Academic literature on the topic 'Additifs de conduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Additifs de conduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Additifs de conduction"
Garcia, Michele Vargas, Dayane Domeneghini Didoné, José Ricardo Gurgel Testa, Rúbia Soares Bruno, and Marisa Frasson de Azevedo. "Visual Reinforcement Audiometry and Steady-State Auditory Evoked Potential in infants with and without conductive impairment." Revista CEFAC 20, no. 3 (May 2018): 324–32. http://dx.doi.org/10.1590/1982-0216201820312217.
Full textGaponov, A. V. "Non-ohmic conduction in tin dioxide based ceramics with copper addition." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 1 (February 28, 2011): 71–76. http://dx.doi.org/10.15407/spqeo14.01.071.
Full textZhang, Jianye, Zhiyong Huang, Chengen He, Jinlong Zhang, Peng Mei, Xiaoyan Han, Xianggang Wang, and Yingkui Yang. "Binary carbon-based additives in LiFePO4 cathode with favorable lithium storage." Nanotechnology Reviews 9, no. 1 (September 27, 2020): 934–44. http://dx.doi.org/10.1515/ntrev-2020-0071.
Full textSun, Jinru, Xuanjiannan Li, Xiangyu Tian, Jingliang Chen, and Xueling Yao. "Dynamic electrical characteristics of carbon fiber-reinforced polymer composite under low intensity lightning current impulse." Advanced Composites Letters 29 (January 1, 2020): 2633366X2094277. http://dx.doi.org/10.1177/2633366x20942775.
Full textFinegan, Ioana C., and Gary G. Tibbetts. "Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites." Journal of Materials Research 16, no. 6 (June 2001): 1668–74. http://dx.doi.org/10.1557/jmr.2001.0231.
Full textLi, Ji, Thomas Wasley, Duong Ta, John Shephard, Jonathan Stringer, Patrick J. Smith, Emre Esenturk, Colm Connaughton, Russell Harris, and Robert Kay. "Micro electronic systems via multifunctional additive manufacturing." Rapid Prototyping Journal 24, no. 4 (May 14, 2018): 752–63. http://dx.doi.org/10.1108/rpj-02-2017-0033.
Full textLin, Jian Yang, and Bing Xun Wang. "Resistive Switching Characteristics in Nanocrystalline Silicon Films for Conductive-Bridging Resistive Random-Access Memory Applications." Applied Mechanics and Materials 284-287 (January 2013): 2565–69. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.2565.
Full textKamaluddin, Siti, Denni Kurniawan, Muhammad Saifullah Abu Bakar, and Zuruzi Abu Samah. "Biochar as a Conducting Filler to Enhance Electrical Conduction Monitoring for Concrete Structures." Key Engineering Materials 847 (June 2020): 149–54. http://dx.doi.org/10.4028/www.scientific.net/kem.847.149.
Full textCao, Zhengfeng, Yanqiu Xia, and Xiangyu Ge. "Conductive capacity and tribological properties of several carbon materials in conductive greases." Industrial Lubrication and Tribology 68, no. 5 (August 8, 2016): 577–85. http://dx.doi.org/10.1108/ilt-07-2015-0113.
Full textPolczyk, Tomasz, Wojciech Zając, Magdalena Ziąbka, and Konrad Świerczek. "Mitigation of grain boundary resistance in La2/3-xLi3xTiO3 perovskite as an electrolyte for solid-state Li-ion batteries." Journal of Materials Science 56, no. 3 (September 30, 2020): 2435–50. http://dx.doi.org/10.1007/s10853-020-05342-7.
Full textDissertations / Theses on the topic "Additifs de conduction"
Storck-Gantois, Fanny. "Effet de la compression et de l’ajout d’additifs sur l’amélioration des performances d’un accumulateur au plomb." Paris 6, 2008. http://www.theses.fr/2008PA066370.
Full textDouin, Myriam. "Etude de phases spinelle cobaltées et d'oxydes lamellaires dérivés de Na0,6CoO2 employés comme additifs conducteurs dans les accumulateurs Ni-MH." Bordeaux 1, 2008. http://www.theses.fr/2008BOR13562.
