Academic literature on the topic 'Additive manufacturing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Additive manufacturing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Additive manufacturing"

1

SOZON, Tsopanos. "Laser Additive Manufacturing (LAM)." JOURNAL OF THE JAPAN WELDING SOCIETY 83, no. 4 (2014): 266–69. http://dx.doi.org/10.2207/jjws.83.266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reddy, K. Vinay Kumar, B. Bhaskar, and Gautam Raj G. Vinay Kumar. "Additive Manufacturing of Leaf Spring." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1666–67. http://dx.doi.org/10.31142/ijtsrd23528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baghel, Manas Singh, Dr L. Boriwal, Dharmesh Barodiya, Monil Jain, and Mohd Altaf Ansari. "Micro Additive Manufacturing in Tungsten." International Journal of Research Publication and Reviews 5, no. 4 (April 2024): 1622–30. http://dx.doi.org/10.55248/gengpi.5.0424.0942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Igarashi, Toshio. "Additive Manufacturing." Seikei-Kakou 28, no. 7 (June 20, 2016): 288–94. http://dx.doi.org/10.4325/seikeikakou.28.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Igarashi, Toshio. "Additive Manufacturing." Seikei-Kakou 29, no. 7 (June 20, 2017): 254–59. http://dx.doi.org/10.4325/seikeikakou.29.254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Costa, José, Elsa Sequeiros, Maria Teresa Vieira, and Manuel Vieira. "Additive Manufacturing." U.Porto Journal of Engineering 7, no. 3 (April 30, 2021): 53–69. http://dx.doi.org/10.24840/2183-6493_007.003_0005.

Full text
Abstract:
Additive manufacturing (AM) is one of the most trending technologies nowadays, and it has the potential to become one of the most disruptive technologies for manufacturing. Academia and industry pay attention to AM because it enables a wide range of new possibilities for design freedom, complex parts production, components, mass personalization, and process improvement. The material extrusion (ME) AM technology for metallic materials is becoming relevant and equivalent to other AM techniques, like laser powder bed fusion. Although ME cannot overpass some limitations, compared with other AM technologies, it enables smaller overall costs and initial investment, more straightforward equipment parametrization, and production flexibility.This study aims to evaluate components produced by ME, or Fused Filament Fabrication (FFF), with different materials: Inconel 625, H13 SAE, and 17-4PH. The microstructure and mechanical characteristics of manufactured parts were evaluated, confirming the process effectiveness and revealing that this is an alternative for metal-based AM.
APA, Harvard, Vancouver, ISO, and other styles
7

Jain, Rupanshu, and Manish Meghwal. "Additive Manufacturing." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 1138–40. http://dx.doi.org/10.22214/ijraset.2022.44072.

Full text
Abstract:
Abstract: Additive manufacturing is a recent trend in manufacturing processes due to its many advantages. It can be defined as the process of manufacturing parts by depositing materials layer by layer. It has been a subject of intense study and examination by many scholars. The development of additive manufacturing as a leading technology and its different stages will be discussed. The importance of partial orientation, construction time estimates and cost calculations were also discussed. A notable aspect of this work was the identification of problems associated with different additive manufacturing methods. Due to the imperfections of additive manufacturing, its hybridization with other methods, such as subtraction manufacturing, has been highlighted.
APA, Harvard, Vancouver, ISO, and other styles
8

Taki, Kentaro. "Additive Manufacturing." Seikei-Kakou 34, no. 9 (August 20, 2022): 341. http://dx.doi.org/10.4325/seikeikakou.34.341_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhadeshia, H. K. D. H. "Additive manufacturing." Materials Science and Technology 32, no. 7 (May 2, 2016): 615–16. http://dx.doi.org/10.1080/02670836.2016.1197523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Babu, S. S., and R. Goodridge. "Additive manufacturing." Materials Science and Technology 31, no. 8 (May 14, 2015): 881–83. http://dx.doi.org/10.1179/0267083615z.000000000929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Additive manufacturing"

1

HANDAL, RAED S. I. "Additive Manufacturing as a Manufacturing Method: an Implementation Framework for Additive Manufacturing in Supply Chains." Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203311.

