Academic literature on the topic 'Adaptive multiresolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adaptive multiresolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adaptive multiresolution"
Domingues, Margarete O., Sônia M. Gomes, Olivier Roussel, and Kai Schneider. "Adaptive multiresolution methods." ESAIM: Proceedings 34 (December 2011): 1–96. http://dx.doi.org/10.1051/proc/201134001.
Full textMeer, P., R. H. Park, and K. J. Cho. "Multiresolution Adaptive Image Smoothing." CVGIP: Graphical Models and Image Processing 56, no. 2 (March 1994): 140–48. http://dx.doi.org/10.1006/cgip.1994.1013.
Full textLIVNY, YOTAM, NETA SOKOLOVSKY, and JIHAD EL-SANA. "DUAL ADAPTIVE PATHS FOR MULTIRESOLUTION HIERARCHIES." International Journal of Image and Graphics 07, no. 02 (April 2007): 273–90. http://dx.doi.org/10.1142/s0219467807002726.
Full textSturani, R., and R. Terenzi. "Adaptive multiresolution for wavelet analysis." Journal of Physics: Conference Series 122 (July 1, 2008): 012036. http://dx.doi.org/10.1088/1742-6596/122/1/012036.
Full textBiyikli, Emre, and Albert C. To. "Multiresolution molecular mechanics: Adaptive analysis." Computer Methods in Applied Mechanics and Engineering 305 (June 2016): 682–702. http://dx.doi.org/10.1016/j.cma.2016.02.038.
Full textTsukanov, I., and V. Shapiro. "Adaptive multiresolution refinement with distance fields." International Journal for Numerical Methods in Engineering 72, no. 11 (2007): 1355–86. http://dx.doi.org/10.1002/nme.2087.
Full textHarten, Ami. "Adaptive Multiresolution Schemes for Shock Computations." Journal of Computational Physics 115, no. 2 (December 1994): 319–38. http://dx.doi.org/10.1006/jcph.1994.1199.
Full textPeifer, Maria, Luiz F. O. Chamon, Santiago Paternain, and Alejandro Ribeiro. "Sparse Multiresolution Representations With Adaptive Kernels." IEEE Transactions on Signal Processing 68 (2020): 2031–44. http://dx.doi.org/10.1109/tsp.2020.2976577.
Full textvon Tycowicz, Christoph, Felix Kälberer, and Konrad Polthier. "Context-Based Coding of Adaptive Multiresolution Meshes." Computer Graphics Forum 30, no. 8 (August 1, 2011): 2231–45. http://dx.doi.org/10.1111/j.1467-8659.2011.01972.x.
Full textSaatchi, M. R., E. M. Allen, J. W. K. Rowe, and C. Gibson. "Adaptive multiresolution analysis based evoked potential filtering." IEE Proceedings - Science, Measurement and Technology 144, no. 4 (July 1, 1997): 149–55. http://dx.doi.org/10.1049/ip-smt:19971319.
Full textDissertations / Theses on the topic "Adaptive multiresolution"
Scott, Hugh R. R. "Multiresolution techniques for audio signal restoration." Thesis, University of Warwick, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307347.
Full textGrieb, Neal Phillip. "Multiresolution analysis for adaptive refinement of multiphase flow computations." Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/677.
Full textSchäfer, Roland [Verfasser]. "Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws / Roland Schäfer." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011442035/34.
Full textBowman, Kevin W. "Application of wavelets to adaptive optics and multiresolution wiener filtering." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/14920.
Full textSILVA, ADELAILSON PEIXOTO DA. "MULTIRESOLUTION ADAPTIVE MESH EXTRACTION FROM VOLUMES, USING SIMPLIFICATION AND REFINEMENT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3636@1.
Full textEste trabalho apresenta um método para extração de malhas poligonais adaptativas em multi-resolução, a partir de objetos volumétricos. As principais aplicações da extração de malhas estão ligadas à área médica, dinâmica de fluidos, geociências, meteorologia, dentre outras. Nestas áreas os dados podem ser representados como objetos volumétricos. Nos dados volumétricos as informações estão representadas implicitamente, o que dificulta o processamento direto dos objetos que se encontram representados dentro do volume. A extração da malha visa obter uma representação explícita dos objetos, de modo a viabilizar o processamento dos mesmos. O método apresentado na tese procura extrair a malha a partir de processos de Simplicação e Refinamento. Durante a simplificação é extraída uma representação super amostrada do objeto (na mesma resolução do volume inicial), a qual é simplificada de modo a se obter uma malha base ou malha grossa, em baixa resolução, porém contendo a topologia correta do objeto. A etapa de refinamento utiliza a transformada de distâ ncia para obter uma representação da malha em multi-resolução, ou seja, a cada instante é obtida uma malha de maior resolução que vai se adaptando progressivamente à geometria do objeto. A malha final apresenta uma série de propriedades importantes, como boa razão de aspecto dos triângulos, converge para a superfície do objeto, pode ser aplicada tanto a objetos com borda quanto a objetos sem borda, pode ser aplicada tanto a superfície conexas quanto a não conexas, dentre outras.
This work presents a method for extracting multiresolution adaptive polygonal meshes, from volumetric objects. Main aplications of this work are related to medical area, fluid dynamics, geosciences, metheorology and others. In these areas data may be represented as volumetric objects. Volumetric datasets are implicit representations of objects, so it s very dificult to apply directly any process to these objects. Mesh extraction obtains an explicit representation of the objetc, such that it s easier to process directly the objects. The presented method extracts the mesh from two main processes: Simplification and Refinement. The simplification step extracts a supersampled representation of the object (in the same volume resolution), and simplifies it in such a way to obtain a base mesh (or coarse mesh), in a low resolution, but containing the correct topology of the object. Refinement step uses the distance transform to obtain a multiresolution representation of the mesh, it means that at each instant it s obtained an adaptive higher resolution mesh. The final mesh presents a set of important properties, like good triangle aspect ratio, convergency to the object surface, may be applied as to objects with boundary and as to objects with multiple connected components, among others properties.
Kocak, Umut, Palmerius Karljohan Lundin, and Matthew Cooper. "An Error Analysis Model for Adaptive Deformation Simulation." Linköpings universitet, Medie- och Informationsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79904.
Full textN'guessan, Marc-Arthur. "Space adaptive methods with error control based on adaptive multiresolution for the simulation of low-Mach reactive flows." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC017.
Full textWe address the development of new numerical methods for the efficient resolution of stiff Partial Differential Equations modelling multi-scale time/space physical phenomena. We are more specifically interested in low Mach reacting flow processes, that cover various real-world applications such as flame dynamics at low gas velocity, buoyant jet flows or plasma/flow interactions. It is well-known that the numerical simulation of these problems is a highly difficult task, due to the large spectrum of spatial and time scales caused by the presence of nonlinear The adaptive spatial discretization is coupled to a new 3rd-order additive Runge-Kutta method for the incompressible Navier-Stokes equations, combining a 3rd-order, A-stable, stiffly accurate, 4-stage ESDIRK method for the algebraic linear part of these equations, and a 4th-order explicit Runge-Kutta scheme for the nonlinear convective part. This numerical strategy is implemented from scratch in the in-house numerical code mrpy. This software is written in Python, and relies on the PETSc library, written in C, for linear algebra operations. We assess the capabilities of this mechanisms taking place into dynamic fronts. In this general context, this work introduces dedicated numerical tools for the resolution of the incompressible Navier-Stokes equations, an important first step when designing an hydrodynamic solver for low Mach flows. We build a space adaptive numerical scheme to solve incompressible flows in a finite-volume context, that relies on multiresolution analysis with error control. To this end, we introduce a new collocated finite-volume method on adaptive rectangular grids, with an original treatment of the spurious pressure and velocity modes that does not alter the precision of the discretization technique. new hydrodynamic solver in terms of speed and efficiency, in the context of scalar transport on adaptive grids. Hence, this study presents a new high-order hydrodynamics solver for incompressible flows, with grid adaptation by multiresolution, that can be extended to the more general low-Mach flow configuration
Vantaram, Sreenath Rao. "Fast unsupervised multiresolution color image segmentation using adaptive gradient thresholding and progressive region growing /." Online version of thesis, 2009. http://hdl.handle.net/1850/9016.
Full textGerhard, Nils Verfasser], Siegfried [Akademischer Betreuer] [Müller, and Wolfgang [Akademischer Betreuer] Dahmen. "An adaptive multiresolution discontinuous Galerkin scheme for conservation laws / Nils Gerhard ; Siegfried Müller, Wolfgang Dahmen." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162499176/34.
Full textGerhard, Nils [Verfasser], Siegfried [Akademischer Betreuer] Müller, and Wolfgang [Akademischer Betreuer] Dahmen. "An adaptive multiresolution discontinuous Galerkin scheme for conservation laws / Nils Gerhard ; Siegfried Müller, Wolfgang Dahmen." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://nbn-resolving.de/urn:nbn:de:101:1-2018071007074316496857.
Full textBooks on the topic "Adaptive multiresolution"
Lisowska, Agnieszka. Geometrical Multiresolution Adaptive Transforms. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9.
Full textLisowska, Agnieszka. Geometrical Multiresolution Adaptive Transforms: Theory and Applications. Springer, 2014.
Find full textLisowska, Agnieszka. Geometrical Multiresolution Adaptive Transforms: Theory and Applications. Springer, 2016.
Find full textBook chapters on the topic "Adaptive multiresolution"
Goodwin, Michael M. "Multiresolution Sinusoidal Modeling." In Adaptive Signal Models, 85–114. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4419-8628-3_3.
Full textGaras, John. "Fast Multiresolution Analysis." In Adaptive 3D Sound Systems, 129–63. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4419-8776-1_5.
Full textLisowska, Agnieszka. "Introduction." In Geometrical Multiresolution Adaptive Transforms, 1–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_1.
Full textLisowska, Agnieszka. "Smoothlets." In Geometrical Multiresolution Adaptive Transforms, 15–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_2.
Full textLisowska, Agnieszka. "Multismoothlets." In Geometrical Multiresolution Adaptive Transforms, 27–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_3.
Full textLisowska, Agnieszka. "Moments-Based Multismoothlet Transform." In Geometrical Multiresolution Adaptive Transforms, 39–50. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_4.
Full textLisowska, Agnieszka. "Image Compression." In Geometrical Multiresolution Adaptive Transforms, 53–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_5.
Full textLisowska, Agnieszka. "Image Denoising." In Geometrical Multiresolution Adaptive Transforms, 67–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_6.
Full textLisowska, Agnieszka. "Edge Detection." In Geometrical Multiresolution Adaptive Transforms, 83–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_7.
Full textLisowska, Agnieszka. "Summary." In Geometrical Multiresolution Adaptive Transforms, 97–100. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_8.
Full textConference papers on the topic "Adaptive multiresolution"
Salembier, Philippe, and Laurent Jaquenoud. "Adaptive morphological multiresolution decomposition." In San Diego, '91, San Diego, CA, edited by Paul D. Gader and Edward R. Dougherty. SPIE, 1991. http://dx.doi.org/10.1117/12.49883.
Full textJones, J. Glynn, and Graham H. Watson. "Multiresolution analysis using adaptive wavelets." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by Harold H. Szu. SPIE, 1994. http://dx.doi.org/10.1117/12.170016.
Full textKälberer, Felix, and Konrad Polthier. "Lossless Compression of Adaptive Multiresolution Meshes." In 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2009). IEEE, 2009. http://dx.doi.org/10.1109/sibgrapi.2009.53.
Full textGarcía, Marcos, Luis Pastor, and Angel Rodríguez. "An adaptive multiresolution mass-spring model." In Visual Communications and Image Processing 2005. SPIE, 2005. http://dx.doi.org/10.1117/12.631407.
Full textJames, Justin, O. Odejide, A. Annamalai, and D. Vaman. "Adaptive Multiresolution Modulation for multimedia traffic." In 2011 IEEE Consumer Communications and Networking Conference (CCNC). IEEE, 2011. http://dx.doi.org/10.1109/ccnc.2011.5766577.
Full textCapodiferro, Licia, A. Manca, and Giovanni Jacovitti. "Adaptive multiresolution control for video coding." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255284.
Full textIverson, A. Evan, and James R. Lersch. "Adaptive image sharpening using multiresolution representations." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by A. Evan Iverson. SPIE, 1994. http://dx.doi.org/10.1117/12.179787.
Full textSlock, D. T. M. "Fractionally-spaced subband and multiresolution adaptive filters." In [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.151078.
Full textChen, Siheng, Aliaksei Sandryhaila, Jose M. F. Moura, and Jelena Kovacevic. "Adaptive graph filtering: Multiresolution classification on graphs." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6736906.
Full textBalcan, Doru C., and Michael S. Lewicki. "Adaptive coding of images via multiresolution ICA." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959760.
Full text