, Julián, Jose Divasón, Miguel Marco-Buzunáriz, and Ana Romero. "Integration of the Kenzo System within SageMath for New Algebraic Topology Computations." Mathematics 9, no. 7 (2021): 722. http://dx.doi.org/10.3390/math9070722.
Full textMuranov, Yuri V., and Anna Szczepkowska. "Path homology theory of edge-colored graphs." Open Mathematics 19, no. 1 (2021): 706–23. http://dx.doi.org/10.1515/math-2021-0049.
Full text