Academic literature on the topic 'Additiv manufacturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Additiv manufacturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Additiv manufacturing"
Weigold, Matthias, Timo Scherer, Eric Schmidt, Martin Schwentenwein, and Thomas Prochaska. "Additive Fertigung keramischer Schneidstoffe/Additive manufacturing of ceramic cutting materials. Production of indexable inserts for turning using the LCM process." wt Werkstattstechnik online 110, no. 01-02 (2020): 2–6. http://dx.doi.org/10.37544/1436-4980-2020-01-02-4.
Full textAbele, E. Prof, T. Heep, C. Bickert, B. Prof Pyttel, and K. Kirilov. "Additiv hergestellter Drehklemmhalter*/Additively manufactured turning tool holder - Fatigue strength of additive tool structures and open jet formation of cryogenic multi-component cooling." wt Werkstattstechnik online 108, no. 01-02 (2018): 102–8. http://dx.doi.org/10.37544/1436-4980-2018-01-02-102.
Full textDahlmeyer, Matthias, and David Grüning. "Aufbau-, montage- und funktionsgerechte Gestaltung additiv gefertigter Produktivbauteile/Design for Build-up, Assembly and Function of Productive Components from Additive Manufacturing." Konstruktion 71, no. 05 (2019): 93–98. http://dx.doi.org/10.37544/0720-5953-2019-05-93.
Full textRichter, Andreas, Maxim Scheck, Tobias Gehling, Christian Bohn, Volker Wesling, and Christian Rembe. "Erfassung geometrischer Daten des Schmelzbades zur Regelung eines WAAM-Prozesses." tm - Technisches Messen 88, s1 (August 24, 2021): s95—s100. http://dx.doi.org/10.1515/teme-2021-0072.
Full textLange, A., and G. Fieg. "Systematische Entwicklung von formoptimierten additiv gefertigten strukturierten Packungen." Chemie Ingenieur Technik 92, no. 9 (August 28, 2020): 1299. http://dx.doi.org/10.1002/cite.202055133.
Full textReitze, A., M. Grünewald, and J. Riese. "Experimentelle Untersuchung additiv gefertigter strukturierter Packungen für Laborkolonnen." Chemie Ingenieur Technik 92, no. 9 (August 28, 2020): 1304–5. http://dx.doi.org/10.1002/cite.202055220.
Full textZarnetta, Robert. "Die nächste industrielle Revolution vorantreiben." VDI-Z 161, no. 06 (2019): 52–53. http://dx.doi.org/10.37544/0042-1766-2019-06-52.
Full textDenkena, Berend, Thilo Grove, Siebo Stamm, Nils Vogel, and Henke Nordmeyer. "Verzug additiver Bauteile." Konstruktion 71, no. 03 (2019): IW11—IW13. http://dx.doi.org/10.37544/0720-5953-2019-03-59.
Full textSeifarth, C., R. Nachreiner, S. Hammer, Jörg Hildebrand, J. P. Bergmann, M. Layher, A. Hopf, et al. "Hybride additive Multimaterialbearbeitung/Hybrid additive Multi Material Processing – High-resolution hybrid additive Multimaterial production of individualized products." wt Werkstattstechnik online 109, no. 06 (2019): 417–22. http://dx.doi.org/10.37544/1436-4980-2019-06-19.
Full textGeiger, R., S. Rommel, J. Burkhardt, and T. Prof Bauernhansl. "Additiver Hybrid-Leichtbau – Highlight 3D print*/Additive Hybrid Lightweight Construction - Highlight 3D print." wt Werkstattstechnik online 106, no. 03 (2016): 169–74. http://dx.doi.org/10.37544/1436-4980-2016-03-73.
Full textDissertations / Theses on the topic "Additiv manufacturing"
Tavajoh, Sara, and Huynh Michael. "Marknadsundersökning kring additiv tillverkning i Sverige." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40858.