Full text
Abstract:
The supply chain is changing speedily and on a continuous basis to keep up with the rapid changes in the market, which are summarized as increased competition, changes in traditional customer bases, and changes in customers’ expectations. Thus, companies have to change their way of manufacturing final products in order to customize and expedite the delivery of products to customers. Additive manufacturing, the new production system, effectively and efficiently increases the capability of personalization during the manufacturing process. This consequently increases customer’s satisfaction and company’s profitability. In other words, additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. Theoretical development in the field of additive manufacturing in regards to its impact on supply chain management is rare. There is no fully applied approach in the literature that is focused on managing the supply chain when additive manufacturing is applied. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field that evaluates the impact of additive manufacturing and determines the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing “3D printing” impacts supply chain management efficiently. To build the framework, interviews with some companies that already use additive manufacturing in their production system have been carried out. Next, an online survey and two case studies evaluated the framework and validated the results of the final version of the framework. The conceptual framework shows the relationship among supply chain strategies, manufacturing strategy and manufacturing systems. The developed framework shows not only the ability of additive manufacturing to change and re-shape supply chains, but its impact as an alternative manufacturing technique on supply chain strategies. This framework helps managers select more effective production methods based on certain production variables, including product’s type, components’ value, and customization level.
The supply chain is changing speedily and on a continuous basis to keep up with the rapid changes in the market, which are summarized as increased competition, changes in traditional customer bases, and changes in customers’ expectations. Thus, companies have to change their way of manufacturing final products in order to customize and expedite the delivery of products to customers. Additive manufacturing, the new production system, effectively and efficiently increases the capability of personalization during the manufacturing process. This consequently increases customer’s satisfaction and company’s profitability. In other words, additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. Theoretical development in the field of additive manufacturing in regards to its impact on supply chain management is rare. There is no fully applied approach in the literature that is focused on managing the supply chain when additive manufacturing is applied. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field that evaluates the impact of additive manufacturing and determines the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing “3D printing” impacts supply chain management efficiently. To build the framework, interviews with some companies that already use additive manufacturing in their production system have been carried out. Next, an online survey and two case studies evaluated the framework and validated the results of the final version of the framework. The conceptual framework shows the relationship among supply chain strategies, manufacturing strategy and manufacturing systems. The developed framework shows not only the ability of additive manufacturing to change and re-shape supply chains, but its impact as an alternative manufacturing technique on supply chain strategies. This framework helps managers select more effective production methods based on certain production variables, including product’s type, components’ value, and customization level.
APA, Harvard, Vancouver, ISO, and other styles
2

Keil, Heinz Simon. "Quo vadis "Additive Manufacturing"." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214719.

Full text
Abstract:
Aus der Einführung: "Stehen wir am Rande einer bio-nanotechnologischen getriebenen Revolution, die unsere Art zu leben, zu arbeiten und miteinander umzugehen grundlegend verändern wird? Welchem gesellschaftspolitischen, wirtschaftlichen und technologischen Wandel haben wir uns zu stellen? Langfristige Entwicklungszyklen (Kondratieff, Schumpeter) führen zur nachhaltigen Weiterentwicklung der Zivilisation. Mittelfristige Entwicklungen wie die Trends Globalisierung, Urbanisierung, Digitalisierung (Miniaturisierung) und Humanisierung (Individualisierung), die immer stärker unser Umfeld und Handeln beeinflussen führen zu ganzheitlichen, weltumspannenden Grundtendenzen der gesellschaftlichen Weiterentwicklung. Die technologischen "Enabler" Computing, Biotechnology, Artifical Intelligence, Robotik, Nanotechnology, Additive Manufacturing und Design Thinking wirken beschleunigend auf die gesellschaftlichen Entwicklungen ein. Die technologischen Möglichkeiten beschleunigen sowohl gesellschaftspolitische Zyklen und zivilisatorische Anpassungen. Durch rasanten technologischen, wissenschaftlichen Fortschritt, zunehmende Globalisierungswirkungen, beschleunigte Urbanisierung und aber auch politischer Interferenzen sind die Veränderungsparameter eines dynamischen Geschäftsumfelds immer schnellere Transformationen ausgesetzt. Alle diese Richtungen zeigen das unsere gesellschaftliche Entwicklung inzwischen stark durch die Technik getrieben ist. Ob dies auch heißt, dass wir den Punkt der Singularität (Kurzweil) absehbar erreichen ist dennoch noch offen. ..."
APA, Harvard, Vancouver, ISO, and other styles
3

CAIVANO, RICCARDO. "Design for Additive Manufacturing: Innovative topology optimisation algorithms to thrive additive manufacturing application." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2957748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leirvåg, Roar Nelissen. "Additive Manufacturing for Large Products." Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20870.