Full textBouteloup, Rémi. "Estimation de propriétés d'intérêt pour les électrolytes liquides." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4016/document.
Full textLiquid electrolytes, composed of a salt dissolved in a solvent, are used in the composition of batteries and are the subject of numerous studies to improve their performance and safety. Of all the essential properties of an electrolyte, the most important is its ionic conductivity, which influences the battery's performance. For a given salt, the conductivity itself is mainly determined by the physico-chemical properties of the solvent such as its dielectric constant or its viscosity. The objective of this study is to develop models to estimate properties of interest of liquid electrolytes, in order to offer time savings to chemists, who will be able to eliminate inadequate compositions from the point of view of such or such property. The first part of this study presents a method to estimate the conductivity of an electrolyte, consisting of a LiPF6 salt in a solvent mixture. This method is based on new equations, to estimate the parameters of the Casteel-Amis equation, based on the physico-chemical properties of the solvent mixture, including the dielectric constant. The second part also presents a method to estimate the dielectric constant of a pure solvent, based on its chemical structure. This method is based on new additive models that estimate the parameters of the Kirkwood-Fröhlich equation. Two of these models estimate the density and refractive index of a liquid compound at room temperature. All the models developed can be used via a user interface
Lambert, Romain. "Nouveaux copolymères et nanostructures dérivés de liquides ioniques à base d'imidazoliums : applications en catalyse et comme additifs conducteurs ioniques." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0306/document.
Full textPoly(ionic liquid)s (PILs) in the form of random copolymers, single chain nanoparticles(SCNPs), or self assembled block copolymers have been used as N-heterocyclic carbenes(NHCs) precursors for the purpose of organic and organometallic catalysis. Introducing acetate derivative counter anion in imidazolium based PIL units enable in situ generation of catalyticallyactive NHC. SCNPs have been specially designed along two strategies including, firstly, a self quaternization reaction involving two antagonists groups supported on to the polymer chain and,secondly, an organometallic complexation featuring palladium salt. Both polymeric precursors were obtained using RAFT as controlled polymerization method. Amphiphilic block copolymers composed of a PIL block functionalized by palladium have been synthesized by RAFT and self-assembled in water, leading to micellar structures. Confinement effect has been demonstrated through Suzuki and Heck coupling in water showing kinetic gain compared to molecular homologue in addition to an easier recycling method.Finally, PIL-benzimidazolium based block copolymers with lithium bis(trifluoromethane)-sulfonylimide anion have been developed as ionic conductor doping agent for PS-PEO matrix. Thin films blends with minimum doping agent amount led to optimum ionic conductivity owing tolong range order
Khan, Imran. "Electrically conductive nanocomposites for additive manufacturing." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670587.
Full textLa fabricación aditiva (AM) es un proceso de fabricación de capas sucesivas de material para construir un objeto sólido tridimensional a partir de un modelo digital, a diferencia de las metodologías de fabricación sustractiva. AM ofrece la libertad de diseñar e innovar un producto para que se puedan obtener y revisar piezas complejas si es necesario, en un tiempo reducido en comparación con las tecnologías de fabricación tradicionales. En términos de su utilización total y generalizada, la tecnología tiene aplicaciones limitadas. Por motivos similares, la nanotecnología se considera la fuerza impulsora detrás de una nueva revolución industrial. Tiene la capacidad de incorporar funcionalidades específicas, que se producen debido a la escala nanométrica, a las partes deseadas para dispositivos funcionales como electrodos para dispositivos de almacenamiento de energía. La tesis se centra en el uso de nanocompuestos conductores de electricidad en la fabricación aditiva. En este escenario, dos tipos de nanocompuestos están preparados para usar como materia prima para la impresión de nanocompuestos conductores de electricidad que emplean dos tipos diferentes de material matricial; (1) un polímero termoplástico y (2) una resina termoestable. Los nanotubos de carbono se usaron como partículas de nanoestructura eléctricamente conductoras. Estas nanoestructuras forman redes complejas en una matriz polimérica de manera que el material de la matriz se transforma de un material aislante en un material eléctricamente conductor. La