Full textWithin the industrial sector, an increased interest and usage of Additive Manufacturing (AM) throughout the decade has been formed. The layer-upon-layer building technology has been seen and recognized as one of the next industrial revolutionizing methods of production. As the technology is still in the trending and uprising phase it should be considered that its full potential has not yet been achieved, as large opportunities for implementation of AM exist and that new companies and markets have a growing interest in this technology. Through this study a market research was conducted to identify and present what opportunities and obstacles there are for an increased usage of AM in Sweden. A literature study on the Swedish market has been made to present the market as of today. Eight qualitative interviews have also been conducted with companies within the industrial sector to identify the areas of use within AM for production. The concepts and models used to analyze these questions was PEST, Marketing Mix and SWOT. The concluded results for advantages in using AM are shortened lead times, reduced costs of production of components and tools, reduced material waste and optimization of design processes with increased creativity. The concluded challenges are expensive materials and machine, the quality of finished components, limited printing volume due to the 3D-printers and reliability of printing processes. The finalized opportunities that are presented in this work are that AM is dependent on how much research on the subject and factors around it is done. How AM will be applied in the coming future revolves around the advancement in the technology. The obstacles that are found in this study are lack of competence and lack of standard for materials and processes within AM.
Dash, Satabdee. "Design for Additive Manufacturing : An Optimization driven design approach." Thesis, KTH, Maskinkonstruktion (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281246.
Full textÖkad användning av Additive Manufacturing (AM) i industriell produktion kräver ett nytänkade av produkter (enheter, delsystem) ur AM-synvinkel. Simuleringsdrivna designverktyg spelar en viktig roll för att nå detta med designoptimering med hänsyn taget till AM-teknikens möjligheter. Därför ville bussramavdelningen (RBRF) på Scania CV AB, Södertälje undersöka synergierna mellan topologioptimering och Design för AM (DfAM) i detta examensarbete. I examensarbetet utvecklas en metodik för att skapa en DfAM-ramverk som involverar topologioptimering och åtföljs av ett tillverkningsanalyssteg. En fallstudieimplementering av denna utvecklade metodik utförs för validering och fortsatt utveckling. Fallstudien ersätter en befintlig lastbärande tvärbalk med en ny struktur optimerad med avseende på vikt och tillverkningsprocess. Det resulterade i en nästan självbärande AM-vänlig design med förbättrad styvhet tillsammans med en viktminskning på 9,5 %, vilket visar fördelen med att integrera topologioptimering och grundläggande AM-design tidigt i designfasen.
Wahlström, Niklas, and Oscar Gabrielsson. "Additive Manufacturing Applications for Wind Turbines." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209654.
Full textAdditiv tillverkning, "additive manufacturing" (AM) eller 3D-printing är en automatiserad tillverkningsmetod där komponenten byggs lager för lager från en fördefinierad 3D datormodell. Till skillnad från konventionella tillverkningsmetoder där en stor mängd material ofta bearbetas bort, använder AM nästintill endast det material som komponenten består utav. Förutom materialbesparingar, har metoden ett flertal andra potentiella fördelar. Två av dessa är (1) en stor designfrihet vilket möjliggör produktion av komplexa geometrier och (2) en möjlighet till en förenklad logistikkedja eftersom komponenter kan tillverkas vid behov istället för att lagerföras. Detta examensarbete har utförts på Vattenfall Vindkraft och har till syfte att undersöka om det är möjligt att tillverka och/eller reparera en eller två reservdelar genom AM och om det i så fall kan införa några praktiska fördelar. En kartläggning av komponenter med hög felfrekvens och/eller som kan vara lämpade för AM har genomförts. Av dessa har en roterande oljekoppling även kallad roterskarv valts ut för vidare analys. En omfattande bakgrundsstudie har utförts. En nulägesorientering inom området AM för metaller redogörs, här redovisas även en generell jämförelse mellan konventionella och additiva