Academic literature on the topic 'Adiabatic demagnetization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adiabatic demagnetization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Adiabatic demagnetization"

1

Timbie, P. T., G. M. Bernstein, and P. L. Richards. "An adiabatic demagnetization refrigerator for SIRTF." IEEE Transactions on Nuclear Science 36, no. 1 (1989): 898–902. http://dx.doi.org/10.1109/23.34573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shirron, Peter J. "Cooling Capabilities of Adiabatic Demagnetization Refrigerators." Journal of Low Temperature Physics 148, no. 5-6 (June 19, 2007): 915–20. http://dx.doi.org/10.1007/s10909-007-9441-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yazawa, T., A. Sato, and J. Yamamoto. "Adiabatic demagnetization cooler for infrared detector." Cryogenics 30, no. 3 (March 1990): 276–80. http://dx.doi.org/10.1016/0011-2275(90)90091-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Merkulov, I. A., Yu I. Papava, V. V. Ponomarenko, and S. I. Vasiliev. "Monte Carlo simulation and theory in Gaussian approximation of a phase transition in the nuclear spin system of a solid." Canadian Journal of Physics 66, no. 2 (February 1, 1988): 135–44. http://dx.doi.org/10.1139/p88-019.

Full text
Abstract:
A phase transition of the nuclear spin system of a solid with dipolar and indirect scalar interactions is considered. Monte Carlo simulations of the spin-system isothermic states and of the adiabatic demagnetization process have been made. The structures and energies of the ground states and the values of the critical temperatures, Tc, and minimal polarizations, ρc, at which adiabatic demagnetization leads to spontaneous spin ordering, calculated for the GaAs and CaF2 nuclear spin systems, are presented. The results of numerical simulations are compared with the experimental data for CaF2. The Weiss-field model is extended to the case of adiabatic demagnetization. The fluctuations of the local field are taken into account in the Gaussian approximation. It is shown that the proposed approach allows one to obtain asymptotically correct results both for [Formula: see text] and [Formula: see text]. The results of the calculations in the Gaussian approximation are compared with the numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
5

NUMAZAWA, Takenori, Koji KAMIYA, Jing LI, Hideki NAKAGOME, and Peter SHIRRON. "Development of a Continuous Adiabatic Demagnetization Refrigerator." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 50, no. 2 (2015): 96–103. http://dx.doi.org/10.2221/jcsj.50.96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Furman, Gregory B., Shaul D. Goren, Victor M. Meerovich, and Vladimir L. Sokolovsky. "Generation of quantum correlations at adiabatic demagnetization." Journal of Physics Communications 1, no. 4 (November 13, 2017): 045009. http://dx.doi.org/10.1088/2399-6528/aa91ff.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sosin, S. S., L. A. Prozorova, A. I. Smirnov, A. I. Golov, I. B. Berkutov, O. A. Petrenko, G. Balakrishnan, and M. E. Zhitomirsky. "Adiabatic demagnetization of a pyrochlore antiferromagnet Gd2Ti2O7." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 709–11. http://dx.doi.org/10.1016/j.jmmm.2004.11.344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tuttle, Jim, Peter Shirron, Michael DiPirro, Michael Jackson, Jason Behr, Koji Kamiya, Brent Warner, Evan Kunes, and Tom Hait. "The HAWC and SAFIRE adiabatic demagnetization refrigerators." Cryogenics 41, no. 11-12 (November 2001): 781–87. http://dx.doi.org/10.1016/s0011-2275(01)00169-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yeager, Charles, Edward Maloof, Scott Yano, and Tetsuo Shimzu. "Advanced adiabatic demagnetization refrigerators’ temperature control system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 559, no. 2 (April 2006): 657–59. http://dx.doi.org/10.1016/j.nima.2005.12.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Serlemitsos, A. T., M. SanSebastian, and E. Kunes. "Design of a spaceworthy adiabatic demagnetization refrigerator." Cryogenics 32, no. 2 (January 1992): 117–21. http://dx.doi.org/10.1016/0011-2275(92)90253-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Adiabatic demagnetization"

1

Wang, Huabin 1969. "The magnetic properties, crystal and magnetic structures of Nd5SixGe4-x /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101661.