Full text
Abstract:
This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the foundry Oshaug Metall AS. Their products consist of propellers and other large products cast in Nickel-Aluminium Bronze. This report looks at three approaches and applications for additive manufacturing at the foundry. These are additively manufactured pattern, sand mold and end metal parts. The available \emph{State of the Art} systems for the three approaches are listed and the systems suitability is discussed. The systems that meet the stated criteria are selected and further discussion on the advantages and disadvantages of the additive manufacturing approach to the application are carried out for the three respective applications. An experiment was carried out on a scaled propeller blade to measure the geometrical accuracy and surface quality of a 3D-printed pattern. The report is concluded with the conclusion to the stated task and recommendations for further work.
APA, Harvard, Vancouver, ISO, and other styles
5

Jun, Sung Yun. "Additive manufacturing for antenna applications." Thesis, University of Kent, 2018. https://kar.kent.ac.uk/68833/.

Full text
Abstract:
This thesis presents methods to make use of additive manufacturing (AM) or 3D printing (3DP) technology for the fabrication of antenna and electromagnetic (EM) structures. A variety of 3DP techniques based on filament, resin, powder and nano-particle inks are applied for the development and fabrication of antennas. Fully and partially metallised 3D printed EM structures are investigated for operation at mainly microwave frequency bands. First, 3D Sierpinski fractal antennas are fabricated using binder jetting printing technique, which is an AM metal powder bed process. It follows with the introduction of a new concept of sensing liquids using and non-planer electromagnetic band gap (EBG) structure is investigated. Such structure can be fabricated with inexpensive fuse filament fabrication (FFF) in combination with conductive paint. As a third method, inkjet printing technology is used for the fabrication of antennas for origami paper applications. The work investigates the feasibility of fabricating foldable antennas for disposable paper drones using low-cost inkjet printing equipment. It then explores the applicability of inkjet printing on a 3D printing substrate through the fabrication of a circularly polarised patch antenna which combines stereolithography (SLA) and inkjet printing technology, both of which use inexpensive machines. Finally, a variety of AM techniques are applied and compared for the production of a diversity WLAN antenna system for customized wrist-worn application.
APA, Harvard, Vancouver, ISO, and other styles
6

PEDEMONTE, LAURA CHIARA. "Laser in Metal Additive Manufacturing." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/973605.

Full text
Abstract:
The evolution of additive manufacturing (AM) techniques has had such an exponential increase especially in recent years that various and remarkable techniques have been developed for the production of metallic materials. These techniques allow to obtain products with remarkable mechanical characteristics. Therefore, the different AM techniques that employed metallic materials were analysed and their strengths and weaknesses were considered. In particular, investigations were carried out on artefacts made by Direct Metal Laser Sintering (DMLS) technique in two different metal alloys: Inconel-625 and titanium grade 2. In relation to Inconel-625, tomographic analyses were carried out for the detection of ad hoc defects, ultrasound analyses to evaluate anistropy, micrographs and tensile tests to evaluate their mechanical characteristics. The titanium grade 2 products were compared with samples made by the traditional fusion technique to assess their suitability in the dental field. The results show that artefacts made by DMLS technique have overall better features than fusion samples: the defects are less widespread and smaller, the hardness - characteristic of mechanical properties - higher.
APA, Harvard, Vancouver, ISO, and other styles
7

Aydinlilar, Melike. "Implicit modeling for additive manufacturing." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0336.

Full text
Abstract:
Les surfaces implicites offrent de nombreuses solutions utiles pour les tâches d'infographie, telles que des requêtes simples d'intérieur/extérieur, une représentation indépendante de la résolution et une définition compacte. Cependant, les visualiser de manière robuste et efficace représente un défi, en particulier pour les surfaces définies avec des fonctions complexes. Dans la partie I, nous présentons une méthode de rendu en temps réel pour les surfaces intégrales définies par squelettes. Elle s'appuie sur l'utilisation d'un A-Buffer construits dynamiquement sur le GPU pour éviter le traitement des espaces vides et réduire le nombre de primitives de squelettes à traiter localement. La recherche des racines est effectuée à l'aide d'une interpolation quadratique rationnelle pour limiter le nombre d'évaluations de potentiel. La partie II introduit une arithmétique d'intervalle basé sur les primitives pour le traitement efficace des surfaces intégrales pour le rendu et le tranchage en temps réel. Enfin, dans la partie III, nous présentons une famille de méthodes d'inclusion robustes pour le rendu d'une large famille de représentation implicites. Les intersections rayon-surface sont calculées de manière fiable et efficace à l'aide de fonctions d'inclusion linéaires et quadratiques calculées soit en bornant les dérivées de premier et de second ordre, soit en construisant les bornes à partir des opérations algébriques de base définissant la fonction de potentiel. Le problème de la génération de bornes infinies ou non valides est éliminé en réduisant dynamiquement la taille des intervalles. Des exemples pour le rendu en temps réel et le tranchage pour la fabrication additive sont donnés pour des surfaces implicites à squelette, des surfaces de convolution et des fonctions de bases radial
Implicit surfaces provide many useful solutions for computer graphics tasks such as simple in/out queries, resolution independent representation and compact definition. However, rendering them robustly and efficiently provides a challenge especially for surfaces defined with complex field functions. In Part I, we introduce a real-time rendering method for skeleton-based integral surfaces. It relies on dynamically built A-buffers on GPU to discard empty spaces and reduce the number of skeleton primitives evaluation. The root finding is performed using rational quadratic interpolation to limit the number of field evaluations. Part II introduces a per-primitive interval arithmetic for skeleton-based integral surfaces for real-time rendering and slicing, and finally in Part III we introduce a family of robust forward inclusion methods for rendering a wide family of implicits. Using linear and quadratic inclusion functions calculated either by bounding the first and second order derivatives, or building the bounds up from the basic algebraic operations that constitute the field function definitions, ray-surface intersections are calculated reliably and efficiently. The problem of creating infinite or invalid bounds are eliminated by reducing the interval sizes and bounding piece-wise defined functions. Example surfaces are given with skeleton-based implicits, convolution surfaces, Hermite radial basis implicits for real-time rendering and slicing for additive manufacturing
APA, Harvard, Vancouver, ISO, and other styles
8

Wahlström, Niklas, and Oscar Gabrielsson. "Additive Manufacturing Applications for Wind Turbines." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209654.

Full text
Abstract:
Additive manufacturing (AM), also known as 3D-printing is an automated manufacturing process in which the component is built layer upon layer from a predefined 3D computer model. In contrast to conventional manufacturing processes where a vast volume of material is wasted due to machining, AM only uses the material that the component consists of. In addition to material savings, the method has a number of potential benefits. Two of these are (1) a large design freedom which enables the production of complex geometries and (2) a reduced compexity in supply chain as parts can be printed on-demand rather than be kept in stock. This master thesis has been performed at Vattenfall Wind Power and aims to investigate the feasibility to reproduce and/or to refurbish one or two spare parts on a wind turbine by AM and if it can introduce any practical benefits. Components with a high failure rate and/or with an suitible design for AM have been investigated. A rotating union or fluid rotary joint (FRJ) was selected for further analysis. A comprehensive background study has been conducted. A current status of metal AM is described as well as a comparison between conventional and additive processes. Furthermore, current and future applications for AM witihin the wind turbine industry are presented. The mehodology "reverse engineering", main components in a wind power plant including the fluid rotary joint as well as fluid dynamics are also treated in the background study. As a part of the process, a fluid rotary joint with worse historical failure data was disassembled and examined. In order to find other design solutions that contributes to a better and more reliable operation, another better performing fluid roraty joint was investigated. Since detail drawings and material information are missing for the examined units, reverse engineering has been carried out to gather details of the designs. A concept for the first unit has been developed, in which improved design solutions has been introduced and a number of changes have been implemented in order to minimize material consumption and to adapt the design for AM. The concept has been evaluated by the use of numerical methods. Costs and build time have also been estimated for the developed concept. This project has illustated that it is feasable to manufacture spare parts by the use of AM. The developed concept demonstrates several improvements that are not possible to achieve with conventional manufacturing processes. Nevertheless, a number of limitations such as insufficient build volume, costs as well as time cosuming engineering effort and post-proccessing methods are present for AM. These restrictions, in combination with lack of 3D-models, limits the possibility to make use of the technology. However, the future looks bright, if the technology continues to develop and if subcontractors are willing to adapt to AM it will probably have a major breakthrough within the windpower industry.
Additiv tillverkning, "additive manufacturing" (AM) eller 3D-printing är en automatiserad tillverkningsmetod där komponenten byggs lager för lager från en fördefinierad 3D datormodell. Till skillnad från konventionella tillverkningsmetoder där en stor mängd material ofta bearbetas bort, använder AM nästintill endast det material som komponenten består utav. Förutom materialbesparingar, har metoden ett flertal andra potentiella fördelar. Två av dessa är (1) en stor designfrihet vilket möjliggör produktion av komplexa geometrier och (2) en möjlighet till en förenklad logistikkedja eftersom komponenter kan tillverkas vid behov istället för att lagerföras. Detta examensarbete har utförts på Vattenfall Vindkraft och har till syfte att undersöka om det är möjligt att tillverka och/eller reparera en eller två reservdelar genom AM och om det i så fall kan införa några praktiska fördelar. En kartläggning av komponenter med hög felfrekvens och/eller som kan vara lämpade för AM har genomförts. Av dessa har en roterande oljekoppling även kallad roterskarv valts ut för vidare analys. En omfattande bakgrundsstudie har utförts. En nulägesorientering inom området AM för metaller redogörs, här redovisas även en generell jämförelse mellan konventionella och additiva tillverkningsmetoder. Vidare behandlas aktuella och framtida användningsområden för AM inom vindkraftsindustrin. I bakgrundsstudien behandlas också arbetssättet "reverse engineering", huvudkomponenter i ett vindkraftsverk inklusive roterskarven samt flödesdynamik. Under arbetets gång har en roterskarv med sämre driftshistorik undersökts. I syfte att finna andra konstruktionslösningar som bidrar till en säkrare drift har en bättre presenterande enhet från en annan tillverkare granskats. Då viss detaljteknisk data och konstruktionsunderlag saknas för de undersökta enheterna har "reverse engineering" tillämpats. Ett koncept har sedan utvecklats för den första enheten där förbättrade konstruktionslösningar har introducerats samtidigt som en rad konstruktionsförändringar har gjorts i syfte att minimera materialåtgången och samtidigt anpassa enheten för AM. Konceptet har sedan evaluerats med hjälp av numeriska beräkningsmetoder. För det givna konceptet har även kostnad och byggtid uppskattats. Arbetet visar på att det är möjligt att ta fram reservdelar till vindkraftverk med hjälp av AM. Det framtagna konceptet visar på ett flertal förbättringar som inte kan uppnås med konventionella tillverkningsmetoder. Emellertid finns det en rad begränsningar såsom otillräcklig byggvolym, kostnader och tidskrävande ingenjörsmässigt arbete och efterbehandlingsmetoder. Dessa förbehåll i kombination med avsaknad av 3D-modeller begränsar möjligheterna att nyttja tekniken i dagsläget. Framtiden ser dock ljus ut, om tekniken fortsätter att utvecklas samtidigt som underleverantörer är villiga att nyttja denna teknik kan AM få ett stort genombrott i vindkraftsindustrin.
APA, Harvard, Vancouver, ISO, and other styles
9

Ranjan, Rajit. "Design for Manufacturing and Topology Optimization in Additive Manufacturing." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439307951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ek, Kristofer. "Additive Manufactured Material." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156887.

Full text
Abstract:
This project treats Additive Manufacturing (AM) for metallic material and the question if it is suitable to be used in the aeronautics industry. AM is a relatively new production method where objects are built up layer by layer from a computer model. The art of AM allows in many cases more design freedoms that enables production of more weight optimized and functional articles. Other advantages are material savings and shorter lead times which have a large economic value. An extensive literature study has been made to evaluate all techniques on the market and characterize what separates the different processes. Also machine performance and material quality is evaluated, and advantages and disadvantages are listed for each technique. The techniques are widely separated in powder bed processes and material deposition processes. The powder bed techniques allow more design freedom while the material deposition techniques allow production of large articles. The most common energy source is laser that gives a harder and more brittle material than the alternative energy sources electron beam and electric arc. Two specific techniques have been selected to investigate further in this project. Electron Beam Melting (EBM) from Arcam and Wire fed plasma arc direct metal deposition from Norsk Titanium (NTiC). EBM is a powder bed process that can manufacture finished articles in limited size when no requirements are set on tolerances and surface roughness. NTiC uses a material deposition process with electric arc to melt wire material to a near-net shape. The latter method is very fast and can produce large articles, but have to be machined to finished shape. A material investigation have been made where Ti6Al4V-material from both techniques have been investigated in microscope and tested for hardness. For the EBM-material have also surface roughness and weldability been investigated since the limited building volume often requires welding. The materials have mechanical properties better than cast material with respect to strength and ductility, but not as good as wrought material. Test results show that the difference in mechanical properties in different directions is small, even though the material has an inhomogeneous macrostructure with columnar grains in the building direction. The EBM-material has a finer microstructure and a stronger material and, in combination with improved design freedom, this technique is most suitable for aerospace articles when the weldability is good and it is possible to surface work where requirements of the surface roughness are set. Keywords: Additive Manufacturing, Aeronautics, Titanium
Det här projektet behandlar området Additiv Tillverkning (AM) för metalliska material och undersöker om det är lämpligt att använda vid produktion inom flygindustrin. AM är en relativt ny tillverkningsmetod där föremål byggs upp lager för lager direkt ifrån en datormodell. Teknikområdet tillåter i många fall större konstruktionsfriheter som möjliggör tillverkning av mer viktoptimerade och funktionella artiklar. Andra fördelar är materialbesparing och kortare ledtider vilket har ett stort ekonomiskt värde. En omfattande litteraturstudie har gjorts för att utvärdera alla tekniker som finns på marknaden och karakterisera vad som skiljer de olika processerna. Även maskiners prestanda och kvalité på tillverkat material utvärderas, och för varje teknik listas möjligheter och begränsningar. Teknikerna delas grovt upp i pulverbäddsprocesser och material deposition-processer. Pulverbäddsteknikerna tillåter större friheter i konstruktion, medan material deposition-processerna tillåter tillverkning av större artiklar. Den vanligaste energikällan är laser som ger ett starkare men mer sprött material än de alternativa energikällorna elektronstråle och ljusbåge. Två specifika tekniker har valts ut för att undersöka närmare i detta projekt. Electron Beam Melting (EBM) från Arcam och Wire fed plasma arc direct metal deposition från Norsk Titanium (NTiC). EBM är en pulverbäddsprocess som kan tillverka färdiga artiklar i begränsad storlek då låga krav ställs på toleranser och ytfinhet. NTiC använder en material deposition-process med en ljusbåge för att smälta ner trådmaterial till en nära färdig artikel. Den senare metoden är mycket snabb och kan tillverka stora artiklar, men måste maskinbearbetas till slutgiltig form. En materialundersökning har genomförts där Ti6Al4V-material från båda teknikerna har undersökts i mikroskop och testats för hårdhet. För EBM-material har även ytfinhet och svetsbarhet undersökts då begränsad byggvolym i många fall kräver fogning. Materialen har egenskaper bättre än gjutet material med avseende på styrka och duktilitet, men inte lika bra som valsat material. Provning visar att skillnaden på mekaniska egenskaper i olika riktningar är liten även fast materialet har en inhomogen makrostruktur med kolumnära korn i byggriktningen. EBM ger en finare mikrostruktur och ett starkare material och, tillsammans med de ökade konstruktionsfriheterna, så är det den tekniken som är bäst lämpad för flygplansartiklar då svetsbarheten är god och det finns möjlighet att bearbeta ytan till slutgiltigt krav. Nyckelord: Additiv Tillverkning, Flygteknik, Titan
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Additive manufacturing"

1

Killi, Steinar, ed. Additive Manufacturing. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. Additive Manufacturing. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Kun, ed. Additive Manufacturing. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-04721-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pandey, Pulak Mohan, Nishant K. Singh, and Yashvir Singh. Additive Manufacturing. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gebhardt, Andreas, and Jan-Steffen Hötter. Additive Manufacturing. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.1007/978-1-56990-583-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gebhardt, Andreas. Understanding Additive Manufacturing. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446431621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Sanjay. Additive Manufacturing Solutions. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80783-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morar, Dominik. Additive Manufacturing (AM). Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37153-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Sanjay. Additive Manufacturing Classification. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14220-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gibson, Ian, David Rosen, Brent Stucker, and Mahyar Khorasani. Additive Manufacturing Technologies. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56127-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Additive manufacturing"

1

Gebhardt, Andreas. "Direct Manufacturing – Rapid Manufacturing." In Additive Fertigungsverfahren, 457–526. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.1007/978-3-446-44539-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gebhardt, Andreas. "Direct Manufacturing – Rapid Manufacturing." In Additive Fertigungsverfahren, 457–526. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9783446445390.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gebhardt, Andreas, and Jan-Steffen Hötter. "Direct Manufacturing: Rapid Manufacturing." In Additive Manufacturing, 395–450. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9781569905838.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Agarwal, Raj, Shrutika Sharma, Vishal Gupta, Jaskaran Singh, and Kanwaljit Singh Khas. "Additive manufacturing." In Additive Manufacturing, 77–97. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258391-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Herrera Ramirez, Jose Martin, Raul Perez Bustamante, Cesar Augusto Isaza Merino, and Ana Maria Arizmendi Morquecho. "Additive Manufacturing." In Unconventional Techniques for the Production of Light Alloys and Composites, 89–102. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48122-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Byskov, Jeppe, and Nikolaj Vedel-Smith. "Additive Manufacturing." In The Future of Smart Production for SMEs, 357–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15428-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dev, Saty, Rajeev Srivastava, Pushpendra Yadav, and Surya Prakash. "Additive Manufacturing." In Sustainability, Innovation and Procurement, 27–59. Boca Raton, FL : CRC Press/Taylor & Francis, 2020. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429430695-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Farshidianfar, Anooshiravan, Seyedeh Fatemeh Nabavi, and Mohammad Hossein Farshidianfar. "Additive Manufacturing." In The Laser Manufacturing Process, 195–212. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003492191-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, Amritbir, Himanshu Kumar, and S. Shiva. "Additive Manufacturing." In Wire Arc Additive Manufacturing, 1–24. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borg Costanzi, Christopher. "Additive Manufacturing." In Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades, 47–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41540-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Additive manufacturing"

1

Massaccesi, Andrea, Agnese Mazzinghi, Angelo Freni, Michele Beccaria, and Paola Pirinoli. "Additive Manufacturing Folded Reflectarray." In 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), 300–303. IEEE, 2024. http://dx.doi.org/10.1109/iceaa61917.2024.10701750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, Tsung-Wei, Po-Wei Huang, Huan-Hsuan Yeh, Cheng-Hsin Shih, and Mi-Ching Tsai. "Additive Manufacturing Lightweight Inductor." In 2024 27th International Conference on Electrical Machines and Systems (ICEMS), 1745–48. IEEE, 2024. https://doi.org/10.23919/icems60997.2024.10921029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ives, Lawrence, David Marsden, George Collins, Tim Horn, and Chris Rock. "Additive Manufacturing for RF Products." In 2024 Joint International Vacuum Electronics Conference and International Vacuum Electron Sources Conference (IVEC + IVESC), 01–02. IEEE, 2024. http://dx.doi.org/10.1109/ivecivesc60838.2024.10694865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Glückstad, Jesper, and Andreas Erik Gejl Madsen. "HoloTile for Volumetric Additive Manufacturing." In Digital Holography and Three-Dimensional Imaging, W5B.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w5b.5.

Full text
Abstract:
HoloTile [1, 2, 3, 4] is a novel digital holographic light sculpting modality with properties well suited to volumetric additive manufacturing (VAM). This paper discusses the consequences of moving from an imaging-based to a holographic-based VAM configuration, and how HoloTile may be used to improve volumetric printing further.
APA, Harvard, Vancouver, ISO, and other styles
5

Wojtuszewski, Radoslaw, and Aleksander Banas. "Topology Optimization in Additive Manufacturing." In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12094.

Full text
Abstract:
One of the many advantages of additive manufacturing is that it doesn't have geometric constraints. It is very common knowledge that additive technology is appropriate to manufacturing parts of very complex shapes, additive manufacturing also gives the designer opportunity to create parts which are optimal in terms of mechanical strength, stiffness, and functionality. For this reason during the design process of components intended to additive manufacturing it is worth using of various shape optimization methods. Methods based on finite element analysis are most prevalent. The connection of additive technology and topology optimization allows creation of optimized parts. Optimal design gives opportunity to reduce the mass of components, increase stiffness and make parts much more cost effective. Additive manufacturing can be also an option for sheet metal parts. It allows creation of thin wall components fitted with integrated stiffeners such as ribs and stringers. Reducing the number of sheet metal parts (consolidation of parts) and increasing stiffness contribute to manufacture of less mass and cost effective aircraft structures.
APA, Harvard, Vancouver, ISO, and other styles
6

Shields, Paul. "Additive Manufacturing of Simulator Parts." In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–7. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12097.

Full text
Abstract:
The DARPA Aircrew Labor In-Cockpit Automation System (ALIAS) program aims to develop custom, tailorable kits that can be implemented into existing aircraft to provide autonomous and optionally piloted vehicle capabilities. In support of this program, Sikorsky Aircraft has developed kits for both fixed wing and rotary wing aircraft. During the development of ALIAS kits, Sikorsky used Additive Manufacturing for prototyping and to meet critical program milestones. Additive Manufacturing was shown to be a viable solution for producing simulator and demonstrator parts required for various aspects of the program. Additively manufactured parts were used for integration demonstrations, cockpit controls evaluations, system simulation, and flight demonstrations. This paper summarizes how Sikorsky used Additive Manufacturing to support the completion of DARPA ALIAS Program milestones.
APA, Harvard, Vancouver, ISO, and other styles
7

Wojtuszewski, Radoslaw, Aleksander Banas, and Mateusz Oliwa. "Additive Manufacturing of Titanium Alloys." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12819.

Full text
Abstract:
The most common additive manufacturing technologies are Electron Beam Melting and Selective Laser Sintering. It can be used with various materials including Titanium. Titanium alloys are also widely used in aircraft production. It is strong and stiff material however its processing using ordinary technology is generally complicated, time consuming and expensive. Oppositely for additive manufacturing, titanium is one of the most convenient to process. This opens new possibilities in aircraft production. This paper compares EBM and SLM technologies with the use of two titanium alloys (6-4 and 5-5-5-1). Titanium 6-4 is popular both in AM and conventional technics of production however its compression to 5-5-5-1 (which is not common in AM industry) broaden the range of AM available materials in terms of aircraft manufacturing. First part of the paper covers fundamental knowledge about AM industry, technology basics and general description, second covers list of materials which can be used in additive production, property comparison, potential application and printing possibilities. The latter part of the paper shows a few examples of demonstration part manufactured using AM technologies with general description.
APA, Harvard, Vancouver, ISO, and other styles
8

Wojtuszewski, Radoslaw, Aleksander Banas, and Mateusz Oliwa. "Additive Manufacturing of Titanium Alloys." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12812.

Full text
Abstract:
The most common additive manufacturing technologies are Electron Beam Melting and Selective Laser Sintering. It can be used with various materials including Titanium. Titanium alloys are also widely used in aircraft production. It is strong and stiff material however its processing using ordinary technology is generally complicated, time consuming and expensive. Oppositely for additive manufacturing, titanium is one of the most convenient to process. This opens new possibilities in aircraft production. This paper compares EBM and SLM technologies with the use of two titanium alloys (6-4 and 5-5-5-1). Titanium 6-4 is popular both in AM and conventional technics of production however its compression to 5-5-5-1 (which is not common in AM industry) broaden the range of AM available materials in terms of aircraft manufacturing. First part of the paper covers fundamental knowledge about AM industry, technology basics and general description, second covers list of materials which can be used in additive production, property comparison, potential application and printing possibilities. The latter part of the paper shows a few examples of demonstration part manufactured using AM technologies with general description.
APA, Harvard, Vancouver, ISO, and other styles
9

Orth, Antony, Daniel Webber, Nicolas Milliken, Yujie Zhang, Hao Li, Katherine Houlahan, Thomas Lacelle, Derek Aranguren van Egmond, and Chantal Paquet. "Building with volumetric additive manufacturing." In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVIII, edited by Eva Blasco, Debashis Chanda, and Christophe Moser, 30. SPIE, 2025. https://doi.org/10.1117/12.3042390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McLeod, Robert R., and John E. Hergert. "High dimensionality volumetric additive manufacturing." In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVIII, edited by Eva Blasco, Debashis Chanda, and Christophe Moser, 44. SPIE, 2025. https://doi.org/10.1117/12.3047687.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Additive manufacturing"

1

Schraad, Mark William, and Marianne M. Francois. ASC Additive Manufacturing. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1186037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crain, Zoe, and Roberta Ann Beal. Additive Manufacturing Overview. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1441284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murph, S. NANO-ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Korinko, P., A. Duncan, A. D'Entremont, P. Lam, E. Kriikku, J. Bobbitt, W. Housley, M. Folsom, and (USC), A. WIRE ARC ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peterson, Dominic S. Additive Manufacturing for Ceramics. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1119593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pepi, Marc S., Todd Palmer, Jennifer Sietins, Jonathan Miller, Dan Berrigan, and Ricardo Rodriquez. Advances in Additive Manufacturing. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1012134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Torres Chicon, Nesty. Additive Manufacturing Technologies Survey. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1658439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dehoff, Ryan R., and Michael M. Kirka. Additive Manufacturing of Porous Metal. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1362246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sbriglia, Lexey Raylene. Embedding Sensors During Additive Manufacturing. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1209455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grote, Christopher John. The Frontiers of Additive Manufacturing. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1240803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography