To see the other types of publications on this topic, follow the link: Additive manufacturing process.

Dissertations / Theses on the topic 'Additive manufacturing process'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Additive manufacturing process.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Philip, Ragnartz, and Axel Staffanson. "Improving the product development process with additive manufacturing." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40344.

Full text
Abstract:
The following report consists of a master thesis (30 credits) within product development. The thesis is written by Philip Ragnartz and Axel Staffanson, both studying mechanical engineering at Mälardalens University. Developing new components for a production line is costly and time consuming as they must be made from manual measurements and must go through all the conventional manufacturing (CM) steps. Eventual design mistakes will be discovered after the component have been manufactured and tested. To fix the design a completely new component must be designed and therefore double the overall
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Tianyang. "Ultrasonic Additive Manufacturing of Steel: Process, Modeling, andCharacterization." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607039366940573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Strano, Giovanni. "Multi-objective optimisation in additive manufacturing." Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/8405.

Full text
Abstract:
Additive Manufacturing (AM) has demonstrated great potential to advance product design and manufacturing, and has showed higher flexibility than conventional manufacturing techniques for the production of small volume, complex and customised components. In an economy focused on the need to develop customised and hi-tech products, there is increasing interest in establishing AM technologies as a more efficient production approach for high value products such as aerospace and biomedical products. Nevertheless, the use of AM processes, for even small to medium volume production faces a number of
APA, Harvard, Vancouver, ISO, and other styles
4

Joshi, Anay. "Geometric Complexity based Process Selection and Redesign for Hybrid Additive Manufacturing." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin151091601846356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ding, J. "Thermo-mechanical analysis of wire and arc additive manufacturing process." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7897.

Full text
Abstract:
Conventional manufacturing processes often require a large amount of machining and cannot satisfy the continuously increasing requirements of a sustainable, low cost, and environmentally friendly modern industry. Thus, Additive Manufacturing (AM) has become an important industrial process for the manufacture of custom-made metal workpieces. Among the different AM processes, Wire and Arc Additive Manufacture (WAAM) has the ability to manufacture large, low volume metal work-pieces due to its high deposition rate. In this process, 3D metallic components are built by depositing beads of weld meta
APA, Harvard, Vancouver, ISO, and other styles
6

Luo, Xiaoming. "Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sequeira, Almeida P. M. "Process control and development in wire and arc additive manufacturing." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7845.

Full text
Abstract:
This thesis describes advancements in the modelling, optimisation, process control and mechanical performance of novel high deposition rate gas metal arc welding processes for large scale additive manufacturing applications. One of the main objectives of this study was to develop fundamental understanding of the mechanisms involved during processing with particular focus on single layer welds made of carbon steel using both pulsed-current gas metal arc welding and cold metal transfer processes. The effects of interactions between critical welding process variables and weld bead and plate fusio
APA, Harvard, Vancouver, ISO, and other styles
8

Hayagrivan, Vishal. "Additive manufacturing : Optimization of process parameters for fused filament fabrication." Thesis, KTH, Lättkonstruktioner, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238184.

Full text
Abstract:
An obstacle to the wide spread use of additive manufacturing (AM) is the difficulty in estimating the effects of process parameters on the mechanical properties of the manufactured part. The complex relationship between the geometry, parameters and mechanical properties makes it impractical to derive an analytical relationship and calls for the use of a numerical model. An approach to formulate a numerical model in developed in this thesis. The AM technique focused in this thesis is fused filament fabrication (FFF). A numerical model is developed by recreating FFF build process in a simulation
APA, Harvard, Vancouver, ISO, and other styles
9

Nickchen, Tobias [Verfasser]. "Deep learning for automating additive manufacturing process chains / Tobias Nickchen." Paderborn : Universitätsbibliothek, 2021. http://d-nb.info/1234058804/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Karande, Niraj Nitin. "Adoption of Additive Manufacturing in process industries : A case study." Thesis, Uppsala universitet, Industriell teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-426129.

Full text
Abstract:
This paper explores the adoption of additive manufacturing technology in the process industries and tries to provide a holistic view about the preference and scope of this technology in the process industry sector. There has been vast literature about use of this technology in the automobile, aerospace, and medical sector. This study will help us to understand how Additive Manufacturing technology is shaping the other process industries and explore if it has same significance. To address the research questions qualitative research method is used in this study with semi-structured interviews wi
APA, Harvard, Vancouver, ISO, and other styles
11

Alkadi, Faez. "DEVELOPMENT OF A CONFORMAL ADDITIVE MANUFACTURING PROCESS AND ITS APPLICATION." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1556282142803521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Johansson, Matilda, and Robin Sandberg. "How Additive Manufacturing can Support the Assembly System Design Process." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Industriell organisation och produktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30887.

Full text
Abstract:
In product manufacturing, assembly approximately represents 50% of the total work hours. Therefore, an efficient and fast assembly system is crucial to get competitive advantages at the global market and have the right product quality. Today, the verification of the assembly system is mostly done by utilizing software based simulation tools even though limitations have been identified. The purpose of this thesis is to identify when the use of additive manufacturing technology could be used in assessing the feasibility of the assembly system design. The research questions were threefold. First,
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Lening. "Process and Quality Modeling in Cyber Additive Manufacturing Networks with Data Analytics." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104655.

Full text
Abstract:
A cyber manufacturing system (CMS) is a concept generated from the cyber-physical system (CPS), providing adequate data and computation resources to support efficient and optimal decision making. Examples of these decisions include production control, variation reduction, and cost optimization. A CMS integrates the physical manufacturing equipment and computation resources via Industrial Internet, which provides low-cost Internet connections and control capability in the manufacturing networks. Traditional quality engineering methodologies, however, typically focus on statistical process contr
APA, Harvard, Vancouver, ISO, and other styles
14

Banerjee, Soumya. "Development of a novel toner for electrophotography based additive manufacturing process." Thesis, De Montfort University, 2011. http://hdl.handle.net/2086/5037.

Full text
Abstract:
This thesis is intended to conduct feasibility study of producing 3D objects by printing thermoplastic elastomer using electrophotography technique and thereafter sintering the whole layer using infrared light source .The term Selective laser printing (SLP) has been coined by the author for this new process. This thesis provides the feasibility of developing experimental toner using thermoplastic toner using both mono and dual component print engines.
APA, Harvard, Vancouver, ISO, and other styles
15

Jonsson, Vannucci Tomas. "Investigating the Part Programming Process for Wire and Arc Additive Manufacturing." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74291.

Full text
Abstract:
Wire and Arc Additive Manufacturing is a novel Additive Manufacturing technology. As a result, the process for progressing from a solid model to manufacturing code, i.e. the Part Programming process, is undeveloped. In this report the Part Programming process, unique for Wire and Arc Additive Manufacturing, has been investigated to answer three questions; What is the Part Programming process for Wire and Arc Additive Manufacturing? What are the requirements on the Part Programming process? What software can be used for the Part Programming process? With a systematic review of publications on
APA, Harvard, Vancouver, ISO, and other styles
16

Wu, Hongjian. "Process Modeling and Planning for Robotic Cold Spray Based Additive Manufacturing." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA026.

Full text
Abstract:
La projection à froid (Cold spray, CS) est une technologie de dépôt de revêtement à l'état solide qui a récemment été appliquée comme processus de fabrication additive (Additive manufacturing, AM) pour fabriquer des composants individuels. Ce procédé potentiel attire de plus en plus de l'attention en raison de ses avantages : efficacité de formage élevée, basse température de travail et absence de changement de phase des matériaux. Ces avantages peuvent permettre à la projection à froid de former des objets de grand volume pour devenir un procédé de fabrication additive efficace. De nos jours,
APA, Harvard, Vancouver, ISO, and other styles
17

Hehr, Adam J. "Process Control and Development for Ultrasonic Additive Manufacturing with Embedded Fibers." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461153463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Juhasz, Michael J. "In and Ex-Situ Process Development in Laser-Based Additive Manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu15870552278358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Butt, Javaid. "A novel additive manufacturing process for the production of metal parts." Thesis, Anglia Ruskin University, 2016. http://arro.anglia.ac.uk/701001/.

Full text
Abstract:
The majority of additive manufacturing methods use different materials for the production of parts. The current methods employing powder metals have their limitations and are very expensive. This research presents a novel additive manufacturing process for the generation of modest and high quality metal parts. The procedure, referred to as Composite Metal Foil Manufacturing, is a blend of Laminated Object Manufacturing and soldering/brazing strategies. A calculated model of a machine in view of the new process has been outlined and its parts accepted for usefulness either by experimentation or
APA, Harvard, Vancouver, ISO, and other styles
20

Ghazizadeh, Ali, and Suraj Lakshminarasimhaiah. "Additive manufacturing and its impacts on manufacturing industries in the future concerning the sustainability of AM." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-56058.

Full text
Abstract:
With the emergence of modern technologies in manufacturing processes, companies need to adapt themselves to these technologies to stay competitive. Additive Manufacturing is one of the upcoming technologies which will bring major changes to the manufacturing process. AM (Additive Manufacturing) offers flexibility in design, production size, customization, etc., Even though there are numerous advantages from the implementation of AM technologies less than 2% of the manufacturing industries use them for production. The purpose of the thesis was to study the impact of AM on manufacturing industri
APA, Harvard, Vancouver, ISO, and other styles
21

Roberson, David Mathew III. "Sensor-based Online Process Monitoring in Advanced Manufacturing." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72911.

Full text
Abstract:
Effective quality improvement in the manufacturing industry is continually pursued. There is an increasing demand for real-time fault detection, and avoidance of destructive post-process testing. Therefore, it is desirable to employ sensors for in-process monitoring, allowing for real-time quality assurance. Chapter 3 describes the application of sensor based monitoring to additive manufacturing, in which sensors are attached to a desktop model fused deposition modeling machine, to collect data during the manufacturing process. A design of experiments plan is conducted to provide insight
APA, Harvard, Vancouver, ISO, and other styles
22

Francis, Zachary Ryan. "The Effects of Laser and Electron Beam Spot Size in Additive Manufacturing Processes." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/909.

Full text
Abstract:
In this work, melt pool size in process mapped in power-velocity space for multiple processes and alloys. In the electron beam wire feed and laser powder feed processes, melt pool dimensions are then related to microstructure in the Ti-6Al-4V alloy. In the electron beam wire feed process, work by previous authors that related prior beta grain size to melt pool area is extended and a control scheme is suggested. In the laser powder feed process, in situ thermal imaging is used to monitor melt pool length. Real time melt pool length measurements are used in feedback control to manipulate the res
APA, Harvard, Vancouver, ISO, and other styles
23

Paul, Ratnadeep. "Modeling and Optimization of Powder Based Additive Manufacturing (AM) Processes." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378113813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dasari, Vinod Kumar. "Machine Learning to Detect Anomalies in the Welding Process to Support Additive Manufacturing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176357.

Full text
Abstract:
Additive Manufacturing (AM) is a fast-growing technology in manufacturing industries. Applications of AM are spread across a wide range of fields. The aerospace industry is one of the industries that use AM because of its ability to produce light-weighted components and design freedom. Since the aerospace industry is conservative, quality control and quality assurance are essential. The quality of the welding is one of the factors that determine the quality of the AM components, hence, detecting faults in the welding is crucial. In this thesis, an automated system for detecting the faults in t
APA, Harvard, Vancouver, ISO, and other styles
25

Buga, Vlad, and Roysten Jason Dsouza. "In-process monitoring for Electron Beam Additive Manufacturing using an infrared camera system." Thesis, KTH, Industriell produktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245064.

Full text
Abstract:
Additive Manufacturing (AM) is being embraced at a rapid rate, mainly due to its advantages over conventional machining. These include the possibility to create parts with complex geometries, while minimizing waste. The exponential growth of the technology has brought about challenges in quality assurance, which has proved a key barrier to large scale adoption. Developing in-process monitoring techniques for AM is an ongoing challenge, and is still a long way off from the more established techniques developed for conventional machining. Previous research has brought about instances, where the
APA, Harvard, Vancouver, ISO, and other styles
26

Ahsan, AMM Nazmul. "Study on the Relationship between Process Plan and Resource Requirement in Additive Manufacturing." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28404.

Full text
Abstract:
Resource consumption in additive manufacturing (AM) is often tied with the physical attribute of the fabricated part. Thus, optimizing the processes plan for minimum part fabrication resource requirement is a matter of great interest. In this thesis, the hierarchical nature of the AM process plan steps are emphasized and both build direction and material deposition direction are optimized while considering the resource requirement. A novel combined two-step optimization methodology is presented to determine optimal build direction for the object and material deposition direction for layers whi
APA, Harvard, Vancouver, ISO, and other styles
27

Siraskar, Nandkumar S. "Adaptive Slicing in Additive Manufacturing Process using a Modified Boundary Octree Data Structure." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353155811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Thompson, John Ryan. "RELATING MICROSTRUCTURE TO PROCESS VARIABLES IN BEAM-BASED ADDITIVE MANUFACTURING OF INCONEL 718." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401699643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, Michael. "Transfer Learning Approach to Powder Bed Fusion Additive Manufacturing Defect Detection." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2324.

Full text
Abstract:
Laser powder bed fusion (LPBF) remains a predominately open-loop additive manufacturing process with minimal in-situ quality and process control. Some machines feature optical monitoring systems but lack automated analytical capabilities for real-time defect detection. Recent advances in machine learning (ML) and convolutional neural networks (CNN) present compelling solutions to analyze images in real-time and to develop in-situ monitoring. Approximately 30,000 selective laser melting (SLM) build images from 31 previous builds are gathered and labeled as either “okay” or “defect”. Then, 14 op
APA, Harvard, Vancouver, ISO, and other styles
30

Palmer, Andrew. "The Design and Development of an Additive Fabrication Process and Material Selection Tool." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3635.

Full text
Abstract:
In the Manufacturing Industry there is a subset of technologies referred to as Rapid Technologies which are those technologies that create the ability to compress the time to market for new products under development . Of this subset, Additive Fabrication (AF), or more commonly known as Rapid Prototyping (RP), acquires much attention due to its unique and futuristic approach to the production of physical parts directly from 3D CAD data, CT or MRI scans, or data from laser scanning systems by utilizing various techniques to consecutively generate cross-sectional layers of a given thickness upon
APA, Harvard, Vancouver, ISO, and other styles
31

Parrot, Jérôme. "W.A.M, Wire Additive Manufacturing : champs des possibles et utilisation raisonnée." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0047/document.

Full text
Abstract:
Dans la Fabrication Additive (FA), les objets en trois dimensions sont créés couche par couche en joignant chaque couche à la précédente. Pour les pièces métalliques, il existe trois méthodes principales : le lit de poudre, le dépôt de poudre et le dépôt de fil. Ce dernier utilise de manière optimale le matériau contrairement aux autres procédés, ce qui le rend très intéressant industriellement. En effet, avec la poudre, le rapport entre la poudre utilisée et la poudre fondue n’est pas égal à un, en opposition à l’utilisation de fil. Afin de garantir la bonne fusion du métal, plusieurs méthode
APA, Harvard, Vancouver, ISO, and other styles
32

Sheridan, Luke Charles. "An Adapted Approach to ProcessMapping Across Alloy Systems and Additive Manufacturing Processes." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1471861921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Brandemyr, Gabriella. "Powder bed additive manufacturing using waste products from LKAB's pelletization process : A pre-study." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75421.

Full text
Abstract:
This report is the result of a bachelor thesis project executed at Luleå University of Technology(LTU). The purpose of the project was to investigate the possibility to use the metal powder wasteproducts from LKAB’s pelletizing process for additive manufacturing as this would meaneconomic benefits for the sake of LKAB as well as environmental benefits.Two different powders were used in the experiments and were referred to as crush and dust. Theexperiments were made through the selective laser melting (SLM) method with varying laserparameters to observe their effect. These included the laser po
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Fangjin. "Optimising additive manufacturing for fine art sculpture and digital restoration of archaeological artefacts." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14886.

Full text
Abstract:
Additive manufacturing (AM) has shown itself to be beneficial in many application areas, including product design and manufacture, medical models and prosthetics, architectural modelling and artistic endeavours. For some of these applications, coupling AM with reverse engineering (RE) enables the utilisation of data from existing 3D shapes. This thesis describes the application of AM and RE within sculpture manufacture, in order to optimise the process chains for sculpture reproduction and relic conservation and restoration. This area poses particular problems since the original artefacts can
APA, Harvard, Vancouver, ISO, and other styles
35

Snelling, Dean Andrew Jr. "A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51606.

Full text
Abstract:
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates p
APA, Harvard, Vancouver, ISO, and other styles
36

Snelling, Jr Dean Andrew. "A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/51606.

Full text
Abstract:
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates p
APA, Harvard, Vancouver, ISO, and other styles
37

Scime, Luke Robson. "Methods for the Expansion of Additive Manufacturing Process Space and the Development of In-Situ Process Monitoring Methodologies." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1183.

Full text
Abstract:
Metal Additive Manufacturing (AM) promises an era of highly flexible part production, replete with unprecedented levels of design freedom and inherently short supply chains. But as AM transitions from a technology primarily used for prototyping to a viable manufacturing method, many challenges must first be met before these dreams can become reality. In order for machine users to continue pushing the design envelope, process space must be expanded beyond the limits currently recommended by the machine manufacturers. Furthermore, as usable process space expands and demands for reduced operator
APA, Harvard, Vancouver, ISO, and other styles
38

Gnanasekaran, Balachander. "A Smoothed Particle Hydrodynamics (SPH) Procedure for Simulating Cold Spray Process - an Additive Manufacturing Process without Heat Supply." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1544099572854187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fallon, Jake Jeffrey. "Structure-Process-Property Relationships of Cellulose Nanocrystal Thermoplastic Urethane Composites." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/103053.

Full text
Abstract:
Nanomaterials are becoming increasingly prevalent in final use products as we continue to improve our understanding of their structure and properties and optimize their processing. The useful applications for these materials extend from new drug delivery systems to improved materials for various transport industries and many more. Nanoscale materials which are commonly used include but are not limited to carbon nanotubes, graphene, silica, nanoclays, and cellulose nanocrystals. The literature presented herein aims to investigate structure-process-property relationships of cellulose nanocrystal
APA, Harvard, Vancouver, ISO, and other styles
40

Obidigbo, Chigozie Nwachukwu. "A Numerical and Experimental Investigation of Steady-State and Transient Melt Pool Dimensions in Additive Manufacturing of Invar 36." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503493366168339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Habib, MD Ahasan. "Designing Bio-Ink for Extrusion Based Bio-Printing Process." Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/32045.

Full text
Abstract:
Tissue regeneration using in-vitro scaffold becomes a vital mean to mimic the in-vivo counterpart due to the insufficiency of animal models to predict the applicability of drug and other physiological behavior. Three-dimensional (3D) bio-printing is an emerging technology to reproduce living tissue through controlled allocation of biomaterial and cell. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material in bio-printing process. However, repeatable scaffold structure with good printability and shape fidelity is a challenge with hydrogel material due
APA, Harvard, Vancouver, ISO, and other styles
42

Prabhu, Avinash W. "Improving Fatigue Life of LENS Deposited Ti-6Al-4V through Microstructure and Process Control." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388768129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Fisher, Brian A. "Part Temperature Effects in Powder Bed Fusion Additive Manufacturing of Ti-6Al-4V." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1154.

Full text
Abstract:
To ensure the widespread adoption of metal Additive Manufacturing (AM) processes, a complete understanding of the interactions between process variables is necessary. The process variables of beam power, beam velocity, deposition geometry, and beam diameter have been shown in prior works to have major effects on resultant melt pool and solidification characteristics, but this list is incomplete. Without accounting for part temperatures prior to deposition, unintended outcomes may result. In the current work, Ti-6Al-4V is studied in the Powder Bed Fusion (PBF) processes to gain an in-depth unde
APA, Harvard, Vancouver, ISO, and other styles
44

Rodriguez, Ricardo Xavier. "Characterization of direct print additive manufacturing process for 3D build of a carbon nanostructure composite." Thesis, The University of Texas at El Paso, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1564696.

Full text
Abstract:
<p> This project is a focus on characterizing the process for actualizing three dimensional structures out of a carbon nanostructure composite via a direct print additive manufacturing process. Manufacturing parts additively enables for realization of geometrically complex shapes that often times cannot be manufactured any other way. The specificity of a material's properties have to be such, that the processing method can precisely place and bond material to itself in a highly repeatable manner. Commercial materials for additive manufacturing are have been optimized with these goals in mind a
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Shuai. "Investigation of FEM numerical simulation for the process of metal additive manufacturing in macro scale." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI048/document.

Full text
Abstract:
La fabrication additive (FA) est devenue une nouvelle alternative pour la fabrication des pièces dans l'industrie. Cependant, il existe encore des limites pour ce procédé, en particulier la forme finale défavorable et les propriétés macroscopiques indésirables des pièces métalliques construites dans les systèmes de FA. La distorsion ou la fissure due à la contrainte résiduelle de ces pièces pose généralement de graves problèmes pour certains types de technologie de la FA métallique. Dans un système de FA, la qualité finale d'une pièce métallique dépend de nombreux paramètres de procédé, qui so
APA, Harvard, Vancouver, ISO, and other styles
46

Segerstark, Andreas. "Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics." Licentiate thesis, Högskolan Väst, Avd för tillverkningsprocesser, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-8796.

Full text
Abstract:
Additive manufacturing (AM) is a general name used for production methodswhich have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study.Laser metal deposition using powder as an additive (LMD-p) is an AM processwhich uses a multi-axis computer numerical control (CNC) machine or robot toguide the laser beam and powder nozzle over the depositio
APA, Harvard, Vancouver, ISO, and other styles
47

Berglund, Lina, Filip Ivarsson, and Marcus Rostmark. "Crucial Parameters for Additive Manufacturing of Metals : A Study in Quality Improvement." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254785.

Full text
Abstract:
Production by Additive Manufacturing creates opportunities to make customized products in small batches with less material than in traditional manufacturing. It is more sustainable and suitable for niche products, but entails new production demands to ensure quality. The goal of this study is to define the most crucial parameters when creating Additive Manufactured products in metal and suggest tools for quality improvement. This is done by analysing earlier studies and evaluating the standard production procedures for manufacturing by Selective Laser Melting. The results from this study state
APA, Harvard, Vancouver, ISO, and other styles
48

Chatham, Camden Alan. "Property-Process-Property Relationships in Powder Bed Fusion Additive Manufacturing of Poly(phenylene sulfide): A Case Study Toward Predicting Printability from Polymer Properties." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/100053.

Full text
Abstract:
Powder bed fusion (PBF) is one of seven technology modalities categorized under the term additive manufacturing (AM). Beyond the advantages of fabricating complex geometries and the "tool-less manufacturing" paradigm common to all types of AM, polymer PBF shows potential for significant industrial relevance through exploiting the technique's characteristic powder-filled bed (a.k.a. build piston) to utilize the full printer volume for batch-style production. Although PBF should be a suitable processing technique for all semi-crystalline polymers, the polyamide family currently occupies around 9
APA, Harvard, Vancouver, ISO, and other styles
49

Johansson, Kenny. "Process and microstructure development of a LPBF produced maraging steel." Thesis, Karlstads universitet, Avdelningen för maskin- och materialteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-79004.

Full text
Abstract:
Additive manufacturing (AM) has the possibility of producing complex-shaped components which can not be produced by conventional manufacturing methods. This gives the opportunity for designers to freely think outside the design spectra which is otherwise limited by conventional manufacturing methods. AM of metal has rapidly been developed for the last three decades, and they now are reaching industrial acceptance levels, metal feedstock for use in AM is also rapidly growing. AM of metals is especially of interest for the tooling industry. The design freedom which AM offers the tooling manufact
APA, Harvard, Vancouver, ISO, and other styles
50

D'Amico, Tone Pappas. "Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive Manufacturing." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/572.

Full text
Abstract:
Increased interest in and use of additive manufacturing has made it an important component of advanced manufacturing in the last decade. Material Extrusion Additive Manufacturing (MatEx) has seen a shift from a rapid prototyping method harnessed only in parts of industry due to machine costs, to something widely available and employed at the consumer level, for hobbyists and craftspeople, and industrial level, because falling machine costs have simplified investment decisions. At the same time MatEx systems have been scaled up in size from desktop scale Fused Filament Fabrication (FFF) systems
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!