Full text
Abstract:
The magnetic properties, crystal and magnetic structures of Nd5 SixGe4-x were investigated by ac susceptibility and high resolution neutron powder diffraction. The magnetic and crystalline phase diagrams were derived. Four distinct structures exist in the Nd 5SixGe4-x system: Gd5Ge 4-type [O(II)], Gd5Si2Ge2-type (M), Gd5Si4-type [O(I)], and Zr5Si4-type (T). The refinements of the neutron powder diffraction patterns revealed that the Nd5SixGe4-x compounds exhibit mixed ferro-antiferromagnetic structures. The ac susceptibility measurements showed that the magnetic ordering temperature of Nd5SixGe 4-x increases slightly with increasing silicon content, except that it increases by a factor of 2 in the orthorhombic Gd5Si 4-type [O(I)] phase region. The abrupt change of the magnetic ordering temperature between x = 2.25 and x = 2.5, where the monoclinic Gd5Si 2Ge2-type (M) structure changes to the orthorhombic Gd 5Si4-type [O(I)] structure, suggested that a first order magnetostructural transition likely takes place in this narrow composition range (2.25 < x < 2.5). The investigation of Nd5Si2.335 Ge1.665 revealed that Nd5Si2.335Ge 1.665 adopts the Gd5Si2Ge2-type (M) structure and undergoes a first order magnetostructural transition from the paramagnetic-monoclinic Gd5Si2Ge2-type (M) structure to the orthorhombic Gd5Si4-type [O(I)] structure upon cooling. The T1-T1 bonds increases by ∼1 A when the the Gd 5Si4-type [O(I)] structure (10 K) transforms to the Gd 5Si2Ge2-type (M) structure (140 K). The giant magnetocaloric effect is not observed in Nd5Si2.335Ge 1.665 probably due to the co-existence of the M phase and the O(I) phase. The maximum magnetic entropy change in Nd5Si2.335Ge 1.665 is 7.3 J/kg K for magnetic field change from 0 to 7 Tesla, which is similar to that obtained in Nd5Si1.5Ge2.5, the neighboring phase O(I).
APA, Harvard, Vancouver, ISO, and other styles
2

Ghirlanda, Simone L. "Prototype and Testing of a MEMS Microcooler Based on Magnetocaloric Effect." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3890.

Full text
Abstract:
This thesis documents the work and research effort on the design, fabrication and testing of a magnetocaloric MEMS microcooler, focusing on the testing of the microcooler at low magnetic fields. The phenomenon of magnetocaloric effect (MCE), or adiabatic temperature change, which is obtained by heating or cooling magnetic materials due to a varying magnetic field, can be exploited in the area of magnetic refrigeration as a reliable, energy-efficient cooling system. In particular, its applications are being explored primarily in cryogenic technologies as a viable process for the liquefaction of hydrogen. The challenge for magnetic refrigeration is that the necessary MCE is most easily achieved with high magnetic fields (5-6 Tesla) provided by superconducting magnets. However, a significant magnetocaloric effect can be exhibited at lower magnetic fields (1-2 Tesla) by carefully controlling initial temperature conditions as well as by selecting, preparing and synthesizing the optimal fabrication process of Silicon (Si) wafers. A microcooler was integrated based on previous works of others and tested. Finally, testing of the magnetocaloric effect was conducted and results analyzed. Experimental results in these domains demonstrate that magnetic refrigeration can be part of the best current cooling technology, without having to use volatile, environmentally hazardous fluids. The MEMS magnetocaloric refrigerator demonstrated a ~ -12°C change in the temperature of cooling fluid at a magnetic field of 1.2 T.
APA, Harvard, Vancouver, ISO, and other styles
3

Gruner, Thomas. "Neuartige RET2(Sn,In)-Systeme." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-205468.

Full text
Abstract:
Die vorliegenden Dissertation berichtet von der Entdeckung ungewöhnlicher magnetischer, elektronischer und struktureller Eigenschaften in einer Reihe von neuen intermetallischen Verbindungen auf Selten-Erd-Basis. Die untersuchten Systeme vom Typ RET2X bestehen aus den Selten-Erd-Elementen (RE) Yb oder Lu, den Übergangsmetallen (T) Pt oder Pd sowie den weiteren Liganden (X) Sn oder In. Die Synthese der verwendeten Proben, deren kristallografische Analyse und die Untersuchung ihrer physikalischen Eigenschaften werden im Detail vorgestellt. Diese Arbeit liefert Resultate, die sowohl für die Grundlagenforschung als auch für technische Anwendungen eine große Relevanz besitzen. Die Untersuchungen der neuen Verbindungen YbPt2Sn und YbPt2In zeigen, dass die magnetische Kopplung zwischen benachbarten Yb-Ionen extrem schwach ist. Dies führt zu einem riesigen magnetokalorischen Effekt im Bereich von 0.05 K bis 2 K. Damit besitzen beide metallischen Materialien optimale Eigenschaften, um als Kühlkörper in Entmagnetisierungskryostaten Verwendung zu finden. Zwei zu Testzwecken aufgebaute Kühleinsätze auf YbPt2Sn-Basis bestätigen die Eignung dieser Verbindung als metallisches Kühlmaterial. Die Untersuchungen der Substitutionsreihe Lu(Pt1-xPdx)2In offenbaren einen Ladungsdichtewelle (CDW)-Phasenübergang mit außergewöhnlichen Eigenschaften. Im Gegensatz zu Beobachtungen in den meisten anderen bekannten CDW-Systemen ist der Übergang in LuPt2In kontinuierlich, d. h. zweiter Ordnung. Durch Ersetzen von Pt mit isovalenten Pd kann die Übergangstemperatur T_CDW kontinuierlich zum absoluten Temperaturnullpunkt geführt werden. Die beobachteten Eigenschaften zeigen, dass der Phasenübergang dabei zweiter Ordnung bleibt. Damit wird experimentell bewiesen, dass Lu(Pt1-xPdx)2In eines der seltenen Systeme ist, in denen ein CDW quantenkritischer Punkt in Erscheinung tritt. Noch außergewöhnlicher ist die Beobachtung von Supraleitung mit einem ausgeprägten Maximum in der Sprungtemperatur T_c genau am quantenkritischen Punkt. Das deutet auf eine neuartige Kopplung zwischen quantenkritischer CDW und Supraleitung hin.
APA, Harvard, Vancouver, ISO, and other styles
4