policaprolactona es un polímero semicristalino y se considera un material matriz adecuado entre la clase de polímeros termoplásticos, ya que ofrece excelentes características reológicas, de flujo y elásticas. Los hilos se imprimieron usando una extrusora biológica y se midió la conductividad eléctrica en estos hilos bajo el efecto de la deformación uniaxial. La microestructura cambia bajo el efecto de una deformación uniaxial que conduce a alterar la orientación de los nanotubos de carbono en la matriz de policaprolactona. Como consecuencia de la realineación de los nanotubos, las vías conductoras interrumpen u organizan, lo que puede aumentar o disminuir la conductividad eléctrica en los nanocompuestos. Las radiaciones de sincrotrón se utilizan para sondear tales cambios en la microestructura. Se prepararon diferentes composiciones usando nanotubos de carbono y las muestras impresas se estudiaron en términos de conductividad eléctrica y microestructura usando radiaciones sincrotrónicas. Basado en el análisis, se propone un modelo que puede predecir la conductividad eléctrica bajo el efecto de la deformación uniaxial. En términos de polímeros termoestables, se introduce un sistema simple para la impresión de nanocompuestos termoestables a base de polímeros. El detalle completo del sistema de impresión y la tinta de nanocompuestos se proporciona en uno de los capítulos. La tinta de nanocompuesto a base de epoxi se preparó para contener nanotubos de carbono como partículas de relleno con una pequeña porción de polímero termoplástico, policaprolactona. Las muestras impresas están sujetas al sesgo externo que indica que son eléctricamente conductoras. Se prepararon diferentes composiciones usando resina epoxi de glicidil bisfenol-A, trietilentetramina, policaprolactona, nanotubos de carbono y se resaltan los problemas para adquirir la calidad de impresión adecuada. Las muestras impresas se estudiaron en términos de conductividad eléctrica, estudiando la conductividad eléctrica de corriente alterna y continua. El sistema de materiales se explora en términos del nivel de reticulación, estructura y morfología y comportamiento térmico. Se presenta un modelo para los nanocompuestos utilizando datos de impedancia obtenidos mediante espectroscopía dieléctrica de banda ancha. La impresora se utilizará en el futuro para imprimir dispositivos funcionales a pequeña escala, incluidos dispositivos de almacenamiento de energía.
Additive manufacturing is a process of making successive layers of material to build a three-dimensional solid object from a digital model, as opposed to subtractive manufacturing methodologies. This technology offers the freedom to design and innovation of a product so that complex parts can be obtained and revise if needed, within a small time as compared to traditional manufacturing technologies. In terms of its full utilization and widespread, the technology has limited applications. On similar grounds, nanotechnology is considered as the driving force behind a new industrial revolution. It has the ability to incorporate specific functionalities, occur due to the nanometric scale, to desired parts that offer freedom to design functional devices like electrodes for energy storage devices. The thesis is focusing on the use of electrically conductive nanocomposites into additive manufacturing. In this scenario, two types of nanocomposites are prepared to use as raw material for printing of electrically conductive nanocomposites employing two different types of matrix material; (1) a thermoplastic polymer and (2) a thermoset resin. Carbon nanotubes were used as electrically conductive nanostructure particles. These nanostructures form complex networks into a polymer matrix such that the matrix material transforms from an insulative material into an electrically conductive material. Polycaprolactone is a semicrystalline polymer and it is considered suitable matrix material amongst the class of thermoplastic polymers as it offers excellent rheological, flow and the elastic characteristics. Strands were printed using a bio extruder and electrical conductivity was measured in these strands under the effect of uniaxial deformation. The microstructure changes under the effect of uniaxial deformation leading to alter the orientation of carbon nanotubes in the polycaprolactone matrix. As a consequence of realignment of nanotubes, conductive pathways either disrupt or organize which can increase or decrease an electrical conductivity in the nanocomposites. Synchrotron radiations are used to probe such changes in the microstructure. Two different compositions were prepared using carbon nanotubes and the printed samples are studied in terms of electrical conductivity and microstructure using synchrotron radiations. Based on the analysis, a model is proposed that can predict the orientation of carbon nanotubes under the effect of uniaxial deformation. In terms of thermoset polymers, a simple system is introduced for the printing of thermoset polymer (epoxy) based nanocomposites. Complete detail of the printing system is provided in one of the chapters. Epoxy-based nanocomposite ink was prepared to contain carbon nanotubes as filler particles with a small portion of thermoplastic polymer, polycaprolactone. The printed samples are subject to the external bias which indicate that these are electrically conductive. A complete methodology was provided for the preparation of nanocomposite ink. Different compositions were prepared using glycidyl bisphenol-A epoxy resin, triethylenetetramine, polycaprolactone, carbon nanotubes and issues are highlighted to acquire appropriate print quality. The printed samples were studied in terms of electrical conductivity studying alternating and direct current electrical conductivity. The material system is explored in terms of the level of crosslinking, structure and morphology and thermal behaviour. A model is presented for the nanocomposites using impedance data obtained through broadband dielectric spectroscopy. The printer will be used in future to print small scale functional devices including energy storage devices e.g. solid-state batteries, supercapacitors and electrode plates for such kind of devices.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
Ng, Yean Thye. "Electrically conductive melt-processed blends of polymeric conductive additives with styrenic thermoplastics." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/11016.
Full textJavaid, Salman. "Some aspects of ionic liquid blends and additives influencing bulk conductivity of commercial base paper." Thesis, Karlstads universitet, Avdelningen för kemiteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-26775.
Full textNilssen, Benedicte Eikeland. "Stability of Conductive Carbon Additives for High-voltage Li-ion Battery Cathodes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26847.
Full textMyers, Philip D. Jr. "Additives for Heat Transfer Enhancement in High Temperature Thermal Energy Storage Media: Selection and Characterization." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5749.
Full textOja, Thomas Edward. "Characterization of the Integration of Additively Manufactured All-Aromatic Polyimide and Conductive Direct-Write Silver Inks." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/101036.
Full textMaster of Science
Due to the extensive potential benefits and applications, researchers are looking to hybridize additive manufacturing (AM) processes with direct write (DW) techniques to directly print a 3D part with integrated electronics. Unfortunately, there are several key substrate-related limitations that hinder the overall performance of a part fabricated by hybrid AM-DW processes. Specifically, typical AM materials are not capable of providing an electronics substrate with combined sufficient surface resolution, surface finish, and high-temperature processing stability. However, the recent discovery of a novel AM-processable all-aromatic polyimide (PI) presents an opportunity for addressing these limitations as its printed form offers a high surface resolution, superior surface finish, and mechanical stability up to 400 °C. The primary goal of this thesis is to evaluate the benefits and drawbacks of this PI, processed via ultraviolet-assisted direct ink write (UV-DIW) AM, as an AM-DW electronics substrate. Specifically, the author characterized the effect of the increased temperature stability of the printed PI on the resultant conductivity and adhesion of silver inks printed via direct ink write (DIW) and aerosol jetting (AJ) DW processes. These results were also compared to the performance of the inks on commercial PI. Furthermore, the dielectric performance of printed PI was evaluated and compared to commercial PI. To demonstrate and evaluate the hybridized approach in a potential end-use application, the author also characterized the achievable microwave application performance of UV-DIW polyimide relative to the existing highest performance commercially available printed substrate material. The experiments in this thesis found an 83% and 66% decrease in resistivity from extrusion and AJ printed inks due to the ability of the printed PI to be processed at higher temperatures. Furthermore, UV-DIW PI was found to have similar dielectric properties to commercial PI film, which indicates that it can serve as a high-performance dielectric substrate. Finally, the high-temperature processing stability was able to decrease the performance gap in microwave application performance between the higher performing dielectric substrate, ULTEM 1010. These results show that UV-DIW could serve as a dielectric substrate for hybridized AM-DW electronic parts with higher performance and the ability to be deployed in harsher environments than previous AM-DW electronic parts explored in literature.
Books on the topic "Additifs de conduction"
John, Murphy. The additives for plastics handbook: Antioxidants, antistatics, compatibilisers, conductive fillers, flame-retardants, pigments, plasticisers, reinforcements : classification, data, tables, descriptions, market trends, suppliers/brand names. Oxford, UK: Elsevier Advanced Technology, 1996.
Find full textDurrant, Colin. The Framing of Choirs and Their Conductors. Edited by Frank Abrahams and Paul D. Head. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199373369.013.12.
Full textAbrahams, Daniel. Fostering Musical and Personal Agency. Edited by Frank Abrahams and Paul D. Head. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199373369.013.6.
Full textKatirji, Bashar. Specialized Electrodiagnostic Studies. Edited by Bashar Katirji. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190603434.003.0003.
Full textEnns, Charlotte. Making the Case for Case Studies in Deaf Education Research. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190455651.003.0010.
Full textSiebert, Stefan, Sengupta Raj, and Alexander Tsoukas. Complications of axial spondyloarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.003.0009.
Full textBurns, Tom, and Mike Firn. The role of medication. Edited by Tom Burns and Mike Firn. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754237.003.0007.
Full textMirza-Babaei, Pejman. Reporting user research findings to the development team. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198794844.003.0018.
Full textHead, Paul D. The Choral Experience. Edited by Frank Abrahams and Paul D. Head. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199373369.013.3.
Full textHultaker, Annette. Transparent Conductive Tin Doped Indium Oxide: Characterization of Thin Films Made by Sputter Deposition With Silver Additive & by Spin Coating from Nanoparticle ... the Faculty of Science & Technology, 37). Uppsala Universitet, 2002.
Find full textBook chapters on the topic "Additifs de conduction"
Bandara, Asoka J. "Conducting fillers for plastics: (2) Conducting polymer additives." In Plastics Additives, 180–88. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5862-6_21.
Full textZilles, Joerg Ulrich. "Thermally Conductive Additives." In Encyclopedia of Polymers and Composites, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-37179-0_37-1.
Full textZilles, Joerg Ulrich. "Thermally Conductive Additives." In Encyclopedia of Polymers and Composites, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-37179-0_37-2.
Full textZilles, Joerg Ulrich. "Thermally Conductive Additives." In Polymers and Polymeric Composites: A Reference Series, 1–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-37179-0_37-3.
Full textZilles, Joerg Ulrich. "Thermally Conductive Additives." In Fillers for Polymer Applications, 355–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28117-9_37.
Full textOllila, Richard G., and Donald M. Bigg. "Conducting fillers for plastics: (1) flakes and Fibers." In Plastics Additives, 170–79. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5862-6_20.
Full textSpahr, Michael E. "Carbon-Conductive Additives for Lithium-Ion Batteries." In Lithium-Ion Batteries, 1–38. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_5.
Full textMalekipour, Ehsan, Andres Tovar, and Hazim El-Mounayri. "Heat Conduction and Geometry Topology Optimization of Support Structure in Laser-Based Additive Manufacturing." In Mechanics of Additive and Advanced Manufacturing, Volume 9, 17–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62834-9_4.
Full textAyad, Mohamed M., K. Keiji Kanazawa, and J. C. Scott. "Film Thickness Control for Chemically Synthesized Conducting Polypyrrole." In Surface Phenomena and Additives in Water-Based Coatings and Printing Technology, 179–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2361-5_14.
Full textAndrade, C., P. Garcés, F. J. Baeza, Ó. Galao, and E. Zornoza. "Electronic and Electrolytic Conduction of Cement Pastes with Additions of Carbonaceous Materials." In Durability of Reinforced Concrete from Composition to Protection, 11–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09921-7_2.
Full textConference papers on the topic "Additifs de conduction"
Safavisohi, Babak, Ehsan Sharbati, Cyrus Aghanajafi, and Seyed Reza Khatami Firoozabadi. "Transient Radiative Heat Transfer Analysis of a Polypropylene Layer Using Hottel’s Zonal Method." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95438.
Full textDemidenko, Natalia, Artem Kuksin, Denis Murashko, Nadezda Cherepanova, Anna Semak, Vladislav Bychkov, Alexey Komarchev, et al. "Laser formation of electrically conductive nanocomposites for bioelectronic applications." In 3D Printed Optics and Additive Photonic Manufacturing II, edited by Georg von Freymann, Alois M. Herkommer, and Manuel Flury. SPIE, 2020. http://dx.doi.org/10.1117/12.2564679.
Full textHille, Carmen, Wolfgang Lippmann, Marion Herrmann, and Antonio Hurtado. "Non-Oxide Ceramics: Chances for Application in Nuclear Hydrogen Production." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48408.
Full textMartinez, Andrew, and Jacob Brouwer. "Monte Carlo Investigation of Particle Properties Affecting TPB Formation and Conductivity in Composite Solid Oxide Fuel Cell Electrode-Electrolyte Interfaces." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85191.
Full textChen, W., H. Jiang, Q. Zhang, and L. He. "A Simple Corner Correction Technique for Transient Thermal Measurement." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26622.
Full textKanazawa, Shusuke, Yasuyuki Kusaka, Ken-ichi Nomura, Noritaka Yamamoto, and Hirobumi Ushijima. "Fully additive manufacturing of a polymer cantilever with a conductive layer." In 2017 International Conference on Electronics Packaging (ICEP). IEEE, 2017. http://dx.doi.org/10.23919/icep.2017.7939420.
Full textMICHAEL, M. S., Y. R. SHAH, R. VIMALA, and S. R. S. PRABAHARAN. "CONDUCTIVE ADDITIVE CARBON FOR HIGH VOLTAGE ELECTROCHEMICAL DOUBLE LAYER CAPACITORS (EDLCs)." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0078.
Full textSojoudi, Hossein, Fernando Reiter, and Samuel Graham. "Transparent Electrodes From Graphene/Single Wall Carbon Nanotube Composites." In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73158.
Full textHuang, Chyouhwu Brian, and Hung-Shyong Chen. "Heat Insulating Materials Thermal Conductivity Determination by Means of Comparison With a Standard Plate of Known Conductivity." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89382.
Full textKajishima, Takeo, Katsuya Kondo, and Shintaro Takeuchi. "Numerical Simulation of Heat Transfer in Shear Flow of Liquid-Solid Two-Phase Media by Immersed Solid Approach." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-07513.
Full textReports on the topic "Additifs de conduction"
Jones, Robert M., Alison K. Thurston, Robyn A. Barbato, and Eftihia V. Barnes. Evaluating the Conductive Properties of Melanin-Producing Fungus, Curvularia lunata, after Copper Doping. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38641.
Full textStoyanova-Ivanova, Angelina, Alexander Vasev, Peter Lilov, Violeta Petrova, Yordan Marinov, Antonia Stoyanova, Galia Ivanova, and Valdek Mikli. Conductive Ceramic Based on the Bi-Sr-Ca-Cu-O HTSC System as an Additive to the Zinc Electrode Mass in the Rechargeable Ni-Zn Batteries – Electrochemical Impedance Study. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.05.
Full textRobayo Botiva, Diana María. Brief Current Context of the Types of Electronic Commerce in Colombia. Ediciones Universidad Cooperativa de Colombia, April 2021. http://dx.doi.org/10.16925/gclc.17.
Full textMichalak, Julia, Josh Lawler, John Gross, and Caitlin Littlefield. A strategic analysis of climate vulnerability of national park resources and values. National Park Service, September 2021. http://dx.doi.org/10.36967/nrr-2287214.
Full textManual for the classification of intervention best-practices with rural NEETs. OST Action CA 18213: Rural NEET Youth Network: Modeling the risks underlying rural NEETs social exclusion, December 2020. http://dx.doi.org/10.15847/cisrnyn.mn1.2020.12.
Full text