Academic literature on the topic 'Adenylate cyclase. Proteins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adenylate cyclase. Proteins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Adenylate cyclase. Proteins"

1

ROELOFS, Jeroen, Helena SNIPPE, Reinhard G. KLEINEIDAM, and Peter J. M. Van HAASTERT. "Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase." Biochemical Journal 354, no. 3 (March 8, 2001): 697–706. http://dx.doi.org/10.1042/bj3540697.

Full text
Abstract:
The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyosteliumdiscoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase.
APA, Harvard, Vancouver, ISO, and other styles
2

Dessauer, Carmen W., Bruce A. Posner, and Alfred G. Gilman. "Visualizing Signal Transduction: Receptors, G-Proteins, and Adenylate Cyclases." Clinical Science 91, no. 5 (November 1, 1996): 527–37. http://dx.doi.org/10.1042/cs0910527.

Full text
Abstract:
1. The first glimpses of heterotrimeric G-proteins came with the discoveries of the ubiquitous adenylate cyclase activator, Gs, and the specialized retinal cGMP phosphodiesterase activator, Gt or transducin. The model that evolved for regulation of adenylate cyclase activity by G-proteins soon proved to be a general paradigm for a large number of signalling pathways. Although many different G-proteins interact with a diverse array of receptors and effectors, each is composed of a guanine-nucleotide-binding α-subunit and a tightly associated complex of a β- and a γ-subunit. 2. Receptors catalyse the activation of G-proteins by promoting exchange of GDP for GTP, while G-proteins catalyse their own deactivation as a result of their intrinsic GTPase activity. Crystallographic analysis has described several of the various conformational states that G-proteins undergo as they are activated and deactivated and has provided great insight into the kinetic models of G-protein-mediated signal transduction. 3. The regulation of adenylate cyclase has proven to be intriguing and complex. Gsα activates all forms of mammalian adenylate cyclase; other G-proteins (Gi, Go and Gz) inhibit certain isoforms of the enzyme. The discovery of new isoforms of adenylate cyclase has revealed synergistic and conditional mechanisms of regulation. These include activation or inhibition by the G-protein βγ-subunit complex, activation by Ca2+-calmodulin, and phosphorylation by protein kinases. The large number of receptors, G-proteins and adenylate cyclases provides a complex signalling network that integrates and interprets a multitude of convergent inputs.
APA, Harvard, Vancouver, ISO, and other styles
3

SHENOY, Avinash R., Nandini P. SREENATH, Mohana MAHALINGAM, and Sandhya S. VISWESWARIAH. "Characterization of phylogenetically distant members of the adenylate cyclase family from mycobacteria: Rv1647 from Mycobacterium tuberculosis and its orthologue ML1399 from M. leprae." Biochemical Journal 387, no. 2 (April 5, 2005): 541–51. http://dx.doi.org/10.1042/bj20041040.

Full text
Abstract:
Analysis of the genome sequence of Mycobacterium tuberculosis H37Rv has identified 16 genes that are similar to the mammalian adenylate and guanylate cyclases. Rv1647 was predicted to be an active adenylate cyclase but its position in a phylogenetically distant branch from the other enzymes characterized so far from M. tuberculosis makes it an interestingly divergent nucleotide cyclase to study. In agreement with its divergence at the sequence level from other nucleotide cyclases, the cloning, expression and purification of Rv1647 revealed differences in its biochemical properties from the previously characterized Rv1625c adenylate cyclase. Adenylate cyclase activity of Rv1647 was activated by detergents but was resistant to high concentrations of salt. Mutations of substrate-specifying residues to those present in guanylate cyclases failed to convert the enzyme into a guanylate cyclase, and did not alter its oligomeric status. Orthologues of Rv1647 could be found in M. leprae, M. avium and M. smegmatis. The orthologue from M. leprae (ML1399) was cloned, and the protein was expressed, purified and shown biochemically to be an adenylate cyclase, thus representing the first adenylate cyclase to be described from M. leprae. Importantly, Western-blot analysis of subcellular fractions from M. tuberculosis and M. leprae revealed that the Rv1647 and ML1399 gene products respectively were expressed in these bacteria. Additionally, M. tuberculosis was also found to express the Rv1625c adenylate cyclase, suggesting that multiple adenylate cyclase proteins may be expressed simultaneously in this organism. These results suggest that class III cyclase-like gene products probably have an important role to play in the physiology and perhaps the pathology of these medically important bacteria.
APA, Harvard, Vancouver, ISO, and other styles
4

Nocero, M., T. Isshiki, M. Yamamoto, and C. S. Hoffman. "Glucose repression of fbp1 transcription of Schizosaccharomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8)." Genetics 138, no. 1 (September 1, 1994): 39–45. http://dx.doi.org/10.1093/genetics/138.1.39.

Full text
Abstract:
Abstract In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, adenylate cyclase enzymatic activity is regulated by heterotrimeric guanine nucleotide-binding proteins (G proteins). In the budding yeast Saccharomyces cerevisiae, adenylate cyclase enzymatic activity is regulated by monomeric, guanine nucleotide-binding Ras proteins. We show here that git8 is identical to the gpa2 gene that encodes a protein homologous to the alpha subunit of a G protein. Mutations in two additional genes, git3 and git5 are suppressed by gpa2+ in high copy number. Furthermore, a mutation in either git3 or git5 has an additive effect in strains deleted for gpa2 (git8), as it significantly increases expression of an fbp1-lacZ reporter gene. Therefore, git3 and git5 appear to act either in concert with or independently from gpa2 (git8) to regulate adenylate cyclase activity.
APA, Harvard, Vancouver, ISO, and other styles
5

Mitts, M. R., J. Bradshaw-Rouse, and W. Heideman. "Interactions between adenylate cyclase and the yeast GTPase-activating protein IRA1." Molecular and Cellular Biology 11, no. 9 (September 1991): 4591–98. http://dx.doi.org/10.1128/mcb.11.9.4591.

Full text
Abstract:
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.
APA, Harvard, Vancouver, ISO, and other styles
6

Mitts, M. R., J. Bradshaw-Rouse, and W. Heideman. "Interactions between adenylate cyclase and the yeast GTPase-activating protein IRA1." Molecular and Cellular Biology 11, no. 9 (September 1991): 4591–98. http://dx.doi.org/10.1128/mcb.11.9.4591-4598.1991.

Full text
Abstract:
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.
APA, Harvard, Vancouver, ISO, and other styles
7

Ros, M., J. K. Northup, and C. C. Malbon. "Adipocyte G-proteins and adenylate cyclase. Effects of adrenalectomy." Biochemical Journal 257, no. 3 (February 1, 1989): 737–44. http://dx.doi.org/10.1042/bj2570737.

Full text
Abstract:
Steroid hormones modulate the ability of cells to respond to hormones that act via cyclic AMP. In adipocytes of adrenalectomized rats, cyclic AMP accumulation and lipolysis in response to adrenaline are attenuated. However, the mechanism(s) of these effects are poorly understood. The effects of altered glucocorticoid status in vivo on the steady-state amounts of components of the hormone-sensitive adenylate cyclase were analysed in rat adipocytes. beta-Adrenergic receptors were analysed by using radioligand binding and immunoblotting with an anti-receptor antiserum. Neither the amount of radioligand binding nor the amount of beta-adrenergic-receptor peptide (Mr 67,000) was altered by adrenalectomy, whereas treatment of adrenalectomized rats with dexamethasone was found to increase both parameters by more than 25% with respect to the control. Forskolin-stimulated adenylated cyclase activity was unchanged in membranes isolated from adipocytes of adrenalectomized rats, but was decreased (50%) in those from dexamethasone-treated rats. The alpha-subunit of Gs was probed by using cholera-toxin-catalysed ADP-ribosylation. Immunoblotting was used to analyse the steady-state amounts of G-protein beta-subunits (beta-G35/36). Adrenalectomy was associated with decreases in the steady-state amounts of alpha-Gs (30%) and beta-G35/36 (50%). Dexamethasone treatment of adrenalectomized animals partially restored the lipolytic response of adipocytes to adrenaline and the amounts of alpha-Gs, increased the amounts of beta-G35/36 subunits from 50% to 150% of control values, increased beta-adrenergic receptors by more than 25% and decreased adenylate cyclase activity (50%). These results suggest that the steady-state amounts of components of hormone-sensitive adenylate cyclase are differentially regulated by glucocorticoids.
APA, Harvard, Vancouver, ISO, and other styles
8

Inhorn, L., JW Fleming, D. Klingberg, TG Gabig, and HS Boswell. "Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase." Blood 71, no. 4 (April 1, 1988): 1003–11. http://dx.doi.org/10.1182/blood.v71.4.1003.1003.

Full text
Abstract:
Abstract Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3- independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the “differentiation” agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G- proteins appear to play a secondary role.
APA, Harvard, Vancouver, ISO, and other styles
9

Inhorn, L., JW Fleming, D. Klingberg, TG Gabig, and HS Boswell. "Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase." Blood 71, no. 4 (April 1, 1988): 1003–11. http://dx.doi.org/10.1182/blood.v71.4.1003.bloodjournal7141003.

Full text
Abstract:
Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3- independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the “differentiation” agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G- proteins appear to play a secondary role.
APA, Harvard, Vancouver, ISO, and other styles
10

Marshall, M. S., J. B. Gibbs, E. M. Scolnick, and I. S. Sigal. "An adenylate cyclase from Saccharomyces cerevisiae that is stimulated by RAS proteins with effector mutations." Molecular and Cellular Biology 8, no. 1 (January 1988): 52–61. http://dx.doi.org/10.1128/mcb.8.1.52.

Full text
Abstract:
Conservative amino acid substitutions were introduced into the proposed effector regions of both mammalian Ha-ras (residues 32 to 40) and Saccharomyces cerevisiae RAS2 (residues 39 to 47) proteins. The RAS2[Ser 42] protein had reduced biological function in the yeast S. cerevisiae. A S. cerevisiae strain with a second-site suppressor mutation, SSR2-1, was isolated which could grow on nonfermentable carbon sources when the endogenous RAS2 protein was replaced by the RAS2[Ser 42] protein. The SSR2-1 mutation was mapped to the structural gene for adenylate cyclase (CYR1), and the gene containing SSR2-1 was cloned and sequenced. SSR2-1 corresponded to a point mutation that would create an amino acid substitution of a tyrosine residue for an aspartate residue at position 1547. The SSR2-1 gene encodes an adenylate cyclase that is dependent on ras proteins for activity, but is stimulated by Ha-ras and RAS2 mutant proteins that are unable to stimulate wild-type adenylate cyclase.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Adenylate cyclase. Proteins"

1

Lam, Wai Kwan. "Investigation of interaction between solube adenylyl cyclase and p34SEI-1 /." View abstract or full-text, 2010. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202010%20LAM.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

García-Jiménez, Angela. "G-proteins and adenylyl cyclase in Alzheimer's disease postmortem brain /." Stockholm : [Karolinska institutets bibl.], 2002. http://diss.kib.ki.se/2002/91-7349-103-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Halim, Kaha Desi, and 彭綺琼. "Protein phosphorylation in PC-12 cells induced by pituitary adenylate cyclase activating polypeptide 38." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31220861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Desi, Halim Kaha. "Protein phosphorylation in PC-12 cells induced by pituitary adenylate cyclase activating polypeptide 38 /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20793029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wadman, Isobel A. "The regulation of human platelet adenylate cyclase by ATP and guanine nucleotide binding proteins." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coyle, Donna L. (Donna Lynn). "Modification of Cardiac Membrane Gsα by an Endogenous Arginine-Specific Mono-Adp-Ribosyltransferase." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc332726/.

Full text
Abstract:
The mechanism by which nicotinamide adenine dinucleotide (NAD) stimulates the activity of adenylate cyclase (AC) in canine plasma membrane has been studied. Using [3 2P]-NAD, the activation by NAD was correlated with the radiolabeling of the stimulatory guanosine triphosphate (GTP) binding protein Gsa. Further characterization demonstrated that the modification occurred only in the presence of G-protein activators and that arginine residue(s) were modified by ADP-ribose by the action of a mono-ADP-ribosyltransferase. Inhibitors of the transferase blocked both the modification of Gsa and the activation of AC. Collectively, these studies suggest that ADP-ribosylation of Gsa by an endogenous mono-ADP-ribosyltransferase may regulate cardiac AC.
APA, Harvard, Vancouver, ISO, and other styles
7

Baragli, Alessandra. "Assembly and function of multimeric adenylyl cyclase signalling complexes." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111888.

Full text
Abstract:
G protein coupled receptors, G proteins and their downstream effectors adenylyl cyclase (ACs) were thought to transiently interact at the plasma membrane by random collisions following agonist stimulation. However a growing number of studies have suggested that a major revision of this paradigm was necessary to account for signal transduction specificity and efficiency. The revised model suggests that signalling proteins are pre-assembled as stable macromolecular complexes together with modulators of their activity prior to receptor activation. How and where these signalling complexes form and the mechanisms governing their assembly and maintenance are not completely understood yet. Initially, we addressed this question by exploring AC2 interaction with beta2-adrenergic receptors (beta2ARs) and heterotrimeric G proteins as parts of a pre-assembled signalling complex. Using a combination of biophysical and biochemical techniques, we showed that AC2 interacts with them before it is trafficked to the cell surface in transfected HEK-293 cells. These interactions are constitutive and do not require stimulation by receptor agonists. Furthermore, the use of dominant-negative Rab/Sar monomeric GTPases and dominant-negative heterotrimeric G protein subunits proved that AC2/beta2AR and AC2/Gbetagamma interactions occurred in the ER as measured using both BRET and co-immunoprecipitation experiments, while interaction of the Galpha subunits with the above complexes occurred at a slightly later stage. Both Galpha and Gbetagamma played a role in stabilizing these complexes. Our data also demonstrated that stimulation of AC was still possible when the complex remained on the inside of the cell but was reduced when the GalphaS/AC2 interaction was blocked, suggesting that the addition of the GalphaS subunit was required to render the nascent complexes functional prior to trafficking to proper sites of action. Next, we tackled the issue of higher order assembly of effectors and G proteins, using two different AC isoforms and GalphaS as a model. We demonstrated that AC2 can form heterodimers with AC5 through direct molecular interaction in unstimulated HEK-293 cells. AC2/5 heterodimerization resulted in a reduced total level of AC2 expression, which affected cellular accumulation of cAMP upon forskolin stimulation. The AC2/5 complex was stable in presence of receptor or forskolin stimulation. We provided evidence that co-expression with GalphaS increased the affinity of AC2 for AC5 as monitored by BRET. In particular, the complex formed by AC2/5 lead to synergistic accumulation of cAMP in presence of GalphaS and forskolin, with respect to either of the parent AC isoforms themselves. Finally, we also showed that this complex can be detected in native tissues, as AC2 and AC5 could be co-immunoprecipiated from lysates of mouse heart. Taken together, we provided evidence for stable formation of signalling complexes involving receptor/G proteins/adenylyl cyclase or G proteins/heterodimeric adenylyl cyclases and that G proteins play a crucial role for their assembly and function.
APA, Harvard, Vancouver, ISO, and other styles
8

Nielsen, Mark David. "Regulation of two subfamilies of adenylyl cyclase by Gi-coupled receptors : a possible role during cAMP-dependent synaptic plasticity in the Hippocampus /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/6247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahlapuu, Riina. "Signalling of galanin and amyloid precursor protein through adenylate cyclase /." Online version, 2004. http://dspace.utlib.ee/dspace/bitstream/10062/1245/5/Mahlapuu.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dimmock, Simon Andrew. "The role of adenylate cyclase-associated protein in higher plant development." Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2010/.

Full text
Abstract:
The Actin Cytoskeleton is essential for Eukaryotic life and is involved in a diverse range of cellular functions. Cyclase Associated Protein (CAP) was first identified in yeast as a regulator of the CYR1 Adenylate Cyclase. Subsequently CAP family members have been identified in every Eukaryotic kingdom and have also been implicated in the regulation of Actin dynamics. It has been proposed that the CAP family promotes the recycling of Actin monomers by cooperating with members of the Profilin and Actin Depolymerising Factor families. This study represents an attempt to investigate the function and developmental role of AtCAP1, an Arabidopsis member of the CAP family. Arabidopsis thaliana is widely used as a model for higher plant development due to its small sequenced genome and the availability of a wide variety of mutants. The elimination of AtCAP1 expression results in a distinct developmental phenotype. Early characteristics include the absence of the root hair collar, reduced root hair initiation and extension. Later onset phenotypes include reduced plant height and a severe reduction in pollen viability. In vivo studies of the CAP-deficient cytoskeleton reveal a distinct loss of fine filamentous Actin and the appearance of dense Actin aggregates. Cell expansion is also significantly reduced. The interaction between AtCAP1 and F-Actin is demonstrated in vitro by a biochemical interaction study and a filament bundling activity is suggested. The multimerisation of AtCAP1 and its interaction with other components of the Actin Cytoskeleton are demonstrated via Yeast Two Hybrid interactions. It is concluded that AtCAP1 is essential for the organisation of the plant cells F-Actin network and that this in turn is required for correct growth and development. It is hypothesised that AtCAP1 function is mediated by regulating the interaction between F-Actin and other Actin-interacting proteins.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Adenylate cyclase. Proteins"

1

Kelly, James Anthony. Aspects of signal transduction in bovine lymphatic smooth muscle cells. Dublin: University College Dublin, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xia, Zhengui. Regulatory properties of the mammalian adenylyl cyclases. Austin [Tex.]: R.G. Landes Company, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Johnson Roger, and Corbin Jackie D, eds. Adenylyl cyclase, G proteins, and guanylyl cyclase. San Diego: Academic Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adenylyl cyclase, G proteins, and guanylyl cyclase. San Diego: Academic Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adenylyl Cyclase, G Proteins, and Guanylyl Cyclase, Volume 195 (Methods in Enzymology). Academic Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, Ulrike. Secondary Messenger Systems in PTSD. Edited by Israel Liberzon and Kerry J. Ressler. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190215422.003.0014.

Full text
Abstract:
Second messengers such as cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), inositoltriphosphate, and diacylglycerol (DAG) are a prerequisite for the signal transduction of extracellular receptors. The latter are central for cellular function and thus are implicated in the pathobiology of a variety of disorders, such as schizophrenia, bipolar disorder, major depression, and post-traumatic stress disorder (PTSD). This chapter focuses on the involvement of second messenger molecules and their regulators as direct targets in human and animal PTSD and aims to stimulate the underdeveloped research in this field. The synthesis of literature reveals that second messengers clearly play a central role in PTSD-associated brain regions and processes. In particular, pituitary adenylate cyclase-activating polypeptide (PACAP), an important regulator of intracellular cAMP levels, as well as protein kinase c, the major target of DAG, belong to the hitherto most promising PTSD candidate molecules directly involved in second messenger signaling.
APA, Harvard, Vancouver, ISO, and other styles
7

Studies on the mechanism of action of "new pressor protein": Bradykinin, pituitary adenylate cyclase-activating polypeptide and adrenal catecholamines as possible mediators of its cardiovascular effects. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Adenylate cyclase. Proteins"

1

Arinze, Ifeanyi J., and Yumiko Kawai. "G-Proteins in Neonatal Liver: Ontogeny and Relationship to Activation of Adenylate Cyclase." In Endocrine and Biochemical Development of the Fetus and Neonate, 83–94. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-9567-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ishibashi, S., T. Kurokawa, T. Dan’ura, and A. Yamashita. "Changes in Apparent Functions of Component Proteins of Adenylate Cyclase System in Rat Brain by Drugs Acting on the Central Nervous System." In Neuroreceptors and Signal Transduction, 287–99. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-5971-6_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jakobs, Karl H., Peter Gierschik, Rüdiger Grandt, Rainer Marquetant, and Ruth H. Strasser. "Signal Transduction by the Adenylate Cyclase System." In Signal Transduction and Protein Phosphorylation, 55–63. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0166-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wadman, I. A., R. W. Farndale, and B. R. Martin. "Conditions Favouring Phosphorylation Inhibit the Activation of Adenylate Cyclase in Human Platelet Membranes." In Cellular Regulation by Protein Phosphorylation, 271–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75142-4_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murphy, Gregory J., Michael J. O. Wakelam, and Miles D. Houslay. "Desensitization of Glucagon-Stimulated Adenylate Cyclase is Mediated by Stimulation of Inositol Phospholipid Metabolism." In Signal Transduction and Protein Phosphorylation, 289–92. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0166-1_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gilbert, E. M., and M. R. Bristow. "The β-Adrenergic Receptor-G Protein-Adenylate Cyclase Complex in Idiopathic Dilated Cardiomyopathy." In Advances in Cardiomyopathies, 235–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83760-9_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Zhi-hui, Christina Schilde, and Pauline Schaap. "Cyclic di-GMP Activates Adenylate Cyclase A and Protein Kinase A to Induce Stalk Formation in Dictyostelium." In Microbial Cyclic Di-Nucleotide Signaling, 563–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33308-9_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yan, Kun, and Mark M. Rasenick. "Cytoskeletal Participation in the Signal Transduction Process: Tubulin G Protein Interactions in the Regulation of Adenylate Cyclase." In Biology of Cellular Transducing Signals, 163–72. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0559-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clo, Carlo, Benedetta Tantini, Pietro Sacchi, and Claudio M. Caldarera. "Spermine Inhibition of Basal and Stimulated Adenylate Cyclase is Mediated by the Inhibitory GTP-Binding Protein (Gi)." In Progress in Polyamine Research, 535–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5637-0_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yoshimasa, Takaaki, Michel Bouvier, Jeffrey L. Benovic, Nourdine Amlaiky, Robert J. Lefkowitz, and Marc G. Caron. "Regulation of the Adenylate Cyclase Signalling Pathway: Potential Role for the Phosphorylation of the Catalytic Unit by Protein Kinase A and Protein Kinase C." In Molecular Biology of Brain and Endocrine Peptidergic Systems, 123–39. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8801-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Adenylate cyclase. Proteins"

1

Jakobs, K. H., P. Gierschik, and R. Grandt. "THE ROLE OF GTP-BINDING PROTEINS EXHIBITING GTPase ACTIVITY IN PLATELET ACTIVATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644773.

Full text
Abstract:
Activation of platelets by agonists acting via cell surface-located receptors apparently involves as an early event in transmembrane signalling an interaction of the agonist-occupied receptor with a guanine nucleotide-binding regulatory protein (G-protein). The activated G-protein, then, transduces the information to the effector molecule, being responsible for the changes in intracellular second messengers. At least two changes in intracellular signal molecules are often found to be associated with platelet activation by agonists, i.e., increases in inositol trisphosphate and diacylglycerol levels caused by activation of a polyphosphoinositide-specific phospholipase C and decrease in cyclic AMP concentration caused by inhibition of adenylate cyclase.Both actions of platelet-activating agents apparently involve G-proteins as transducing elements. Generally, the function of a G-protein in signal transduction can be measured either by its ability to regulate the activity of the effector molecule (phospholipase C or adenylate cyclase) or the binding affinity of an agonist to its specific receptor or by the abitlity of the G-protein to bind and hydrolyze GTP or one of its analogs in response to agonist-activated receptors. Some platelet-activating agonists (e.g. thrombin) can cause both adenylate cyclase inhibition and phospholipase C activation, whereas others induce either inhibition of adenylate cyclase (e.g. α2-adrenoceptor agonists) or activation of phospholipase C (e.g. stable endoperoxide analogs) . It is not yet known whether the simultaneous activation of two signal transduction systems is due to activation of two separate G-proteins by one receptor, to two distinct receptors activating each a distinct G-protein or to activation of two effector molecules by one G-protein.For some of the G-proteins, rather specific compounds are available causing inactivation of their function. In comparison to Gs, the stimulatory G-protein of the adenylate cyclase system, the adenylate cyclase inhibitory Gi-protein is rather specifically inactivated by ADP-ribosylation of its a-subunit by pertussis toxin, “unfortunately” not acting in intact platelets, and by SH-group reactive agents such as N-ethylmaleimide and diamide, apparently also affecting the Giα-subunit. Both of these treatments completely block α2-adrenoceptor-induced GTPase stimulation and adenylate cyclase inhibition and also thrombin-induced inhibition of adenylate cyclase. In order to know whether the G-protein coupling receptors to phospholipase C is similar to or different from the Gi-protein, high affinity GTPase stimulation by agents known to activate phospholipase C was evaluated in platelet membranes. The data obtained indicated that GTPase stimulation by agents causing both adenylate cyclase inhibition and phospholipase C activation is reduced, but only partially, by the above mentioned Gi-inactivating agents, while stimulation of GTPase by agents stimulating only phospholipase C is not affected by these treatments. These data suggested that the G-protein regulating phospholipase C activity in platelet membranes is different from the Gi-protein and may also not be a substrate for pertussis toxin. Measuring thrombin stimulation of inositol phosphate and diacylglycerol formation in saponin-permeabilized platelets, apparently contradictory data were reported after pertussis toxin treatment, being without effect or causing even an increase in thrombin stimulation of inositol phosphate formation (Lapetina: BBA 884, 219, 1986) or being inhibitory to thrombin stimulation of diacylglycerol formation (Brass et al.: JBC 261, 16838, 1986). These data indicate that the nature of the phospholipase C-related G-protein(s) is not yet defined and that their elucidation requires more specific tools as well as purification and reconstitution experiments. Preliminary data suggest that some antibiotics may serve as useful tools to characterize the phospho-lipase-related G-proteins. The possible role of G-protein phosphorylation by intracellular signal molecule-activated protein kinases in attenuation of signal transduction in platelets will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Brass, L. F., D. R. Manning, and M. J. Woolkalis. "G PROTEIN REGULATORS OF PHOSPHOLIPASE C AND ADENYLATE CYCLASE IN PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644630.

Full text
Abstract:
The hydrolysis of polyphosphoinositides (PI) by phospholipase C during platelet activation produces two key intracellular messengers, inositol triphosphate and diacylglycerol. This process is thought to be regulated by a guanine nucleotide binding protein referred to as Gp. Although the evidence that Gp exists is compelling, to date it has not been isolated. Uncertainty about its identity has been compounded by variations between tissues in the susceptibility of Gp to pertussis toxin and by reconstitution studies which show that pertussis toxin-inhibited PI hydrolysis can be restored by purified Gi, the pertussis toxin-sensitive G protein which inhibits adenylate cyclase. Therefore, it remains unclear whether Gp represents a new G protein or a second role for Gj. When platelets permeabilized with saponin were incubated with pertussis toxin and 32P-NAD, a single 42 kDa protein was 32P-ADP-ribosylated which co-migrated with the purified a subunit of Gi. Preincubating the platelets with an agonist inhibited labeling of this protein by dissociating the G protein into subunits. The extent of inhibition correlated with the number of toxin-sensitive functions caused by the agonist. Labeling was abolished by thrombin, which inhibited cAMP formation and caused toxin-inhibitable PI hydrolysis. Labeling was partially inhibited by vasopressin and platelet activating factor, which caused toxin-inhibitable PI hydrolysis, but had no effect on cAMP formation and by epinephrine, which inhibited cAMP formation, but did not cause PI hydrolysis. Labeling was unaffected by the TxA2 analog U46619, which neither caused toxin-sensitive PI hydrolysis nor inhibited cAMP formation. These observations suggest that the 42 kDa band may contain a subunits from both Gp and Gi and, in fact, 2D electrophoresis resolved the 42 kDa protein band into two proteins with distinct pi. However, those agonists linked functionally only to Gp or only to Gi decreased the labeling of both proteins. Therefore, our data suggest (1) that Gj and Gp are the same protein and (2) that whether a aiven platelet agonist affects adenylate cyclase or phospholipase C or both depends upon factors extrinsic to the G protein.
APA, Harvard, Vancouver, ISO, and other styles
3

Lapetina, Eduardo G. "THE ROLE OF INOSITIDES, PHOSPHOLIPASE C AND G-PROTEINS IN RECEPTOR TRANSDUCTION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644775.

Full text
Abstract:
It is now widely recognized that the activation of phospholipase C by specific agonists leads to the formation of two second messengers: (1) inositol trisphosphate, which releases Ca2+ from the endoplasmic reticulum to the cytosol and (2) 1,2- diacylglycerol, which stimulates protein kinase C. In the past few years, GTP-binding proteins have been associated with the regulation of phospholipase C. However, the identity of the GTP-binding protein involved and the type of association with phospholipase C is not yet known. It is now recognized that there are two types of phospholipase C enzymes: (a) a soluble enzyme that has been characterized in several tissues and does not preferentially hydrolyze polyphospholinositides and (b) membrane-bound enzymes that are coupled to the receptors, specifically hydrolyzing polyphosphoinositides and activated by membrane guanine nucleotide-binding proteins. Recent reports have tried to assess the involvement of GTP-binding proteins in the agonist-induced stimulation of phospholipase C, and various related aspects have been reported. These are concerned with: (a) detection of various GTP-binding proteins in platelets, (b) the effects of known inhibitors of GTP-binding proteins such as GDPgS or pertussis toxin on the agonist-induced stimulation of phospholipase C, (c) the direct effects of stimulators of GTP-binding proteins such as GTP, GTP-analogs and fluoride on phospholipase C activity, (d) the possible association of GTP-binding proteins to cytosolic phospholipase C that would then lead to degradation of the membrane-bound inositides and (e) cytosolic phospholipase C response to the activation of cell surface receptors. The emerging information has had contradictory conclusions. (1) Pretreatment of saponin-permeabilized platelets with pertussis toxin has been shown to enhance and to inhibit the thrombin-induced activation of phospholipase C. Therefore, it is not clear if a G protein that is affected by pertussis toxin in a manner similar to Gi or Go plays a central role in activation of phospholipase C. (2) Studies on the effect of GDPβ;S are also conflicting indicating that there may be GTP-independent and/or -dependent pathways for the activation of phosphoinositide hydrolysis. (3) A cytosolic phospholipase C is activated by GTP, and it has been advanced that this activity might trigger the hydrolysis of membrane-bound inositides. A cytosolic GTP-binding protein might be involved in this action, and it is speculated that an α-subunit might be released to the cytoplasm by a receptor-coupled mechanism to activate phospholipase C. However, no direct evidence exists to support this conclusion. Moreover, the exact contribution of phospholipase C from the membranes or the cytosol to inositide hydrolysis in response to cellular agonists and the relationship of those activites to membrane-bound or soluble GTP-binding proteins are unknown. Our results indicate that the stimulation of phospholipase C in platelets by GDPβS and thrombin are affected differently by GDPβS. GDPgSinhibits the formation of inositol phosphates produced by GTPγS but not that induced by thrombin. Thrombin, therefore, can directly stimulate phospholipase C without the involvement of a “stimulatory” GTP-binding protein, such as Gs, for the agonist stimulation of adenylate cyclase. However, an “inhibitory” GTP-binding protein might have some influence on thrombin-stimulated phospholipase C, since in the presence of GDPγS thrombin produces a more profound stimulation of phospholipase C.This “inhibitory” GTP-binding protein might be ADP-ribosylated by pertussis toxin because pertussis toxin can also enhance thrombin action on phospholipase C activity. Therefore, phospholipase C that responds to thrombin could be different from the one that responds to GTPγS. Cytosolic phospholipase C can be activated by GTP or GTP analogs, and the one that responds to thrombin should be coupled to the receptors present in the plasma membrane. The initial action of thrombin is to directly activate the plasma membrane-bound phospholipase C and the mechanism of this activation is probably related to the proteolytic action of thrombin or the activation of platelet proteases by thrombin. In agreement with this, trypsin can also directly activate platelet phospholipase C and, subsequently, GTPyS produces further activation of phospholipase C. If these two mechanisms are operative in platelets, the inhibition of cytosolic phospholipase C by GDPβS would allow a larger fraction of inositides for degradation of the thrombin-stimulated phospholipase C, as our results show.
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, Shuanshuan, and Changhui Wang. "Systematic Analysis of Gene Expression Alterations and Clinical Outcomes of Adenylate Cyclase-Associated Protein in Cancer." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa4198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Asaji, T., E. Murakami, N. Takekoshi, S. Matsui, and T. Imaoka. "EFFECT OF ATRIAL NATRIURETIC POLYPEPTIDES ON PLATELET FUNCTION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644872.

Full text
Abstract:
Atrial natriuretic polypeptides (ANP) have been shown to possess a potent diuretic and natriuretic activity, and medicated to patients with heart insufficiency as a drug to be mediated by cGMPaccumulation in glomeruli. A existence of receptors for ANP have recently beenreported in human platelet. But, whether ANP has a direct effect on platelet function remains to be known.Single stimulation of ANP in any concentration did not induce aggregation in neither platelet rich plasma, nor washed platelets. Also no effect of pretreatment with ANP was observed against aggregation triggered by known mediators of platelet activation (Thrombin, ADP, Epinephrine, Collagen) using platelet rich plasma and washed platelets.Therefore, biochemical parameters such as cyclic nucleotides (cAMP, cGMP), phosphatidylinositol hydrolysis and protein phosphorylation, leading to the early stage of platelet activation were examined to investigate the effect of ANP in receptor linked transducing mechanism. Neither cyclic nucleotides accumulation nor [32 P] phosphatidic acid production were detected in platelets treated with ANP. ANP caused a small increase of 32P incorporation into M 30K protein, but no change on the level of phosphorylation of 47K, 20K protein (Imaoka, T. and Haslam, R.J., J.Biol.Chem.258,11404, 1983) was observed.These results clearly suggested thatANP binding with membrane receptor was not linked with adenylate cyclase, ganulate cyclase and phosphatidylinositol phosphate turnover in human platelet, maybe because of too few numbers of ANP receptor. Mechanism of 30K protein phosphorylation and Ca++ mobilization are important subjects for future study, (supported by MESC of Japan)
APA, Harvard, Vancouver, ISO, and other styles
6

Hopple, Sara, Mark Bushfield, Fiona Murdoch, and D. Euan MacIntyre. "REGULATION OF PLATELET cAMP FORMATION BY PROTEIN KINASE C." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644512.

Full text
Abstract:
Exogenous synthetic 1,2-diacylglycerols (e.g. 1,2-dioctanoylglycerol, DiC8) and 4β Phorbol esters (e.g. phorbol myristate acetate, PMA) routinely are used to probe the effects of protein Kinase C (PKC) on cellular responsiveness. Such agents act either independently or synergistically with elevated [Ca2+]i to induce platelet activation, but also inhibit agonist-induced inositol lipid metabolism and Ca2+ flux. These findings led to the concept that activated PKC can function as a bi-directional regulator of platelet reactivity. Therefore, DiCg and PMA were utilized to examine the effects of activated PKC on receptor-mediated stimulation and inhibition of adenylate cyclase, as monitored by cAMP accumulation. All studies were performed using intact human platelets in a modified Tyrodes solution, and cAMP was quantified by radioimmunoassay. Pretreatment (2 min.; 37°C) of platelets with PMA (≤ 300 nM) but not DiCg (200 μM) attenuated the elevation of platelet cAMP content evoked by PGD2 300 nM) but not by PGE1 (≤300 nM), PGI2 (≤100 nM) or adenosine (≤ 100 μM).These effects of PMA were unaffected by ADP scavengers, by Flurbiprofen (10 μM) or by cAMP phosphodiesterase inhibitors (IBMX, 1 mM) but were abolished by the PKC inhibitor Staurosporine (STP, 100 nM). In contrast, DiC8 (200 μM), but not PMA ( ≤ 300 nM), reduced the inhibitory effect of adrenaline (5 μM) on PGE1 (300 nM)-induced cAMP formation. This effect of DiCg was unaltered by STP (100 nM). Selective inhibition of PGD2-induced cAMP formation by PMA most probably can be attributed to PKC catalysed phosphorylation of the DP receptor. Reduction of the inhibitory effect of adrenaline by DiC8 could occur via an action at the α2 adrenoreceptor or Ni. These differential effects of PMA and DiC8 may result from differences in their distribution or efficacy, or to heterogeneity of platelet PKC.
APA, Harvard, Vancouver, ISO, and other styles
7

Nakashima, S., T. Tohmatsu, H. Hattori, A. Suganuma, and Y. Nozawa. "EVIDENCE FOR INVOLVEMENT OF GTP-BINDING PROTEIN IN ARACKIDONIC ACID RELEASE BY PHOSPHOLIPASE A2 IN PERMEABILIZED HUMAN PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644631.

Full text
Abstract:
Platelet activation is accompanied by the active metabolism of membrane phospholipids. Phosphoinositide breakdown by phospholipase C generates second messengers; inositol trisphosphate and diacylglycerol. Recently, it is suggested that GTP-binding protein is linked to the activation of phospholipase C as is true for adenylate cyclase. Although it is known that the receptor stimulation by agonists leads to generation of arachidonic acid, its molecular mechanism has not yet been clear. However, several studies in neutrophils and mast cells using pertussis toxin, have shown the possibility that a GTP-binding protein may act as an intermediary unit component between the receptor and phospholipase A2. The present study was therefore designed to examine the effect of GTP and its analogue GTPγS on the arachidonic acid release in saponin-permeabilized human platelets. GTP or GTPγS alone caused a small but significant liberation of arachidonic acid in permeabilized cells but not in intact cells. GTP or GTPγS was found to enhance thrombin-induced [3H]arachidonic acid release in saponi n-permeabi li zed human platelets. The release of arachidonic acid has been ascribed to activity of phospholipase A2 and/or to sequential action of phospholipase C and diacylglycerol lipase. Inhibitors of phospholipase C (neomycin)/ diacylglycerol lipase (RHC 80267) pathway of arachidonate liberation did not reduce the level of the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost complementary to the increment of released [3H]arachidonic acid, suggesting thrombin-induced hydrolysis of phosphatidylcholine by phospholipase A2. Although phospholipase A2 usually are described as having a requirement for calcium, the effect of GTPγS was more evident at lower calcium concentrations (buffer>0.1 mM>1.0 mM). These data thus indicate that release of arachidonic acid by phospholipase A2 in saponin-treated platelets is closely linked to GTP-binding protein which may decrease the calcium requirement for phospholipase A2 activation.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Changhui, Shuanshuan Xie, Min Tan, and Xiaolian Song. "Adenylate cyclase-associated protein 1 is associated with metastasis of non-small cell lung cancer especially in brain metastasis patients and promotes the lung cancer cell proliferation and migration in vitro as well as its growth and metastasis in vivo by the signaling pathways of limk1-cofilin." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.oa4978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gray, S. J., and S. Heptinstall. "INTERACTIONS BETWEEn PGE2 AND INHIBITORS OF PLATELET AGGREGATION THAT ACT THROUGH cAMP." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643582.

Full text
Abstract:
PGE2 has a biphasic effect on platelet aggregation with low concentrations of the prostaglandin potentiating aggregation and high concentrations inhibiting it. In this investigation we have studied the interaction of PGE2 with agents that inhibit platelet aggregation through an effect on cAMP. The agents chosen raise the level of cAMP in platelets by different mechanisms: PGI2, PGD9 and adenosine combine with specific surface-located receptors and stimulate adenylate cyclase (AC) via a guanine nucleotide-binding protein (GNBP), forskolin stimulates AC directly, and AH-P 719 and DN 9693 inhibit cAMP phosphodiesterase (PDE). ADP-induced platelet aggregation was measured in platelet-rich plasma and cAMP was measured in platelets labelled with 3H-adenine.PGE2 alone potentiated platelet aggregation at concentrations from 10™8 -10™6 M and inhibited aggregation at 10™5M. PGE2 did not reduce cAMP levels at any concentration and increased cAMP levels at concentrations > 10™6 M, profcably by stimulating AC.PGI2 (10™9 -10™8 M), PGD2 (10™7 -5×10™6 M) and adenosine (8×l0™5-2×10™4 M) increased the level of cAMP in platelets and inhibited aggregation these changes were reversed by low concentrations of PGE2 (10™8-10™6M).Forskolin (5×10™6-2.5×10™5M), AH-P 719 (10™7-10™5M) and DN 9693 (5×10™6 -10™5M) increased the level of cAMP in platelets and inhibited aggregation. However, PGE2 did not reverse the inhibitory effects of these particular agents. In contrast, PGE2 potentiated the effects of the agents at all the concentrations of PGE2 that were tested (10™8-10™5M).The different results obtained with PGE2 in combination with agents that act via surface-located receptors compared with agents that stimulate AC directly or act through PDE, suggest that PGE2 may potentiate platelet aggregation by acting at a point between the platelet receptor and AC i.e. GNBP.PGE2 is one of the major prostaglandins synthesised by human microvascular endothelial cells and interstitial cells of the renal medulla. Since it reverses the inhibitory effects of some AC stimulators but adds to those of PDE inhibitors, the latter may have greater potential as anti-thrombotic agents in the micro-circulation and intra-renal circulation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography