Academic literature on the topic 'Adaptation (Biology)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adaptation (Biology).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adaptation (Biology)"
Khammash, Mustafa H. "Perfect adaptation in biology." Cell Systems 12, no. 6 (June 2021): 509–21. http://dx.doi.org/10.1016/j.cels.2021.05.020.
Full textShankar, Prabhat, Masatoshi Nishikawa, and Tatsuo Shibata. "2P273 Gain Noise Relation in Adaptation Networks(24. Mathematical biology,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S204. http://dx.doi.org/10.2142/biophys.53.s204_2.
Full textHARDIE, W. JAMES (JIM). "Grapevine biology and adaptation to viticulture." Australian Journal of Grape and Wine Research 6, no. 2 (July 2000): 74–81. http://dx.doi.org/10.1111/j.1755-0238.2000.tb00165.x.
Full textBilleter, R., A. Puntschart, M. Vogt, M. Wittwer, E. Wey, K. Jostarndt, and H. Hoppeler. "Molecular Biology of Human Muscle Adaptation." International Journal of Sports Medicine 18, S 4 (October 1997): S300—S301. http://dx.doi.org/10.1055/s-2007-972734.
Full textElliott, Tomas. "‘A movie about flowers?’ Notes on the ecological turn in adaptation studies." Adaptation 17, no. 2 (June 26, 2024): 320–37. http://dx.doi.org/10.1093/adaptation/apae015.
Full textBaitubayеv, D. G. "Biology of increased tolerance and validation of the psychoactive substance dependence." Addiction Research and Adolescent Behaviour 5, no. 1 (January 6, 2022): 01–05. http://dx.doi.org/10.31579/2688-7517/029.
Full textAtıcı, Tahir, and Ümit Yaşatürk Midilli. "Adaptation of Biology Attitude Questionnaire to Turkish." Hellenic Journal of STEM Education 1, no. 2 (August 5, 2021): 67–71. http://dx.doi.org/10.51724/hjstemed.v1i2.2.
Full textClapp, Emma. "Genetics and molecular biology of muscle adaptation." Journal of Sports Sciences 25, no. 14 (December 2007): 1623. http://dx.doi.org/10.1080/02640410701282397.
Full textGITTENBERGER, E. "Radiation and adaptation, evolutionary biology and semantics." Organisms Diversity & Evolution 4, no. 3 (September 2004): 135–36. http://dx.doi.org/10.1016/j.ode.2004.04.002.
Full textNasib ur Rahman, Jia-le Ding, Shah Nawab, Ahmad Ali, Yasir Alam, Adil Qadir, Yasir Alam, and sun kun. "Molecular evaluation and geographical adaptation of plants: A literature review." World Journal of Advanced Research and Reviews 17, no. 1 (January 30, 2023): 029–42. http://dx.doi.org/10.30574/wjarr.2023.17.1.1404.
Full textDissertations / Theses on the topic "Adaptation (Biology)"
Paget, Caroline Mary. "Environmental systems biology of temperature adaptation in yeast." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/environmental-systems-biology-of-temperature-adaptation-in-yeast(597a675a-aaf1-43bf-bd6c-143aeefc98be).html.
Full textModi, Sheetal. "Systems biology approaches to mechanisms of bacterial stress adaptation." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12822.
Full textBacteria exhibit highly adaptive behaviors in the face of stress, which poses significant challenges for the eradication of infectious disease as well as for the success of biotechnology efforts to harness microbes as production chassis. Systems biology, which studies interactions between the components of a biological system, presents a framework for using computational strategies to further understand the complexity of bacterial physiology. In this work we use systems biology to elucidate the comprising mechanisms of two facets of bacterial stress adaptation. In the first part of this work, we develop a method to facilitate the characterization of small non-coding RNAs, which are involved in mediating adaptive physiological responses to changing environmental conditions. We implement a network biology approach based on expression profiling to predict the functional and regulatory interactions for small RNAs in Escherichia coli. We experimentally validate functional predictions for three small RNAs in our inferred network and demonstrate that a specific small RNA interacts with a transcription factor in a mutually inhibitory relationship, demonstrating a new cellular regulatory motif in bacteria. In the second part of this work, we investigate the role of phages, viruses which infect bacteria, in the adaptation of the microbiome to stressful environments. Disruption of intestinal homeostasis has been studied at the level of microbial composition; however, investigation of the gut ecosystem has evinced a myriad of resident phages, and it remains unclear how perturbation of the gut environment affects these viral symbionts. Our analysis demonstrates that antibiotic treatment, a prevalent stress for commensal microbes, enriches the phage metagenome for stress-specific and niche-specific functions. We also show that antibiotic treatment expands the interactions between phage and bacterial species, leading to a more highly connected phage-bacterial network for gene exchange. Our work indicates that the adaptive capacity of the phageome may represent a community-based mechanism for protecting the gut microfiora and preserving its functional robustness during antibiotic stress. Systems biology approaches toward understanding bacterial behavior within an environmental and evolutionary context may improve our relationships with microbes, which will be critical in an era where the potential of these organisms remains both promising and incipient.
Cuthbertson, Charles. "Limits to the rate of adaptation." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670176.
Full textLeiby, Nicholas. "Adaptation and Specialization in the Evolution of Bacterial Metabolism." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11364.
Full textHaller, Benjamin. "The role of heterogeneity in adaptation and speciation." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119621.
Full textL'hétérogénéité est au coeur du «mystère des mystères» de Darwin : l'origine des espèces, comme cause et comme conséquence. L'hétérogénéité à l'intérieur et entre les environnements peut produire de l'hétérogénéité génétique et phénotypique dans une population et entre des populations. Ceci peut produire, à son tour, de l'hétérogénéité dans les patrons d'accouplement et de reproduction, souvent appelé «croisement assortatif». Ultimement, ce processus peut mener à la spéciation – en fait, le développement d'une hétérogénéité stable et persistante au niveau phylogénique. Une «chaîne de causalité» existe au cours duquel l'hétérogénéité se propage, de différences environmentales à des différences entre les individus, les populations, et ultimement aux espèces (premier chapitre). Dans cette thèse, je présente trois modèles, qui portent chacun sur un lien différent de la chaîne de causalité pour étudier les causes et les conséquences de l'hétérogénéité dans les processus évolutifs. Le premier modèle (deuxième chapitre) examine le premier lien de la chaîne de causalité : le processus d'adaptation avec une seule population et un seul environnement ne contenant qu'un seul type de ressource. Ce modèle montre que la stochasticité génère de l'hétérogénéité génétique et phénotypique, même dans un environnement simple. En plus, l'hétérogénéité peut être maintenue et amplifiée par des processus écologiques simples comme la compétition intra-spécifique qui réduit la valeur d'adaptation des phénotypes communs. Ces résultats aident à résoudre une vieille question en biologie de l'évolution, «le paradoxe de la stase», en fournissant une explication pour les mécanismes de sélection que l'on observe dans la nature. Le deuxième modèle (troisième chapitre) explore un lien intermédiaire dans la chaîne de causalité : les effets de l'hétérogénéité environnementale sur l'adaptation divergente et les processus de biodiversification. Ce modèle intègre des patrons complexes d'hétérogénéité qui n'ont pas été étudiés précédemment et montre un nouvel «effet refuge» qui amplifie les processus de biodiversification dans des environnements hétérogènes complexes. En effet, les «refuges» générés par la fragmentation spatiale peuvent devenir des tremplins par lesquels l'adaptation aux environnements hostiles peut procéder séquentiellement. D'autres effets de l'hétérogénéité complexe sont aussi montrés et ces résultats sont liés à la recherche empirique sur la spéciation. Le dernier modèle (quatrième chapitre) étudie le dernier lien de la chaîne de causalité : le développement de l'isolation reproductive et l'évolution vers la spéciation. Il a été suggéré qu'un syndrome floral appelé hétérostylie peut causer une isolation reproductive partielle entre les fleurs, entraînant la spéciation. Le modèle de ce chapitre est utilisé pour tester cette hypothèse. Les résultats appuient cette hypothèse dans certains scénarios, car la sélection écologique divergente sur les traits impliqués dans l'hétérostylie peuvent produire de l'isolement reproductif à cause d'effects pléiotropes. Cependant, ce modèle ne génère pas toujours de l'isolement reproductif. Un autre résultat possible du modèle est que l'hétérostylie produit un flux génique asymmétrique. Ce résultat pointe vers un nouveau mécanisme sous-jacent à la progression de l'hétérostylie vers la diécie, offrant la possibilité de résoudre un mystère persistant à propos du système reproductif des plantes. Dans le cinquième chapitre, la chaîne de causalité est représentée par un organigramme qui présente les mécanismes qui génèrent et amplifient l'hétérogénéité à différents stades du processus d'adaptation et de spéciation. Les modèles présentés dans les chapitres précédents sont positionnés sur la chaîne de causalité, illustrant quelles sont les parties de cet organigramme qui ont été explorées dans cette thèse.
Kane, Nolan C. "The genetic basis of adaptation and speciation in wild sunflowers." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3290775.
Full textTitle from dissertation home page (viewed May 28, 2008). Source: Dissertation Abstracts International, Volume: 68-11, Section: B, page: 7090. Adviser: Loren H. Rieseberg.
Friedman, Jonathan Ph D. Massachusetts Institute of Technology. "Microbial adaptation, differentiation, and community structure." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81751.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 112-119).
Microbes play a central role in diverse processes ranging from global elemental cycles to human digestion. Understanding these complex processes requires a rm under- standing of the interplay between microbes and their environment. In this thesis, we utilize sequencing data to study how individual species adapt to different niches, and how species assemble to form communities. First, we study the potential temperature and salinity range of 16 marine Vibrio strains. We nd that salinity tolerance is at odds with the strains' natural habitats, and provide evidence that this incongruence may be explained by a molecular coupling between salinity and temperature tolerance. Next, we investigate the genetic basis of bacterial ecological differentiation by analyzing the genomes of two closely related, yet ecologically distinct populations of Vibrio splendidus. We nd that most loci recombine freely across habitats, and that ecological differentiation is likely driven by a small number of habitat-specic alle-les. We further present a model for bacterial sympatric speciation. Our simulations demonstrate that a small number of adaptive loci facilitates speciation, due to the op- posing roles horizontal gene transfer (HGT) plays throughout the speciation process: HGT initially promotes speciation by bringing together multiple adaptive alleles, but later hinders it by mixing alleles across habitats. Finally, we introduce two tools for analyzing genomic survey data: SparCC, which infers correlations between taxa from relative abundance data; and StrainFinder, which extracts strain-level information from metagenomic data. Employing these tools, we infer a rich ecological network connecting hundreds of interacting species across 18 sites on the human body, and show that 16S-defined groups are rarely composed of a single dominant strain.
by Jonathan Friedman.
Ph.D.
Kettler, Gregory C. (Gregory Carl). "Genetic diversity and its consequences for light adaptation in Prochlorococcus." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68428.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 215-223).
When different cells thrive across diverse environments, their genetic differences can reveal what genes are essential to survival in a particular environment. Prochlorococcus, a cyanobacterium that dominates the open ocean, offers an opportunity to explore such differences. Its diversity is examined here, beginning with an overview and comparison of 12 fully sequenced Prochlorococcus genomes. The Prochlorococcus core genome, that set of genes shared by all cultured Prochlorococcus, appears to be well defined by the set shared by these isolates. The flexible genome, that set of genes found in some isolates but not shared by all Prochlorococcus, was found to be much larger and open-ended. Most laterally-acquired genes were found to be located in highly variable islands such as those described in previous studies of Prochlorococcus. Those lateral gene transfer events can also be placed on the Prochlorococcus phylogenetic tree: each Prochlorococcus isolate possesses a significant number of genes that even its closest sequenced cousin does not. A particular gene family may define a Prochlorococcus ecotype if those genes are possessed by all members of that ecotype, and if their presence gives that ecotype a selective advantage in some circumstance, thus contributing to the determination of its niche. One gene family is conspicuous for appearing in many copies per genome in one Prochlorococcus clade, referred to as eNATL. The sequenced strains belonging to this clade each possess over 40 copies of genes encoding high light inducible proteins (HLIPs), compared to only 9-24 in the other Prochlorococcus genomes. Other studies suggest these genes may be involved in resistance to sudden increases in light intensity, among other stresses. This becomes especially interesting as recent field studies also found that eNATL cells may survive changes in light intensity more easily than other lowlight adapted Prochlorococcus. Here, the effects of light shocks on an eNATL strain and on other Prochlorococcus strains are studied. eNATL cultures do recover from light shock conditions that are lethal to other low light-adapted Prochlorococcus. Measurements of bulk in vivo chlorophyll fluorescence, fluorescence per cell, and variable fluorescence, along with preliminary gene expression data, suggest that the early, rapid response of high light-adapted cells and of eNATL cells distinguish them from other low light-adapted cells, possibly explaining their subsequent survival. The possible role of HLIPs in this response is discussed. The discussion of HLIPs and eNATL is based on the complete sequences of only two eNATL genomes, both sampled from the same part of the ocean at the same time. That dataset is expanded by the inclusion of Global Ocean Survey environmental shotgun reads, from which are identified several thousand HLIP genes. Past work has shown that HLIPs are divided into two distinct clades: the core, freshwater cyanobacteria-like HLIPs and the flexible, phage-like, island-bound copies. That distinction is examined in the metagenomic data, demonstrating that the separate types are consistently found in distinct chromosomal neighborhoods.
(cont.) The evolution of HLIPs is also explored by the analysis of large-insert environmental clones containing islands from a variety of eNATL cells. Here, not even all island-bound, HLIP-encoding genes appear to be alike, as only a subset are consistently found in the same locations across the whole eNATL clade. Ecotype-defining genes are those genes, shared by all members of an ecotype, that provide an ecologically significant advantage, thus helping to define the ecotype's niche. It can be expected that, as environmental data accumulates (including additional measurements of Prochlorococcus abundance and newly sequenced genomes from uncultured cells), additional such genes can be identified. This work should represent a model for searching for and examining such genes. Hopefully, future experiments will be able to test the physiological significance of candidate ecotype-defining genes, while feeding back to the environmental data to verify their importance in the open ocean.
by Gregory C. Kettler.
Ph.D.
Crispo, Erika. "Interplay among phenotypic plasticity, local adaptation, and gene flow." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92201.
Full textSmith, Joel Haviland. "Leveraging Haplotype-Based Inference to Describe Adaptation and Speciation." Thesis, The University of Chicago, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10788183.
Full textForward progress in empirical population genetics is closely tied to the development of theory which can accomodate and keep pace with the production of genetic data. In recent years, the ability to survey genetic variation at increasingly greater resolution, across the genomes of a variety of species, has prompted new approaches to use this data for population genetic inference. While many models have historically relied on assuming independence among genetic variants in a sample of chromosomes, there are now a variety of methods which can use the non-independence among variants as a source of information. In particular, the unique combination and co-inheritance of variants on a chromosome can be used to define "haplotypes" of linked genetic variation associated with specific populations, individuals, or variants from which they are descended. The work presented here is a contribution to this class of population genetic models which describes: (1) a method to estimate the timing of adaptation for a beneficial allele, including several applications to recent human evolution, (2) an application of the same method to infer the timing of introgression for coat color alleles in North American wolves and high-altitude adaptation in Tibetans, (3) a model to infer the action of purifying selection against genetic incompatibilities in a hybrid zone, and (4) a reanalysis of genomic data from Heliconius butterflies which confirms the role of hybridization in transfering mimicry phenotypes between species.
Books on the topic "Adaptation (Biology)"
1955-, Rose Michael R., and Lauder George V, eds. Adaptation. San Diego: Academic Press, 1996.
Find full textBrandon, Robert N. Adaptation and environment. Princeton, N.J: Princeton University Press, 1990.
Find full textDr, Sharma B. K., and International Society for Adaptive Medicine. Congress, eds. Adaptation biology and medicine. New Delhi: Narosa Pub. House, 1997.
Find full textWalker, Denise. Adaptation and survival. North Mankato, MN: Smart Apple Media, 2006.
Find full textGordon, Malcolm S. Invasions of the land: The transitionsof organisms from aquatic to terrestrial life. New York: Columbia University Press, 1995.
Find full textNoyd, Robert K. Biology: Organisms and adaptations. Belmont, California: Brooks/Cole, Cengage Learning, 2014.
Find full textDavies, Monika. Adaptations. Huntington Beach, CA: Teacher Created Materials, 2015.
Find full textBook chapters on the topic "Adaptation (Biology)"
Huneman, Philippe. "Adaptation." In Encyclopedia of Systems Biology, 9–10. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_896.
Full textLack, Andrew, and David Evans. "Stress avoidance and adaptation." In Plant Biology, 158–62. 2nd ed. London: Taylor & Francis, 2021. http://dx.doi.org/10.1201/9780203002902-49.
Full textParsons, P. A. "Evolutionary Adaptation and Stress." In Evolutionary Biology, 191–223. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3336-8_5.
Full textFerrell, James E. "Adaptation 2." In Systems Biology of Cell Signaling, 199–211. Boca Raton: Garland Science, 2021. http://dx.doi.org/10.1201/9781003124269-13.
Full textGuirfa, Martin, and Randolf Menzel. "Biology of Adaptation and Learning." In Adaptivity and Learning, 7–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05594-6_2.
Full textLahiri, Sukhamay. "Oxygen Biology of Peripheral Chemoreceptors." In Response and Adaptation to Hypoxia, 95–106. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4614-7574-3_9.
Full textZarea, Mohammad Javad. "Salt-Tolerant Microbes: Isolation and Adaptation." In Soil Biology, 285–301. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18975-4_12.
Full textAlmaguer Chávez, Michel. "Thermotolerance and Adaptation to Climate Change." In Fungal Biology, 37–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89664-5_3.
Full textSopory, Sudhir, and Charanpreet Kaur. "Plant Diversity and Adaptation." In Sensory Biology of Plants, 1–18. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8922-1_1.
Full textFogleman, James C., Phillip B. Danielson, and Ross J. Macintyre. "The Molecular Basis of Adaptation in Drosophila." In Evolutionary Biology, 15–77. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1751-5_2.
Full textConference papers on the topic "Adaptation (Biology)"
Sanllorente, Olivia, Elva X. Vela, Daniel Aguayo, Mercedes Molina-Morales, Tomás Pérez-Contreras, Francisca Ruano, Magdalena Ruiz-Rodríguez, Pedro Sandoval, and Juan Diego Ibáñez-Álamo. "ADAPTATION OF THE ZOOLOGY PRACTICALS TO THE BILINGUAL BIOLOGY DEGREE." In 16th International Technology, Education and Development Conference. IATED, 2022. http://dx.doi.org/10.21125/inted.2022.2429.
Full textBratus, A. S., T. Yakushkina, S. Drozhzhin, and I. Samokhin. "Mathematical Models of Evolution for Replicator Systems: Fitness Landscape Adaptation." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.54.
Full textNalau, Johanna, Susanne Becken, and Brendan Mackey. "Ecosystem-based Adaptation: A review of the constraints." In 5th European Congress of Conservation Biology. Jyväskylä: Jyvaskyla University Open Science Centre, 2018. http://dx.doi.org/10.17011/conference/eccb2018/109092.
Full textKnote, Andreas, and Sebastian von Mammen. "Adaptation and Integration of GPU-Driven Physics for a Biology Research RIS." In 2018 IEEE 11th Workshop on Software Engineering and Architectures for Real-time Interactive Systems (SEARIS). IEEE, 2018. http://dx.doi.org/10.1109/searis44442.2018.9180233.
Full textANTONELI, FERNANDO, FRANCISCO BOSCO, DIOGO CASTRO, and LUIZ MARIO JANINI. "VIRAL EVOLUTION AND ADAPTATION AS A MULTIVARIATE BRANCHING PROCESS." In International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814520829_0013.
Full text"Adaptation of the CRISPR/Cas9 system for targeted manipulations of the human mitochondrial genome." In SYSTEMS BIOLOGY AND BIOINFORMATICS. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/sbb-2019-43.
Full text"LIVING SYSTEMS’ ORGANISATION AND PROCESSES FOR ACHIEVING ADAPTATION - Principles to Borrow from Biology." In International Conference on Evolutionary Computation. SciTePress - Science and and Technology Publications, 2009. http://dx.doi.org/10.5220/0002335702540259.
Full text"Adaptation to polyploidy in Siberian Arabidopsis lyrata." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-356.
Full textStinziano, Joseph. "The Sphagnum magellanicum complex exhibits minimal local adaptation of photosynthesis across a 3,000 km transect." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053046.
Full textIvanova, G., D. Perez, and R. Both. "Threshold Adaptation for Mean Value Based Operant Conditioning." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1617263.
Full textReports on the topic "Adaptation (Biology)"
Joyner, Dominique, Julian Fortney, Romy Chakraborty, and Terry Hazen. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/985923.
Full textBartolino, Valerio, Birgit Koehler, and Lena Bergström, eds. Climate effects on fish in Sweden : Species-Climate Information Sheets for 32 key taxa in marine and coastal waters. Department of Aquatic Resources, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.4lmlt1tq5j.
Full textBoisclair, Yves R., Alan W. Bell, and Avi Shamay. Regulation and Action of Leptin in Pregnant and Lactating Dairy Cows. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7586465.bard.
Full text