tillverkningsmetoder. Vidare behandlas aktuella och framtida användningsområden för AM inom vindkraftsindustrin. I bakgrundsstudien behandlas också arbetssättet "reverse engineering", huvudkomponenter i ett vindkraftsverk inklusive roterskarven samt flödesdynamik. Under arbetets gång har en roterskarv med sämre driftshistorik undersökts. I syfte att finna andra konstruktionslösningar som bidrar till en säkrare drift har en bättre presenterande enhet från en annan tillverkare granskats. Då viss detaljteknisk data och konstruktionsunderlag saknas för de undersökta enheterna har "reverse engineering" tillämpats. Ett koncept har sedan utvecklats för den första enheten där förbättrade konstruktionslösningar har introducerats samtidigt som en rad konstruktionsförändringar har gjorts i syfte att minimera materialåtgången och samtidigt anpassa enheten för AM. Konceptet har sedan evaluerats med hjälp av numeriska beräkningsmetoder. För det givna konceptet har även kostnad och byggtid uppskattats. Arbetet visar på att det är möjligt att ta fram reservdelar till vindkraftverk med hjälp av AM. Det framtagna konceptet visar på ett flertal förbättringar som inte kan uppnås med konventionella tillverkningsmetoder. Emellertid finns det en rad begränsningar såsom otillräcklig byggvolym, kostnader och tidskrävande ingenjörsmässigt arbete och efterbehandlingsmetoder. Dessa förbehåll i kombination med avsaknad av 3D-modeller begränsar möjligheterna att nyttja tekniken i dagsläget. Framtiden ser dock ljus ut, om tekniken fortsätter att utvecklas samtidigt som underleverantörer är villiga att nyttja denna teknik kan AM få ett stort genombrott i vindkraftsindustrin.
Ek, Kristofer. "Additive Manufactured Material." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156887.
Full textDet här projektet behandlar området Additiv Tillverkning (AM) för metalliska material och undersöker om det är lämpligt att använda vid produktion inom flygindustrin. AM är en relativt ny tillverkningsmetod där föremål byggs upp lager för lager direkt ifrån en datormodell. Teknikområdet tillåter i många fall större konstruktionsfriheter som möjliggör tillverkning av mer viktoptimerade och funktionella artiklar. Andra fördelar är materialbesparing och kortare ledtider vilket har ett stort ekonomiskt värde. En omfattande litteraturstudie har gjorts för att utvärdera alla tekniker som finns på marknaden och karakterisera vad som skiljer de olika processerna. Även maskiners prestanda och kvalité på tillverkat material utvärderas, och för varje teknik listas möjligheter och begränsningar. Teknikerna delas grovt upp i pulverbäddsprocesser och material deposition-processer. Pulverbäddsteknikerna tillåter större friheter i konstruktion, medan material deposition-processerna tillåter tillverkning av större artiklar. Den vanligaste energikällan är laser som ger ett starkare men mer sprött material än de alternativa energikällorna elektronstråle och ljusbåge. Två specifika tekniker har valts ut för att undersöka närmare i detta projekt. Electron Beam Melting (EBM) från Arcam och Wire fed plasma arc direct metal deposition från Norsk Titanium (NTiC). EBM är en pulverbäddsprocess som kan tillverka färdiga artiklar i begränsad storlek då låga krav ställs på toleranser och ytfinhet. NTiC använder en material deposition-process med en ljusbåge för att smälta ner trådmaterial till en nära färdig artikel. Den senare metoden är mycket snabb och kan tillverka stora artiklar, men måste maskinbearbetas till slutgiltig form. En materialundersökning har genomförts där Ti6Al4V-material från båda teknikerna har undersökts i mikroskop och testats för hårdhet. För EBM-material har även ytfinhet och svetsbarhet undersökts då begränsad byggvolym i många fall kräver fogning. Materialen har egenskaper bättre än gjutet material med avseende på styrka och duktilitet, men inte lika bra som valsat material. Provning visar att skillnaden på mekaniska egenskaper i olika riktningar är liten även fast materialet har en inhomogen makrostruktur med kolumnära korn i byggriktningen. EBM ger en finare mikrostruktur och ett starkare material och, tillsammans med de ökade konstruktionsfriheterna, så är det den tekniken som är bäst lämpad för flygplansartiklar då svetsbarheten är god och det finns möjlighet att bearbeta ytan till slutgiltigt krav. Nyckelord: Additiv Tillverkning, Flygteknik, Titan
Hansson, Jakob. "Framtidens former Additiv tillverkning." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-274924.
Full textThe key to progress within every form of engineering in addition to product development whihin all markets is the capacity to manufacture new and improved products. The demands and need flr better and better products has brought forth a constant evolution within manufacturing systems from the traditional methods as forging, drilling and casting, to the modern additive systems. This work, created in association with KTHs Department of machine design, examines and investigates 5 out of the 7 major families of additive manufacturing with the purpose of trying to define the future potential of additive manufacturing. In addition, for each system, a possible product or profession is suggested, made possible by the system in question. This is done to clarify the characteristics of that system. This work also demonstrates the product development of a highly customized product, protective shells for small models, motivation behind the additive system of choice and the result of the iterative design process. The investigation, the product development as well as expert opinion resulted in a discussion that both considers additive manufacturing future potential as well as how this potential is affected by the Covid-19 pandemic of 2020. As a conclusion is the future for additive manufacturing very promising with several different directions in which development can go.
Ståhl, Dennis, and Siyu Guo. "Innovation genom additiv tillverkning." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230585.
Full textAdditive manufacturing, AM, is a technique that is developing in an incredible pace. Conventional manufacturing methods, like lathe turning or casting for instance, are limited when it comes to creating products with complex geometries, in these cases AM is a good complement. Previously though, material characteristics like tensile strength and yield point is something that AM has been compensating with. But in the current rate of development, the AM-technique can soon replace most conventional manufacturing methods completely. The purpose of this project is to describe the possibilities in AM today and what could be expected in the future.Since complex geometries is not a problem with AM, the products can be produced in only one step compared to conventional methods where it often takes several steps to produce a product. AM with metal is something that is developing fast and there are already many different methods, for instance Selective Laser Sintering, Selective Laser Melting, Beam Metal Deposition, Electron Beam Melting and Binder Jetting. These methods use different techniques to create prototypes and they all have their pros and cons what matters cost, strength and working speed.Tools in all forms are examples of products that requires high performance and a long life-span. To integrate the requirement of high performance and the possibilities with complex geometries through AM, a twisted drill with internal cooling channels is produced in this project. The internal cooling channels are shifting in diameter to optimize the inlet of coolant and at the same time increase the outlet.As mentioned earlier there are many different methods for AM in metal. The method that is considered the best for this purpose is Selective Laser Melting since this method creates compact metal products with high strength. A 3D-model of the twisted drill was created in Solid Edge ST9 and was then analyzed in ANSYS Workbench to see the impact of the internal cooling channels during use of the drill. The results show that the total deformation is 0,68μm and maximum tension is 33,95MPa, both in the middle of the drill. Neither the total deformation or the maximum tension reaches a critical limit and therefor the drawn conclusion is that this model would reach the requirements given to a drill.The development of new methods in AM with metal is going fast and in a near future the new techniques will have increased in working speed so much and be price effective enough to replace most of the conventional manufacturing methods completely.
Virta, Daniel, and Carl Säflund. "Implementation of additive manufacturing on bike stems for road bikes." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209540.
Full textDetta kandidatsexamensarbete utforskar möjligheterna med additiv tillverkning applicerat på högpresterande cykelkomponenter. Målet med arbetet var att utforska möjligheterna att utnyttja additiv tillverkning för styrstammar, samt ta fram en virtuell och en fysisk modell av en styrstam anpassad för detta. Genom en omfattande infosökning hämtades kunskap in om de tekniker och material som utgör den additiva tillverkningsgruppen. Därefter gjordes en fördjupning i en specifik teknik, nämligen EBM, electron beam melting. Produktutvecklingsprocessen för cykelkomponenten, en styrstam, dokumenterades för att identifiera styrkorna och svagheterna hos tekniken och för att i slutet utvärderas mot en traditionellt tillverkad referenskomponent. Designprocessen inleddes med infosökning och konceptgenerering för att sedan, med hjälp av digital mjukvara såsom Solid Edge och ANSYS, övergå till en iterativ process av modellering och simulering. Koncepten modellerades efter önskade egenskaper definierat i en kravspecifikation samt rådande EU-standard för styrstammar i tillåten deformation och utmattningsbrott. Ett slutgiltigt koncept valdes och sedan tillverkades en 3D-utskriven fysisk prototyp. I den avslutande delen diskuteras den utvecklade komponenten och jämförs med en vald referenskomponent. Det slutgiltiga konceptet lyckades inte prestera bättre än referenskomponenten i vikt. Men däremot erhölls värdefull insikt och kunskap angående den additiva processen. Slutsatsen som drogs var att additiv tillverkning är en legitim tillverkningsmetod för konstruktion av högpresterande cykelkomponenter. Förslag ges även för framtida arbete där framförallt en vidare analys med andra material som utnyttjar EBM-tekniken föreslås.
Sarlak, Shannon. "Möjligheter för produktion med additiv tillverkning : - En fallstudie." Thesis, Högskolan i Skövde, Institutionen för handel och företagande, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17739.
Full textBakgrund: Additiv tillverkning är en tillverkningsprocess som har på de senare åren börjat användas avsevärt det senaste 30 åren, inom industribranschen. Genom att addera material lager-för-lager bildas ett objekt och denna metod kallas för 3D-printing. Trots fördelen med att kunna tillverka ett objekt komplett utan att behöva montera ihop delar som i traditionell tillverkning, finns det många begränsningar med additiv tillverkning. Finns det fler möjligheter än svårigheter med additiv tillverkning eller är tillverkningsprocessen för avancerat för att ta över den traditionella tillverkningsprocessen helt? Syfte: Rapportens syfte är att öka förståelsen för möjligheter och svårigheter med additiva tillverkningsprocesser samt i vilken kontext det är lämpligt att använda. Vilka faktorer gör det mer eller mindre lämpligt med additiv tillverkning. Genomförande: I studiens teoretiska referensram har en fallstudie utförts genom att samla in och bearbeta data från tidigare studier. Här utformas studiens teori med fokus på innebörden av additiv tillverkning, jämförelse mellan traditionell tillverkning samt additiv tillverkning enbart i TR, möjligheter och svårigheter med tillverkningsprocessen, logistiska aspekter som fokuserar på den leveransserviceelement som samspelas mellan företag och kunder samt att detta inkluderar kvalité problem som uppstår med AM, orderkvalificerare och ordervinnare som gör företagen unika samt lämplighet av material för olika additiva tillverkningsprocesser. I empirin hittas data och information från två berörda företag som använder sig av additiv tillverkning inom produktionsområden och hur de går tillväga för att uppnå konkurrensfördelar. I analysen sammanställs den teoretiska referensram som utformats med hjälp av data från tidigare studier om additiv tillverkning, tillsammans med empirin som tagits fram med hjälp av dessa två berörda företag. Genom ett frågeställningsformulär och en utformad enkätstudie som gavs till respektive företag, kunde en informationsrik litteraturstudie utföras. Slutsats: Denna fallstudie visar likaså majoriteten av tidigare studier som berör additiv tillverkning, samma slutsats. Slutsatsen visar att additiv tillverkning leder till faktorer såsom kostnadsreducering gällande produktion, minskad bundet kapital, förkortade ledtider, färre transportsträckor, mer miljövänligt, skapa komplexa geometrier som är svårt att skapa på traditionellt vis. Det finns även skillnader mellan företagens valda AM-processer då företagen använder sig av olika tillverkningsprocesser och olika 3D-printer samt material. Materialutbudet är större hos Företag A som använder sig av plaster än hos Rise Swecast AB som använder sig av kvartssand vilket används inom metalltillverkning. Lämpligheten för additiv tillverkning passar mer vid uppbyggnad av komplexa geometrier, tillverkning av låga produktionsvolymer. Men lämpar sig mindre vid stora produktionsvolymer, begränsning vid materialval av olika AM-processer samt vid tillverkning av stora objekt. Det fanns även kvalitetsproblem gällande utskrifter då det inte finns några återkopplingsverktyg, men detta kontrolleras vid varje utskrift för att undvika variationer mellan utskrifter och processer. Additiv tillverkning kommer i framtiden att ta alltmer plats inom industribranschen och kommer även eventuellt att ersätta andra processer inom den traditionella tillverkningen just för att den bidrar med både med lönsamhet för företag samt kunder genom decentralisering, det vill säga att man inte behöver vara långt ifrån kunden samtidigt som man inte behöver investera i en hel fabrik.
PORAT, INGRID, and KLARA HOVSTADIUS. "A Business Model Perspective on Additive Manufacturing." Thesis, KTH, Industriell Management, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239665.
Full textAdditiv tillverkning (AM) är en omogen tillverkningsteknik som anses ha potential att kraftigt påverka den tillverkande industrin och många företag närmar sig nu AM för att undersöka hur de kan ta en stark position på marknaden. Teknologiska innovationer i sig är ofta otillräckliga för att till fullo utnyttja fördelar med ny teknik och därför krävs även innovation av affärsmodeller. Det kan vara svårt för företag att hitta argument och stöd för hur en affärsmodell inom AM ska struktureras, det vill säga avgöra vad som ska erbjudas och till vem (value proposition), hur erbjudandet ska levereras (value creation) och hur vinsten ska tillvaratas (value capture). Därför undersöker den här studien hur stora tillverkande företag möter den växande AM-marknaden utifrån ett affärsmodellsperspektiv. Forskningen påvisar gemensamma teman inom tre affärsmodellskomponenter (value proposition, value creation, value capture) i en AM-kontext, där tema 5 motsägs både av teorin och av flera andra teman: 1. Omogen efterfrågan 2. Starta med interna uppdrag 3. Kunskapserbjudanden 4. Helhetslösningar 5. Brett kundfokus 6. Börja i en tekniknisch, expandera sedan 7. Investera i maskiner för att bygga kunskap 8. Behov av förändring i designers tankesätt 9. Partnerskap för att driva AM-marknaden framåt 10. Maktpositionen skiftar 11. Nära kundrelationer 12. Det pågår ett race till marknaden Forskningen är baserad på en multipel fallstudie som inkluderar 16 intervjuer på sex olika företag och två universitet.
BÖCKER, SVEN-RUBEN, Kajetan Calczynski, and Simon Malmström. "Implementation of Additive Manufacturing in Uprights for a Formula Student Car." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192571.
Full textThis bachelor thesis focuses on the possibility to implement additive manufacturing on the upright, one of the key components in a Formula Student car. The goal was to get an insight into this manufacturing technology and to see if it would be suitable to change KTH Formula Student’s current aluminium (Alumec 89) uprights to titanium (Ti6AL4V) ones, without gaining weight and losing stiffness and strength. Based on the current geometry of uprights for KTH Formula Student’s latest car, the eV12, new titanium uprights were designed using SolidWorks. This was done by using experience in upright design and intuition, by analysing and altering the designs in an iterative process. Three designs were made: a lighter version of the existing one, a hollow version and an unconventional version that utilises design possibilities with additive manufacturing. To verify the three different titanium designs, an analysis of the existing aluminium upright was performed. Using the results of this analysis, stiffness and maximum stress goals were set on the new titanium uprights. None of the concepts fully met the set goals, but valuable insight into design, solid mechanics and manufacturing methods was gained. The fact that specific stiffness of titanium is lower than that of aluminium means that it would be hard to make a proper design without the use of topology optimisation software, if weight is one of the most important factors. With more time, the designs would likely meet the set goals.
Books on the topic "Additiv manufacturing"
Srivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. Additive Manufacturing. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382.
Full textKilli, Steinar, ed. Additive Manufacturing. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196589.
Full textGibson, Ian, David Rosen, and Brent Stucker. Additive Manufacturing Technologies. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2113-3.
Full textLachmayer, Roland, and Rene Bastian Lippert, eds. Additive Manufacturing Quantifiziert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54113-5.
Full textGibson, Ian, David W. Rosen, and Brent Stucker. Additive Manufacturing Technologies. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1120-9.
Full textMeboldt, Mirko, and Christoph Klahn, eds. Industrializing Additive Manufacturing. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54334-1.
Full textKumar, Sanjay. Additive Manufacturing Processes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45089-2.
Full textGibson, Ian, David Rosen, Brent Stucker, and Mahyar Khorasani. Additive Manufacturing Technologies. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56127-7.
Full textGebhardt, Andreas. Understanding Additive Manufacturing. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446431621.
Full textBook chapters on the topic "Additiv manufacturing"
Hartogh, Peter, and Thomas Vietor. "Unterstützung des Entscheidungsprozesses in der Produktentwicklung additiv herzustellender Produkte mithilfe von Ähnlichkeitskennzahlen." In Additive Manufacturing Quantifiziert, 49–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54113-5_4.
Full textGittel, Hans-Jürgen. "Additiv denken! / Think Additively!" In Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, edited by Wieland Kniffka, Michael Eichmann, and Gerd Witt, 270–78. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9783446450608.023.
Full textBrüggemann, J. P., B. Schramm, L. Risse, G. Kullmer, and H. A. Richard. "Entwicklung einer additiv gefertigten Fußorthese." In Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, 25–37. München: Carl Hanser Verlag GmbH & Co. KG, 2017. http://dx.doi.org/10.3139/9783446454606.002.
Full textWillner, Robin, Stefan Lender, Andreas Ihl, Christoph Wilsnack, Samira Gruber, Ana Brandão, Laurent Pambaguian, et al. "Möglichkeiten der Topologieoptimierung für additiv gefertigte Raumfahrtbauteile." In Rapid.Tech + FabCon 3.D International Hub for Additive Manufacturing: Exhibition + Conference + Networking, 103–17. München: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.3139/9783446462441.008.
Full textWichert, Philipp. "Additiv gefertigte Bauteile in industriellen Produkten – Erfahrungen eines Sonderanlagenbauers." In Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, 202–17. München: Carl Hanser Verlag GmbH & Co. KG, 2017. http://dx.doi.org/10.3139/9783446454606.015.
Full textEmmelmann, Claus, Sandra Zühlke, Jan-Peer Rudolph, and Felix Güntzer. "Mit Industrie 4.0 zur Lebensdauervorhersage additiv gefertigter Bauteile." In Rapid.Tech + FabCon 3.D – International Trade Show + Conference for Additive Manufacturing, 506–21. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9783446458123.032.
Full textOettel, Markus, Sebastian Flügel, Stefan Polenz, Andreas Kleine, Mathias Gebauer, and Bernhard Müller. "Additiv-Guss ein neuartiger Hybridansatz für automobile Anwendungen." In Rapid.Tech + FabCon 3.D International Hub for Additive Manufacturing: Exhibition + Conference + Networking, 34–48. München: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.3139/9783446462441.003.
Full textMager, Thomas, Christoph Jürgenhake, and Roman Dumitrescu. "Funktionalisierung von additiv gefertigten Bauteilen mittels laserstrukturierbarer MID-Lacke." In Rapid.Tech + FabCon 3.D – International Trade Show + Conference for Additive Manufacturing, 436–57. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9783446458123.028.
Full textKessing, David, Manuel Löwer, Alina Richter, Fabian Fischer, Lukas Pelzer, and Franz Wieck. "Verbindungsmöglichkeiten additiv aufgetragener Geometrien auf Spritzgusselemente im FLM-Verfahren." In Rapid.Tech + FabCon 3.D International Hub for Additive Manufacturing: Exhibition + Conference + Networking, 131–47. München: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.3139/9783446462441.010.
Full textBrüggemann, Jan-Peter, Wadim Reschetnik, Hans A. Richard, Gunter Kullmer, and Britta Schramm. "Festigkeits- und leichtbauoptimierte Konstruktion und Auslegung eines additiv gefertigten Fahrradvorbaus / Strength and lightweight optimized design of an additive manufactured bicycle stem." In Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, edited by Wieland Kniffka, Michael Eichmann, and Gerd Witt, 290–300. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9783446450608.025.
Full textConference papers on the topic "Additiv manufacturing"
Wakimoto, Tomomasa, Ryoma Takamori, Soya Eguchi, and Hiroya Tanaka. "Growable Robot with 'Additive-Additive-Manufacturing'." In CHI '18: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3170427.3188449.
Full textBernhard, Robert, Philipp Neef, Henning Wiche, Volker Wesling, Christian Hoff, Jörg Hermsdorf, and Stefan Kaierle. "Additive manufacturing of copper-molybdenum pseudoalloys." In 3D Printed Optics and Additive Photonic Manufacturing II, edited by Georg von Freymann, Alois M. Herkommer, and Manuel Flury. SPIE, 2020. http://dx.doi.org/10.1117/12.2555708.
Full textLuo, Junjie, Heng Pan, and Edward C. Kinzel. "Additive Manufacturing of Glass." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39227.
Full textSchiller, G. J. "Additive manufacturing for Aerospace." In 2015 IEEE Aerospace Conference. IEEE, 2015. http://dx.doi.org/10.1109/aero.2015.7118958.
Full textJordan, S., and M. DeBruin. "Additive Manufacturing Evaporative Casting." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_281_288.
Full textJordan, S., and M. DeBruin. "Additive Manufacturing Evaporative Casting." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_281_288.
Full textChoi, J., C. Johnson, and C. Pringle. "Freeform Additive Manufacturing Lab." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_246_253.
Full text"Embedded Tutorial: Additive Manufacturing." In 2020 36th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2020. http://dx.doi.org/10.23919/semi-therm50369.2020.9142856.
Full textSlowik, Teddy. "Additive Manufacturing of Ceramics." In 37 Education and Research in Computer Aided Architectural Design in Europe and XXIII Iberoamerican Society of Digital Graphics, Joint Conference (N. 1). São Paulo: Editora Blucher, 2019. http://dx.doi.org/10.5151/proceedings-ecaadesigradi2019_283.
Full textChoi, J., C. Johnson, and C. Pringle. "Freeform Additive Manufacturing Lab." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019/mst_2019_246_253.
Full textReports on the topic "Additiv manufacturing"
Schraad, Mark William, and Marianne M. Francois. ASC Additive Manufacturing. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1186037.
Full textCrain, Zoe, and Roberta Ann Beal. Additive Manufacturing Overview. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1441284.
Full textMurph, S. NANO-ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572880.
Full textPeterson, Dominic S. Additive Manufacturing for Ceramics. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1119593.
Full textKorinko, P., A. Duncan, A. D'Entremont, P. Lam, E. Kriikku, J. Bobbitt, W. Housley, M. Folsom, and (USC), A. WIRE ARC ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475286.
Full textPepi, Marc S., Todd Palmer, Jennifer Sietins, Jonathan Miller, Dan Berrigan, and Ricardo Rodriquez. Advances in Additive Manufacturing. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1012134.
Full textTorres Chicon, Nesty. Additive Manufacturing Technologies Survey. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1658439.
Full textDehoff, Ryan R., and Michael M. Kirka. Additive Manufacturing of Porous Metal. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1362246.
Full textSbriglia, Lexey Raylene. Embedding Sensors During Additive Manufacturing. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1209455.
Full textGrote, Christopher John. The Frontiers of Additive Manufacturing. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1240803.
Full text