Mackay, Robert Ian. "Low-temperature demagnetization of natural remanent magnetization in dolerites of a Proterozoic dyke swarm near Nain, Labrador /." 1995. http://collections.mun.ca/u?/theses,94930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gruner, Thomas. "Neuartige RET2(Sn,In)-Systeme: Außergewöhnliche magnetische und elektronische Eigenschaften." Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29636.

Full text
Abstract:
Die vorliegenden Dissertation berichtet von der Entdeckung ungewöhnlicher magnetischer, elektronischer und struktureller Eigenschaften in einer Reihe von neuen intermetallischen Verbindungen auf Selten-Erd-Basis. Die untersuchten Systeme vom Typ RET2X bestehen aus den Selten-Erd-Elementen (RE) Yb oder Lu, den Übergangsmetallen (T) Pt oder Pd sowie den weiteren Liganden (X) Sn oder In. Die Synthese der verwendeten Proben, deren kristallografische Analyse und die Untersuchung ihrer physikalischen Eigenschaften werden im Detail vorgestellt. Diese Arbeit liefert Resultate, die sowohl für die Grundlagenforschung als auch für technische Anwendungen eine große Relevanz besitzen. Die Untersuchungen der neuen Verbindungen YbPt2Sn und YbPt2In zeigen, dass die magnetische Kopplung zwischen benachbarten Yb-Ionen extrem schwach ist. Dies führt zu einem riesigen magnetokalorischen Effekt im Bereich von 0.05 K bis 2 K. Damit besitzen beide metallischen Materialien optimale Eigenschaften, um als Kühlkörper in Entmagnetisierungskryostaten Verwendung zu finden. Zwei zu Testzwecken aufgebaute Kühleinsätze auf YbPt2Sn-Basis bestätigen die Eignung dieser Verbindung als metallisches Kühlmaterial. Die Untersuchungen der Substitutionsreihe Lu(Pt1-xPdx)2In offenbaren einen Ladungsdichtewelle (CDW)-Phasenübergang mit außergewöhnlichen Eigenschaften. Im Gegensatz zu Beobachtungen in den meisten anderen bekannten CDW-Systemen ist der Übergang in LuPt2In kontinuierlich, d. h. zweiter Ordnung. Durch Ersetzen von Pt mit isovalenten Pd kann die Übergangstemperatur T_CDW kontinuierlich zum absoluten Temperaturnullpunkt geführt werden. Die beobachteten Eigenschaften zeigen, dass der Phasenübergang dabei zweiter Ordnung bleibt. Damit wird experimentell bewiesen, dass Lu(Pt1-xPdx)2In eines der seltenen Systeme ist, in denen ein CDW quantenkritischer Punkt in Erscheinung tritt. Noch außergewöhnlicher ist die Beobachtung von Supraleitung mit einem ausgeprägten Maximum in der Sprungtemperatur T_c genau am quantenkritischen Punkt. Das deutet auf eine neuartige Kopplung zwischen quantenkritischer CDW und Supraleitung hin.:Einleitung 1 Grundlagen 2 YbPt2Sn und YbPt2In 3 Adiabatische Entmagnetisierung von YbPt2Sn 4 Struktureller quantenkritischer Punkt in Lu(Pt1-xPdx)2In 5 Zusammenfassung und Ausblick
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Adiabatic demagnetization"

1

I, Spichkin Y., ed. The magnetocaloric effect and its applications. Bristol: Institute of Physics Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Adiabatic demagnetization"

1

Pobell, Frank. "Refrigeration by Adiabatic Nuclear Demagnetization." In Matter and Methods at Low Temperatures, 215–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46360-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pobell, Frank. "Refrigeration by Adiabatic Nuclear Demagnetization." In Matter and Methods at Low Temperatures, 158–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-08578-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pobell, Frank. "Refrigeration by Adiabatic Nuclear Demagnetization." In Matter and Methods at Low Temperatures, 181–225. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03225-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lesyna, L., T. Roellig, M. Werner, and P. Kittel. "An Adiabatic Demagnetization Cooled Bolometer System." In A Cryogenic Engineering Conference Publication, 955–61. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luchier, N., and L. Duband. "Small Adiabatic Demagnetization Refrigerator for Space Missions." In Cryocoolers 13, 561–66. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-27533-9_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pobell, Frank. "Refrigeration by Adiabatic Demagnetization of a Paramagnetic Salt." In Matter and Methods at Low Temperatures, 203–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46360-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pobell, Frank. "Refrigeration by Adiabatic Demagnetization of a Paramagnetic Salt." In Matter and Methods at Low Temperatures, 148–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-08578-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shirron, P. J., E. R. Canavan, M. J. DiPirro, J. G. Tuttle, and C. J. Yeager. "A Multi-Stage Continuous-Duty Adiabatic Demagnetization Refrigerator." In Advances in Cryogenic Engineering, 1629–38. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4215-5_86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shirron, Peter J., and Michael J. DiPirro. "Integration of Adiabatic Demagnetization Refrigerators with Spaceflight Cryocoolers." In Cryocoolers, 99–120. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11307-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pobell, Frank. "Refrigeration by Adiabatic Demagnetization of a Paramagnetic Salt." In Matter and Methods at Low Temperatures, 169–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03225-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Adiabatic demagnetization"

1

Sato, Akio, Takashi Yazawa, and Junya Yamamoto. "Adiabatic Demagnetization Cooler For Far Infrared Detector." In 13 Intl Conf on Infrared and Millimeter Waves, edited by Richard J. Temkin. SPIE, 1988. http://dx.doi.org/10.1117/12.978413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Hai, Xinyan Hua, Chenzhe Li, Yanling Chen, Jiao Ding, Rui Huang, Yajie Liang, et al. "Development of adiabatic demagnetization refrigerator for HUBS." In Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, edited by Jan-Willem A. den Herder, Kazuhiro Nakazawa, and Shouleh Nikzad. SPIE, 2020. http://dx.doi.org/10.1117/12.2561207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duval, J. M. "Design of a Miniature Adiabatic Demagnetization Refrigerator." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lesyna, L., T. Roellig, and M. Werner. "Millimeter Wavelength Bolometers Cooled by Adiabatic Demagnetization Refrigeration." In 1987 Twelth International Conference on Infrared and Millimeter Waves. IEEE, 1987. http://dx.doi.org/10.1109/irmm.1987.9126945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yeager, Charles, Edward Maloof, Tetsuo Shimizu, and Scott Yano. "Integrated Control System for Advanced Adiabatic Demagnetization Refrigerators." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sato, Kosuke, Akane Wada, Takahiro Yatsu, Ryuichi Fujimoto, Toshio Murakami, Keisuke Shinozaki, Betty Young, Blas Cabrera, and Aaron Miller. "Development of Adiabatic Demagnetization Refrigerator for X-ray mirocalorimeter experiments." In THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13. AIP, 2009. http://dx.doi.org/10.1063/1.3292430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Supanich, M., and P. Timbie. "A miniature adiabatic demagnetization refrigerator with a magnetoresistive heat switch." In LOW TEMPERATURE DETECTORS: Ninth International Workshop on Low Temperature Detectors. American Institute of Physics, 2002. http://dx.doi.org/10.1063/1.1457669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujimoto, Ryuichi, Kosuke Sato, Akane Wada, Takahiro Yatsu, Akio Hoshino, Toshio Murakami, Keisuke Shinozaki, Nobuyuki Kawai, and Shigehiro Nagataki. "Development of an Adiabatic Demagnetization Refrigerator for X-ray Microcalorimeter Operations." In DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS. AIP, 2010. http://dx.doi.org/10.1063/1.3509293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wikus, P., J. S. Adams, Y. Bagdasarova, S. R. Bandler, W. B. Doriese, M. E. Eckart, E. Figueroa-Feliciano, et al. "THE ADIABATIC DEMAGNETIZATION REFRIGERATOR FOR THE MICRO-X SOUNDING ROCKET TELESCOPE." In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duval, Jean-Marc, Benjamin M. Cain, and Peter T. Timbie. "A miniature continuous adiabatic demagnetization refrigerator with compact shielded superconducting magnets." In SPIE Astronomical Telescopes + Instrumentation, edited by Jonas Zmuidzinas, Wayne S. Holland, and Stafford Withington. SPIE, 2004. http://dx.doi.org/10.1117/12.552498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography