Academic literature on the topic 'Adaptive bitrate streaming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adaptive bitrate streaming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adaptive bitrate streaming"
Kristiadi, David, and Marwiyati. "Adaptive Streaming Server dengan FFMPEG dan Golang." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 5, no. 3 (2021): 413–20. http://dx.doi.org/10.29207/resti.v5i3.2998.
Full textJabbar, Saba Qasim, and Dheyaa Jasim Kadhim. "A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming." Journal of Engineering 27, no. 1 (2021): 112–29. http://dx.doi.org/10.31026/10.31026/j.eng.2021.01.08.
Full textJabbar, Saba Qasim, and Dheyaa Jasim Kadhim. "A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming." Journal of Engineering 27, no. 1 (2021): 112–29. http://dx.doi.org/10.31026/j.eng.2021.01.08.
Full textGarcia, Henrique D., Mylène C. Q. Farias, Ravi Prakash, and Marcelo M. Carvalho. "Statistical characterization of tile decoding time of HEVC-encoded 360° video." Electronic Imaging 2020, no. 9 (2020): 285–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.9.iqsp-285.
Full textGao, Guanyu, Yonggang Wen, and Jianfei Cai. "vCache: Supporting Cost-Efficient Adaptive Bitrate Streaming." IEEE MultiMedia 24, no. 3 (2017): 19–27. http://dx.doi.org/10.1109/mmul.2017.3051521.
Full textBrown, Harrison, Kai Fricke, and Eiko Yoneki. "World-Models for Bitrate Streaming." Applied Sciences 10, no. 19 (2020): 6685. http://dx.doi.org/10.3390/app10196685.
Full textDu, Lina, Li Zhuo, Jiafeng Li, Jing Zhang, Xiaoguang Li, and Hui Zhang. "Video Quality of Experience Metric for Dynamic Adaptive Streaming Services Using DASH Standard and Deep Spatial-Temporal Representation of Video." Applied Sciences 10, no. 5 (2020): 1793. http://dx.doi.org/10.3390/app10051793.
Full textYamagishi, Kazuhisa, and Takanori Hayashi. "Parametric Quality-Estimation Model for Adaptive-Bitrate-Streaming Services." IEEE Transactions on Multimedia 19, no. 7 (2017): 1545–57. http://dx.doi.org/10.1109/tmm.2017.2669859.
Full textXiao, Xuedou, Wei Wang, Taobin Chen, Yang Cao, Tao Jiang, and Qian Zhang. "Sensor-Augmented Neural Adaptive Bitrate Video Streaming on UAVs." IEEE Transactions on Multimedia 22, no. 6 (2020): 1567–76. http://dx.doi.org/10.1109/tmm.2019.2945167.
Full textNguyen, Thoa, Thang Vu, Nam Pham Ngoc, and Truong Cong Thang. "SDP-Based Quality Adaptation and Performance Prediction in Adaptive Streaming of VBR Videos." Advances in Multimedia 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/7323681.
Full textDissertations / Theses on the topic "Adaptive bitrate streaming"
Dzabic, Daniel, and Mårtensson Jacob. "HTTP Based Adaptive Bitrate Streaming Protocols in Live Surveillance Systems." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152793.
Full textDzabic, Daniel, and Jacob Mårtensson. "HTTP Based Adaptive Bitrate Streaming Protocols in Live Surveillance Systems." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153097.
Full textSwärd, Rikard. "HTTP Live Streaming : En studie av strömmande videoprotokoll." Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-22254.
Full textThe use of streaming video is growing rapidly at the moment. A popular conceptis adaptive bitrate streaming, which is when a video gets encoded in severaldifferent bit rates. These videos are then split into small files and made availablevia the internet. When you want to play such a video, you first download afile that describes where the files are located and in what bitrates they are encodedin. The media player then begin downloading the files and play them. Ifthe physical conditions, such as the download speed or CPU load, changes duringplayback, the media player can easily change the quality of the video bystarting to downloading files of a different bit rate and avoid that the video lags.This report will take a closer look at four techniques in adaptive bitrate streaming.They examined techniques are HTTP Live Streaming, Dynamic AdaptiveStreaming over HTTP, HTTP Dynamic Streaming and Smooth Streaming andwhich protocols they use. The report also examines how Apple and FFmpeg hasimplemented HTTP Live Streaming with respect to how much data is needed toread a file before the video can begin to be played. The report shows that thereare no large differences between the four techniques. However, Dynamic AdaptiveStreaming over HTTP stood out a bit by being completely independent ofany audio or video protocols. The report also shows a shortcoming in the specificationof HTTP Live Streaming as it is not specified that the first completeframe of the video stream should be at the beginning of the file. In Apple's implementationits needed to read up to 30 KB of data before playback can bestarted while in FFmpeg's implementation its about 600 bytes.
Belda, Ortega Román. "Mejora del streaming de vídeo en DASH con codificación de bitrate variable mediante el algoritmo Look Ahead y mecanismos de coordinación para la reproducción, y propuesta de nuevas métricas para la evaluación de la QoE." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/169467.
Full text[CA] Aquesta tesi presenta diverses propostes encaminades a millorar la transmissió de vídeo a través de l'estàndard DASH (Dynamic Adaptive Streaming over HTTP). Aquest treball de recerca estudia el protocol de transmissió DASH i les seves característiques. Alhora, planteja la codificació amb qualitat constant i bitrate variable com a manera de codificació del contingut de vídeo més indicada per a la transmissió de contingut sota demanda mitjançant l'estàndard DASH. Derivat de la proposta d'utilització de la manera de codificació de qualitat constant, cobra major importància el paper que juguen els algorismes d'adaptació en l'experiència dels usuaris en consumir el contingut. En aquest sentit, aquesta tesi presenta un algoritme d'adaptació denominat Look Ahead el qual, sense modificar l'estàndard, permet utilitzar la informació de les grandàries dels segments de vídeo inclosa en els contenidors multimèdia per a evitar prendre decisions d'adaptació que desemboquin en una parada indesitjada en la reproducció de contingut multimèdia. Amb l'objectiu d'avaluar les possibles millores de l'algoritme d'adaptació presentat, es proposen tres models d'avaluació objectiva de la QoE. Els models proposats permeten predir de manera senzilla la QoE que tindrien els usuaris de manera objectiva, utilitzant paràmetres coneguts com el bitrate mitjà, el PSNR (Peak Signal-to-Noise Ratio) i el valor de VMAF (Video Multimethod Assessment Fusion). Tots ells aplicats a cada segment. Finalment, s'estudia el comportament de DASH en entorns Wi-Fi amb alta densitat d'usuaris. En aquest context es produeixen un nombre elevat de parades en la reproducció per una mala estimació de la taxa de transferència disponible deguda al patró ON/OFF de descàrrega de DASH i a la variabilitat de l'accés al mitjà de Wi-Fi. Per a pal·liar aquesta situació, es proposa un servei de coordinació basat en la tecnologia SAND (MPEG's Server and Network Assisted DASH) que proporciona una estimació de la taxa de transferència basada en la informació de l'estat dels players dels clients.
[EN] This thesis presents several proposals aimed at improving video transmission through the DASH (Dynamic Adaptive Streaming over HTTP) standard. This research work studies the DASH transmission protocol and its characteristics. At the same time, this work proposes the use of encoding with constant quality and variable bitrate as the most suitable video content encoding mode for on-demand content transmission through the DASH standard. Based on the proposal to use the constant quality encoding mode, the role played by adaptation algorithms in the user experience when consuming multimedia content becomes more important. In this sense, this thesis presents an adaptation algorithm called Look Ahead which, without modifying the standard, allows the use of the information on the sizes of the video segments included in the multimedia containers to avoid making adaptation decisions that lead to undesirable stalls during the playback of multimedia content. In order to evaluate the improvements of the presented adaptation algorithm, three models of objective QoE evaluation are proposed. These models allow to predict in a simple way the QoE that users would have in an objective way, using well-known parameters such as the average bitrate, the PSNR (Peak Signal-to-Noise Ratio) and the VMAF (Video Multimethod Assessment Fusion). All of them applied to each segment. Finally, the DASH behavior in Wi-Fi environments with high user density is analyzed. In this context, there could be a high number of stalls in the playback because of a bad estimation of the available transfer rate due to the ON/OFF pattern of DASH download and to the variability of the access to the Wi-Fi environment. To relieve this situation, a coordination service based on SAND (MPEG's Server and Network Assisted DASH) is proposed, which provides an estimation of the transfer rate based on the information of the state of the clients' players.
Belda Ortega, R. (2021). Mejora del streaming de vídeo en DASH con codificación de bitrate variable mediante el algoritmo Look Ahead y mecanismos de coordinación para la reproducción, y propuesta de nuevas métricas para la evaluación de la QoE [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/169467
TESIS
Mazza, Stefano. "Implementazione e analisi di algoritmi dinamici per trasmissione MPEG-DASH su client Android." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11875/.
Full textLin, Kuei-Hong, and 林奎宏. "Adaptive Bitrate Streaming over Software Defined Networks." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/r8us6y.
Full text國立交通大學
電機學院電信學程
105
Video streaming is one of the most popular real-time Internet services which has changed the viewing behaviors of millions of people around the world. A novel streaming technique called adaptive bitrate streaming (ABS) that allocates appropriate video bitrates based on the current overall network capacity (especially CPU and memory) and traffic condition can minimize the buffering requirement and provide satisfactory user experiences to all viewers. By monitoring the network condition and evaluating the available bandwidth continuously, an ABS client adaptively selects an appropriate video bitrate. However, conventional ABS techniques endow each individual client with full authority to determine the desired bandwidth. Each client thus unilaterally observes the network traffic and makes a video bitrate decision which serves its demand best. The distributed decisions entail unfairness in bandwidth allocation as ABS clients tend to overestimate the required bandwidth. As a result, some may be allocated more bandwidth than actually needed while others receive less than they really need. Furthermore, an overestimation may cause an underestimation in the next iteration, ultimately bringing the clients with unstable video bitrates and poor quality of experience (QoE). To evaluate QoE in video streaming services, video quality is often used as a proper metric. Thus, optimizing QoE is equivalent to optimizing the “video quality” fairness. We formulate the QoE optimization problem as a maximum minimum fairness (MMF) problem. It essentially searches for a candidate bandwidth allocation (in bitrate) and the corresponded video quality for all the clients so that the worst client video quality fairness is maximized. Three schemes are proposed to solve the MMF problem. On the other hand, for these solutions to be implementable, the information regarding the network conditions of all clients should be available to a resource allocation agent. It is clear this is realizable only if the network in question has a software defined architecture. A software defined network (SDN) has a centralized controller platform which continuously monitors the overall network condition and collects related information to manage flow control for intelligent networking. The ABS clients need not to make bitrate decisions but simply forward the observed network traffic and storage status to the SDN controller. Based on the SDN architecture, our numerical solution gives a resource allocation policy for ABS clients to achieve the mini-max QoE fairness in real-time. Both computer simulation and hardware implementation results are provided to verify the feasibility and efficiency of the proposed methods. We find that all three algorithms achieve the same QoE fairness (i.e., MMF).
Deshmukh, Rajvardhan Somraj. "Improving Resilience of Communication in Information Dissemination for Time-Critical Applications." 2019. https://scholarworks.umass.edu/masters_theses_2/768.
Full textSuresh, Bhushan. "AN EVALUATION OF SDN AND NFV SUPPORT FOR PARALLEL, ALTERNATIVE PROTOCOL STACK OPERATIONS IN FUTURE INTERNETS." 2018. https://scholarworks.umass.edu/masters_theses_2/667.
Full textBook chapters on the topic "Adaptive bitrate streaming"
Sharif, Usman, Adnan N. Qureshi, and Seemal Afza. "ORTIA: An Algorithm to Improve Quality of Experience in HTTP Adaptive Bitrate Streaming Sessions." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55190-2_3.
Full textFleury, Martin, and Laith Al-Jobouri. "Techniques and Tools for Adaptive Video Streaming." In Intelligent Multimedia Technologies for Networking Applications. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2833-5.ch004.
Full textRovcanin, Lejla, and Gabriel-Miro Muntean. "DASH." In Convergence of Broadband, Broadcast, and Cellular Network Technologies. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5978-0.ch007.
Full textConference papers on the topic "Adaptive bitrate streaming"
Reznik, Yuriy A., Xiangbo Li, Karl O. Lillevold, Abhijith Jagannath, and Justin Greer. "Optimal Multi-Codec Adaptive Bitrate Streaming." In 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2019. http://dx.doi.org/10.1109/icmew.2019.00066.
Full textKimura, Takuto, Tatsuaki Kimura, and Kazuhisa Yamagishi. "Context-aware Adaptive Bitrate Streaming System." In ICC 2021 - IEEE International Conference on Communications. IEEE, 2021. http://dx.doi.org/10.1109/icc42927.2021.9500665.
Full textLebreton, Pierre, and Kazuhisa Yamagishi. "Network and Content-Dependent Bitrate Ladder Estimation for Adaptive Bitrate Video Streaming." In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9413558.
Full textLe, Hung T., Duc V. Nguyen, Nam Pham Ngoc, Anh T. Pham, and Truong Cong Thang. "Buffer-based bitrate adaptation for adaptive HTTP streaming." In 2013 International Conference on Advanced Technologies for Communications (ATC 2013). IEEE, 2013. http://dx.doi.org/10.1109/atc.2013.6698072.
Full textNandakumar, D., P. Ramachandran, S. Kotecha, T. Vaughan, and K. Sampath. "Efficient multi-bitrate HEVC encoding for adaptive streaming." In IBC 2016 Conference. Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/ibc.2016.0036.
Full textHuang, Tianchi, Rui-Xiao Zhang, and Lifeng Sun. "Deep reinforced bitrate ladders for adaptive video streaming." In MMSys '21: 12th ACM Multimedia Systems Conference. ACM, 2021. http://dx.doi.org/10.1145/3458306.3458873.
Full textKatsenou, Angeliki V., Fan Zhang, Kyle Swanson, Mariana Afonso, Joel Sole, and David R. Bull. "VMAF-based Bitrate Ladder Estimation for Adaptive Streaming." In 2021 Picture Coding Symposium (PCS). IEEE, 2021. http://dx.doi.org/10.1109/pcs50896.2021.9477469.
Full textTakahashi, Shoko, Kazuhisa Yamagishi, and Jun Okamoto. "Classification of Viewing Abandonment Reasons for Adaptive Bitrate Streaming." In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020. http://dx.doi.org/10.1109/qomex48832.2020.9123146.
Full textAlt, Bastian, Trevor Ballard, Ralf Steinmetz, Heinz Koeppl, and Amr Rizk. "CBA: Contextual Quality Adaptation for Adaptive Bitrate Video Streaming." In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, 2019. http://dx.doi.org/10.1109/infocom.2019.8737418.
Full textNguyen, Duc V., Dung M. Nguyen, Huyen T. Tran, Nam Pham Ngoc, Anh T. Pham, and Truong C. Thang. "Quality-delay tradeoff optimization in multi-bitrate adaptive streaming." In 2015 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2015. http://dx.doi.org/10.1109/icce.2015.7066320.
Full text