Academic literature on the topic 'Adaptive multiresolution'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adaptive multiresolution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Adaptive multiresolution"

1

Domingues, Margarete O., Sônia M. Gomes, Olivier Roussel, and Kai Schneider. "Adaptive multiresolution methods." ESAIM: Proceedings 34 (December 2011): 1–96. http://dx.doi.org/10.1051/proc/201134001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meer, P., R. H. Park, and K. J. Cho. "Multiresolution Adaptive Image Smoothing." CVGIP: Graphical Models and Image Processing 56, no. 2 (March 1994): 140–48. http://dx.doi.org/10.1006/cgip.1994.1013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LIVNY, YOTAM, NETA SOKOLOVSKY, and JIHAD EL-SANA. "DUAL ADAPTIVE PATHS FOR MULTIRESOLUTION HIERARCHIES." International Journal of Image and Graphics 07, no. 02 (April 2007): 273–90. http://dx.doi.org/10.1142/s0219467807002726.

Full text
Abstract:
The recent increase in the generated polygonal dataset sizes has outpaced the performance of graphics hardware. Several solutions such as multiresolution hierarchies and level-of-detail rendering have been developed to bridge the increasing gap. However, the discrete levels of detail generate annoying popping effects, the preliminaries multiresolution schemes cannot perform drastic changes on the selected level of detail within the span of small number of frames, and the current cluster-based hierarchies suffer from the high-detailed representation of the boundaries between clusters. In this paper, we are presenting a novel approach for multiresolution hierarchy that supports dual paths for run-time adaptive simplification — fine and coarse. The proposed multiresolution hierarchy is based on the fan-merge operator and its reverse operator fan-split. The coarse simplification path is achieved by directly applying fan-merge/split, while the fine simplification route is performed by executing edge-collapse/vertex-split one at a time. The sequence of the edge-collapses/vertex-splits is encoded implicitly by the order of the children participating in the fan-merge/split operator. We shall refer to this multiresolution hierarchy as fan-hierarchy. Fan-hierarchy provides a compact data structure for multiresolution hierarchy, since it stores 7/6 pointers, on the average, instead of 3 pointers for each node. In addition, the resulting depth of the fan-hierarchy is usually smaller than the depth of hierarchies generated by edge-collapse based multiresolution schemes. It is also important to note that fan-hierarchy inherently utilizes fan representation for further acceleration of the rendering process.
APA, Harvard, Vancouver, ISO, and other styles
4

Sturani, R., and R. Terenzi. "Adaptive multiresolution for wavelet analysis." Journal of Physics: Conference Series 122 (July 1, 2008): 012036. http://dx.doi.org/10.1088/1742-6596/122/1/012036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Biyikli, Emre, and Albert C. To. "Multiresolution molecular mechanics: Adaptive analysis." Computer Methods in Applied Mechanics and Engineering 305 (June 2016): 682–702. http://dx.doi.org/10.1016/j.cma.2016.02.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsukanov, I., and V. Shapiro. "Adaptive multiresolution refinement with distance fields." International Journal for Numerical Methods in Engineering 72, no. 11 (2007): 1355–86. http://dx.doi.org/10.1002/nme.2087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harten, Ami. "Adaptive Multiresolution Schemes for Shock Computations." Journal of Computational Physics 115, no. 2 (December 1994): 319–38. http://dx.doi.org/10.1006/jcph.1994.1199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peifer, Maria, Luiz F. O. Chamon, Santiago Paternain, and Alejandro Ribeiro. "Sparse Multiresolution Representations With Adaptive Kernels." IEEE Transactions on Signal Processing 68 (2020): 2031–44. http://dx.doi.org/10.1109/tsp.2020.2976577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

von Tycowicz, Christoph, Felix Kälberer, and Konrad Polthier. "Context-Based Coding of Adaptive Multiresolution Meshes." Computer Graphics Forum 30, no. 8 (August 1, 2011): 2231–45. http://dx.doi.org/10.1111/j.1467-8659.2011.01972.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saatchi, M. R., E. M. Allen, J. W. K. Rowe, and C. Gibson. "Adaptive multiresolution analysis based evoked potential filtering." IEE Proceedings - Science, Measurement and Technology 144, no. 4 (July 1, 1997): 149–55. http://dx.doi.org/10.1049/ip-smt:19971319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Adaptive multiresolution"

1

Scott, Hugh R. R. "Multiresolution techniques for audio signal restoration." Thesis, University of Warwick, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grieb, Neal Phillip. "Multiresolution analysis for adaptive refinement of multiphase flow computations." Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/677.

Full text
Abstract:
Flows around immersed boundaries exhibit many complex, well defined and active dynamical structures. In fact, features such as shock waves, strong vorticity concentrations in shear layers, wakes, or boundary layer regions are critical elements in representing the dynamics of a flow field. In order to capture the correct kinematic and dynamic quantities associated with the fluid flows, one must be able to efficiently refine the computational mesh around areas containing high gradients of pressure, density, velocity, or other suitable flowfield variables that characterize distinct structures. Although there are techniques which utilize simple gradient-based Local Mesh Refinement (LMR) to adapt resolution selectively to capture structures in the flow, such methods lack the ability to refine structures based on the relative strengths and scales of structures that are presented in the flow. The inability to adequately define the strength and scale of structures typically results in the mesh being over-refined in regions of little consequence to the physical definition of the problem, under-refined in certain regions resulting in the loss of important features, or even the emergence of false features due to perturbations in the flowfield caused by unnecessary mesh refinement. On the other hand, significant user judgment is required to develop a "good enough" mesh for a given flow problem, so that important structures in the flowfield can be resolved. In order to overcome this problem, multiresolution techniques based on the wavelet transform are explored for feature identification and refinement. Properties and current uses of these functional transforms in fluid flow computations will be briefly discussed. A Multiresolution Transform (MRT) scheme is chosen for identifying coherent structures because of its ability to capture the scale and relative intensity of a structure, and its easy application on non-uniform meshes. The procedure used for implementation of the MRT on an octree/quadtree LMR mesh is discussed in detail, and techniques used for the identification and capture of jump discontinuities and scale information are also presented. High speed compressible flow simulations are presented for a number of cases using the described MRT LMR scheme. MRT based mesh refinement performance is analyzed and further suggestions are made for refinement parameters based on resulting refinement. The key contribution of this thesis is the identification of methods that lead to a robust, general (i.e. not requiring user-defined parameters) methodology to identify structures in compressible flows (shocks, slip lines, vertical patterns) and to direct refinement to adequately refine these structures. The ENO-MRT LMR scheme is shown to be a robust, automatic, and relatively inexpensive way of gaining accurate refinement of the major features contained in the flowfield.
APA, Harvard, Vancouver, ISO, and other styles
3

Schäfer, Roland [Verfasser]. "Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws / Roland Schäfer." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011442035/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bowman, Kevin W. "Application of wavelets to adaptive optics and multiresolution wiener filtering." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/14920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SILVA, ADELAILSON PEIXOTO DA. "MULTIRESOLUTION ADAPTIVE MESH EXTRACTION FROM VOLUMES, USING SIMPLIFICATION AND REFINEMENT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3636@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho apresenta um método para extração de malhas poligonais adaptativas em multi-resolução, a partir de objetos volumétricos. As principais aplicações da extração de malhas estão ligadas à área médica, dinâmica de fluidos, geociências, meteorologia, dentre outras. Nestas áreas os dados podem ser representados como objetos volumétricos. Nos dados volumétricos as informações estão representadas implicitamente, o que dificulta o processamento direto dos objetos que se encontram representados dentro do volume. A extração da malha visa obter uma representação explícita dos objetos, de modo a viabilizar o processamento dos mesmos. O método apresentado na tese procura extrair a malha a partir de processos de Simplicação e Refinamento. Durante a simplificação é extraída uma representação super amostrada do objeto (na mesma resolução do volume inicial), a qual é simplificada de modo a se obter uma malha base ou malha grossa, em baixa resolução, porém contendo a topologia correta do objeto. A etapa de refinamento utiliza a transformada de distâ ncia para obter uma representação da malha em multi-resolução, ou seja, a cada instante é obtida uma malha de maior resolução que vai se adaptando progressivamente à geometria do objeto. A malha final apresenta uma série de propriedades importantes, como boa razão de aspecto dos triângulos, converge para a superfície do objeto, pode ser aplicada tanto a objetos com borda quanto a objetos sem borda, pode ser aplicada tanto a superfície conexas quanto a não conexas, dentre outras.
This work presents a method for extracting multiresolution adaptive polygonal meshes, from volumetric objects. Main aplications of this work are related to medical area, fluid dynamics, geosciences, metheorology and others. In these areas data may be represented as volumetric objects. Volumetric datasets are implicit representations of objects, so it s very dificult to apply directly any process to these objects. Mesh extraction obtains an explicit representation of the objetc, such that it s easier to process directly the objects. The presented method extracts the mesh from two main processes: Simplification and Refinement. The simplification step extracts a supersampled representation of the object (in the same volume resolution), and simplifies it in such a way to obtain a base mesh (or coarse mesh), in a low resolution, but containing the correct topology of the object. Refinement step uses the distance transform to obtain a multiresolution representation of the mesh, it means that at each instant it s obtained an adaptive higher resolution mesh. The final mesh presents a set of important properties, like good triangle aspect ratio, convergency to the object surface, may be applied as to objects with boundary and as to objects with multiple connected components, among others properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Kocak, Umut, Palmerius Karljohan Lundin, and Matthew Cooper. "An Error Analysis Model for Adaptive Deformation Simulation." Linköpings universitet, Medie- och Informationsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79904.

Full text
Abstract:
With the widespread use of deformation simulations in medical applications, the realism of the force feedback has become an important issue. In order to reach real-time performance with sufficient realism the approach of adaptivity, solution of different parts of the system with different resolutions and refresh rates, has been commonly deployed. The change in accuracy resulting from the use of adaptivity, however, has been been paid scant attention in the deformation simulation field. Presentation of error metrics is rare, while more focus is given to the real-time stability. We propose an abstract pipeline to perform error analysis for different types of deformation techniques which can consider different simulation parameters. A case study is also performed using the pipeline, and the various uses of the error estimation are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

N'guessan, Marc-Arthur. "Space adaptive methods with error control based on adaptive multiresolution for the simulation of low-Mach reactive flows." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC017.

Full text
Abstract:
Ce travail vise au développement de nouvelles méthodes numériques adaptatives pour la simulation numérique de phénomènes physiques multi-échelles en temps et en espace. Nous nous concentrons sur les écoulements réactifs à faible nombre de Mach, caractéristiques d'un grand nombre de configurations industrielles telles que la convection naturelle, la dynamique de fronts de flamme ou encore les décharges plasmas. La raideur associée à ce type de problèmes, que ce soit via le terme source chimique qui présente un large spectre d'échelles de temps caractéristiques ou encore via la présence de forts gradients très localisés associés aux fronts de réaction, génère des difficultés numériques considérables. Il est donc nécessaire de concevoir des méthodes sur mesure pour traiter la raideur de telles applications, afin d'obtenir des résultats d'une grande précision avec un coût calcul raisonnable. Dans ce cadre général, nous introduisons de nouvelles méthodes numériques pour la résolution des équations de Navier-Stokes incompressibles, une étape importante dans la réalisation d'un solveur hydrodynamique pour les écoulements à faible nombre de Mach. Nous construisons un solveur volumes finis avec adaptation de maillage par l'analyse de multirésolution, qui permet un contrôle a priori des erreurs générées par l'adaptation de maillage. Pour ce faire, nous développons un nouveau schéma de volumes finis collocalisé, avec un traitement original des modes de pression et de vitesse parasites qui n'affecte pas la précision de la discrétisation spatiale. Cette dernière est couplée à un nouveau schéma de Runge-Kutta additif d'ordre 3 pour les écoulements incompressibles, qui présente des propriétés de stabilité adaptées à la raideur des équations différentielles algébriques semi-explicites d'index 2. L'ensemble de cette stratégie est implémentée dans le code de calcul scientifique mrpy. Ce dernier est écrit en Python, et repose sur la librairie PETSc, écrite en C, pour le traitement des opérations d'algèbre linéaire. Nous évaluons l'efficacité algorithmique de cette stratégie par la simulation numérique d'un transport de scalaire passif dans un écoulement incompressible sur maillage adaptatif. Ce travail présente donc un nouveau solveur hydrodynamique d'ordre élevé pour les écoulements incompressibles, avec adaptation de maillage par multirésolution et contrôle d'erreur, qui peut être étendu aux écoulements à faible nombre de Mach
We address the development of new numerical methods for the efficient resolution of stiff Partial Differential Equations modelling multi-scale time/space physical phenomena. We are more specifically interested in low Mach reacting flow processes, that cover various real-world applications such as flame dynamics at low gas velocity, buoyant jet flows or plasma/flow interactions. It is well-known that the numerical simulation of these problems is a highly difficult task, due to the large spectrum of spatial and time scales caused by the presence of nonlinear The adaptive spatial discretization is coupled to a new 3rd-order additive Runge-Kutta method for the incompressible Navier-Stokes equations, combining a 3rd-order, A-stable, stiffly accurate, 4-stage ESDIRK method for the algebraic linear part of these equations, and a 4th-order explicit Runge-Kutta scheme for the nonlinear convective part. This numerical strategy is implemented from scratch in the in-house numerical code mrpy. This software is written in Python, and relies on the PETSc library, written in C, for linear algebra operations. We assess the capabilities of this mechanisms taking place into dynamic fronts. In this general context, this work introduces dedicated numerical tools for the resolution of the incompressible Navier-Stokes equations, an important first step when designing an hydrodynamic solver for low Mach flows. We build a space adaptive numerical scheme to solve incompressible flows in a finite-volume context, that relies on multiresolution analysis with error control. To this end, we introduce a new collocated finite-volume method on adaptive rectangular grids, with an original treatment of the spurious pressure and velocity modes that does not alter the precision of the discretization technique. new hydrodynamic solver in terms of speed and efficiency, in the context of scalar transport on adaptive grids. Hence, this study presents a new high-order hydrodynamics solver for incompressible flows, with grid adaptation by multiresolution, that can be extended to the more general low-Mach flow configuration
APA, Harvard, Vancouver, ISO, and other styles
8

Vantaram, Sreenath Rao. "Fast unsupervised multiresolution color image segmentation using adaptive gradient thresholding and progressive region growing /." Online version of thesis, 2009. http://hdl.handle.net/1850/9016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerhard, Nils Verfasser], Siegfried [Akademischer Betreuer] [Müller, and Wolfgang [Akademischer Betreuer] Dahmen. "An adaptive multiresolution discontinuous Galerkin scheme for conservation laws / Nils Gerhard ; Siegfried Müller, Wolfgang Dahmen." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162499176/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerhard, Nils [Verfasser], Siegfried [Akademischer Betreuer] Müller, and Wolfgang [Akademischer Betreuer] Dahmen. "An adaptive multiresolution discontinuous Galerkin scheme for conservation laws / Nils Gerhard ; Siegfried Müller, Wolfgang Dahmen." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://nbn-resolving.de/urn:nbn:de:101:1-2018071007074316496857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Adaptive multiresolution"

1

Lisowska, Agnieszka. Geometrical Multiresolution Adaptive Transforms. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lisowska, Agnieszka. Geometrical Multiresolution Adaptive Transforms: Theory and Applications. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lisowska, Agnieszka. Geometrical Multiresolution Adaptive Transforms: Theory and Applications. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Adaptive multiresolution"

1

Goodwin, Michael M. "Multiresolution Sinusoidal Modeling." In Adaptive Signal Models, 85–114. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4419-8628-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garas, John. "Fast Multiresolution Analysis." In Adaptive 3D Sound Systems, 129–63. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4419-8776-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lisowska, Agnieszka. "Introduction." In Geometrical Multiresolution Adaptive Transforms, 1–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lisowska, Agnieszka. "Smoothlets." In Geometrical Multiresolution Adaptive Transforms, 15–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lisowska, Agnieszka. "Multismoothlets." In Geometrical Multiresolution Adaptive Transforms, 27–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lisowska, Agnieszka. "Moments-Based Multismoothlet Transform." In Geometrical Multiresolution Adaptive Transforms, 39–50. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lisowska, Agnieszka. "Image Compression." In Geometrical Multiresolution Adaptive Transforms, 53–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lisowska, Agnieszka. "Image Denoising." In Geometrical Multiresolution Adaptive Transforms, 67–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lisowska, Agnieszka. "Edge Detection." In Geometrical Multiresolution Adaptive Transforms, 83–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lisowska, Agnieszka. "Summary." In Geometrical Multiresolution Adaptive Transforms, 97–100. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Adaptive multiresolution"

1

Salembier, Philippe, and Laurent Jaquenoud. "Adaptive morphological multiresolution decomposition." In San Diego, '91, San Diego, CA, edited by Paul D. Gader and Edward R. Dougherty. SPIE, 1991. http://dx.doi.org/10.1117/12.49883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jones, J. Glynn, and Graham H. Watson. "Multiresolution analysis using adaptive wavelets." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by Harold H. Szu. SPIE, 1994. http://dx.doi.org/10.1117/12.170016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kälberer, Felix, and Konrad Polthier. "Lossless Compression of Adaptive Multiresolution Meshes." In 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2009). IEEE, 2009. http://dx.doi.org/10.1109/sibgrapi.2009.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

García, Marcos, Luis Pastor, and Angel Rodríguez. "An adaptive multiresolution mass-spring model." In Visual Communications and Image Processing 2005. SPIE, 2005. http://dx.doi.org/10.1117/12.631407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

James, Justin, O. Odejide, A. Annamalai, and D. Vaman. "Adaptive Multiresolution Modulation for multimedia traffic." In 2011 IEEE Consumer Communications and Networking Conference (CCNC). IEEE, 2011. http://dx.doi.org/10.1109/ccnc.2011.5766577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Capodiferro, Licia, A. Manca, and Giovanni Jacovitti. "Adaptive multiresolution control for video coding." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iverson, A. Evan, and James R. Lersch. "Adaptive image sharpening using multiresolution representations." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by A. Evan Iverson. SPIE, 1994. http://dx.doi.org/10.1117/12.179787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Slock, D. T. M. "Fractionally-spaced subband and multiresolution adaptive filters." In [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.151078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Siheng, Aliaksei Sandryhaila, Jose M. F. Moura, and Jelena Kovacevic. "Adaptive graph filtering: Multiresolution classification on graphs." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6736906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Balcan, Doru C., and Michael S. Lewicki. "Adaptive coding of images via multiresolution ICA." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography