Journal articles on the topic 'Adjustable gripper'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 journal articles for your research on the topic 'Adjustable gripper.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lipina, Jan, Lukáš Tomek, and Václav Krys. "Gripper with Adjustable Grip Force." Transactions of the VŠB - Technical University of Ostrava, Mechanical Series 57, no. 2 (2011): 93–102. http://dx.doi.org/10.22223/tr.2011-2/1877.
Full textSârbu, F., A. Deaconescu, and T. Deaconescu. "Adjustable compliance soft gripper system." International Journal of Advanced Robotic Systems 16, no. 4 (2019): 172988141986658. http://dx.doi.org/10.1177/1729881419866580.
Full textOhara, Kenichi, Ryosuke Iwazawa, and Makoto Kaneko. "Modeling and Analysis of a High-Speed Adjustable Grasping Robot Controlled by a Pneumatic Actuator." Robotics 11, no. 1 (2022): 27. http://dx.doi.org/10.3390/robotics11010027.
Full textLin, Sheng, Ruizhi Sun, Tao Jiang, Dongliang Zhang, and Youjia Sun. "Design and experiment of a parallel dual-channel end-wrapping soft pneumatic actuator." Journal of Physics: Conference Series 2954, no. 1 (2025): 012042. https://doi.org/10.1088/1742-6596/2954/1/012042.
Full textChen, Xue, Mine Zhe Li, Wen Zhi Fu, and Zhong Yi Cai. "Numerical Simulation of Different Clamping Modes on Stretch Forming Parts." Advanced Materials Research 189-193 (February 2011): 1922–25. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1922.
Full textRöthlisberger, Marc, Marcel Schuck, Laurenz Kulmer, and Johann W. Kolar. "Contactless Picking of Objects Using an Acoustic Gripper." Actuators 10, no. 4 (2021): 70. http://dx.doi.org/10.3390/act10040070.
Full textDeaconescu, Tudor, and Andrea Deaconescu. "Pneumatic Muscle-Actuated Adjustable Compliant Gripper System for Assembly Operations." Strojniški vestnik - Journal of Mechanical Engineering 63, no. 4 (2017): 225–34. http://dx.doi.org/10.5545/sv-jme.2016.4239.
Full textChe Soh, A., S. A. Ahmad, A. J. Ishak, and K. N. Abdul Latif. "DEVELOPMENT OF AN ADJUSTABLE GRIPPER FOR ROBOTIC PICKING AND PLACING OPERATION." International Journal on Smart Sensing and Intelligent Systems 5, no. 4 (2012): 1019–43. http://dx.doi.org/10.21307/ijssis-2017-521.
Full textHuang, Luojing, Hongsheng Hu, and Qing Ouyang. "Design and Feasibility Study of MRG–Based Variable Stiffness Soft Robot." Micromachines 13, no. 11 (2022): 2036. http://dx.doi.org/10.3390/mi13112036.
Full textHao, Guangbo, John Mullins, and Kevin Cronin. "Simplified modelling and development of a bi-directionally adjustable constant-force compliant gripper." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 11 (2016): 2110–23. http://dx.doi.org/10.1177/0954406216628557.
Full textGan, Jinqiang, Hao Xu, Xianmin Zhang, and Huafeng Ding. "Design of a compliant adjustable constant-force gripper based on circular beams." Mechanism and Machine Theory 173 (July 2022): 104843. http://dx.doi.org/10.1016/j.mechmachtheory.2022.104843.
Full textBorisov, Ivan I., Oleg I. Borisov, Vladislav S. Gromov, Sergey M. Vlasov, and Sergey A. Kolyubin. "The UHVAT Gripper: Usable Holding Versatile Adjustable Tool to Grasp Different Objects." IFAC-PapersOnLine 51, no. 11 (2018): 722–27. http://dx.doi.org/10.1016/j.ifacol.2018.08.404.
Full textFirouzeh, Amir, and Jamie Paik. "An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes." Smart Materials and Structures 26, no. 5 (2017): 055035. http://dx.doi.org/10.1088/1361-665x/aa67fd.
Full textLi, Rui, Wulin Qin, Guo Li, et al. "Design and optimization of the magnetic field-driven spherical gripper with adjustable stiffness." Materials & Design 235 (November 2023): 112391. http://dx.doi.org/10.1016/j.matdes.2023.112391.
Full textKartashov, S. G., and E. M. Klychev. "Method for preparation of feed drug mixtures with anthelmintics." Russian Journal of Parasitology 12, no. 1 (2018): 70–75. http://dx.doi.org/10.31016/1998-8435-2018-12-1-70-75.
Full textArakelian, Vigen. "Design of Fixed-Sequence Planar 5R Symmetrical Parallel Manipulators." International Journal of Mechanics 16 (July 15, 2022): 91–97. http://dx.doi.org/10.46300/9104.2022.16.11.
Full textFirouzeh, Amir, and Jamie Paik. "Grasp Mode and Compliance Control of an Underactuated Origami Gripper Using Adjustable Stiffness Joints." IEEE/ASME Transactions on Mechatronics 22, no. 5 (2017): 2165–73. http://dx.doi.org/10.1109/tmech.2017.2732827.
Full textSim, Yeri, and Sangrok Jin. "Gripper Design with Adjustable Working Area for Depalletizing Delivery Cardboard box of Various Sizes." Journal of Korea Robotics Society 18, no. 1 (2023): 29–36. http://dx.doi.org/10.7746/jkros.2023.18.1.029.
Full textKhort, Dmitriy, Alexey Kutyrev, and Rostislav Filippov. "Automated unit for magnetic pulse processing of strawberries." E3S Web of Conferences 285 (2021): 07024. http://dx.doi.org/10.1051/e3sconf/202128507024.
Full textMa, Xiaolong, Lingfeng Chen, Yanfeng Gao, Daliang Liu, and Binrui Wang. "Modeling Contact Stiffness of Soft Fingertips for Grasping Applications." Biomimetics 8, no. 5 (2023): 398. http://dx.doi.org/10.3390/biomimetics8050398.
Full textHe, Jiahang, Yinong Liu, Chunbiao Yang, Zongdi Tong, and Guangwei Wang. "Design and Evaluation of an Adjustable Compliant Constant-Force Microgripper." Micromachines 15, no. 1 (2023): 52. http://dx.doi.org/10.3390/mi15010052.
Full textChe, Soh A., S.A. Ahmad, A.J. Ishak, and Latif K. N. Abdul. "DEVELOPMENT OF AN ADJUSTABLE GRIPPER FOR ROBOTIC PICKING AND PLACING OPERATION." International Journal on Smart Sensing and Intelligent Systems 5, no. 4 (2012). https://doi.org/10.21307/ijssis-2017-521.
Full textArredondo-Soto, Mauricio, Enrique Cuan-Urquizo, Alfonso Gómez-Espinosa, Armando Roman-Flores, and Rafiq Ahmad. "Novel soft gripper with adjustable performance based on blade flexures." Journal of Mechanical Design, September 13, 2024, 1–23. http://dx.doi.org/10.1115/1.4066548.
Full textMo, Liyan, Wenhao Xie, Jingting Qu, et al. "Empowering Particle Jamming Soft Gripper with Tactility via Stretchable Optoelectronic Sensing Skin." Advanced Intelligent Systems, August 11, 2024. http://dx.doi.org/10.1002/aisy.202400285.
Full textCramer, Jeroen, Martijn Cramer, and Karel Kellens. "Automatic grasp planning for self-adjustable gripper frames." ROBOMECH Journal 11, no. 1 (2024). http://dx.doi.org/10.1186/s40648-024-00271-5.
Full textGan, Jinqiang, Lejin Wan, and Wenjian Yang. "A multistage amplification compliant adjustable constant-force gripper using M-shaped beams." Journal of Mechanical Design, April 30, 2025, 1–21. https://doi.org/10.1115/1.4068551.
Full text"4484775 Adjustable smooth action linkage gripper mechanism." Robotics and Computer-Integrated Manufacturing 2, no. 1 (1985): v—vi. http://dx.doi.org/10.1016/0736-5845(85)90053-5.
Full textXu, Dongmei, Fan Yang, Simiao Yu, et al. "A three-stage amplification piezoelectric-actuated micro-gripper with adjustable output displacement: design, modeling, and experimental evaluation." Smart Materials and Structures, July 26, 2023. http://dx.doi.org/10.1088/1361-665x/aceae4.
Full textZhang, Yin, Wang Zhang, Pan Gao, Xiaoqing Zhong, and Wei Pu. "Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-35479-9.
Full textDai, Chu Yan, Ya Zhou Sun, Yu Xin Sun, BoHan Zhang, Zi Xiao Guo, and Hai Tao Liu. "An SMA-actuated soft robot with encircling gripping by adjustable grasping span." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, May 29, 2024. http://dx.doi.org/10.1177/09544054241253635.
Full textFu, Min, Gangqiang Yang, Wei Ren, Yuxuan Liu, and Ji Cui. "A Biologically Inspired Soft Gripper with the Variable Morphology Palm." Journal of Mechanisms and Robotics, June 30, 2025, 1–19. https://doi.org/10.1115/1.4069047.
Full textEl-Sayed, Amr M. "A novel approach to enhancing smart stiffness of soft robotic gripper fingers for wider grasping capability." International Journal of Intelligent Robotics and Applications, November 15, 2024. http://dx.doi.org/10.1007/s41315-024-00398-z.
Full textXia, Chengkai, Huayang Sai, Zhenbang Xu та Changyu Zhao. "Bioinspired flexible gripper for vacuum non-cooperative target capture". Smart Materials and Structures, 17 травня 2024. http://dx.doi.org/10.1088/1361-665x/ad4d34.
Full textXu, Hao, Xianmin Zhang, Haoyan Zang, Jianhao Lai, Lei Yuan, and Rixin Wang. "An SMA-based compliant adjustable constant force gripper for micro-assembly." International Journal of Mechanical Sciences, June 2024, 109430. http://dx.doi.org/10.1016/j.ijmecsci.2024.109430.
Full textCui, Yafeng, Xin-Jun Liu, Xuguang Dong, Jingyi Zhou, and Huichan Zhao. "Enhancing the Universality of a Pneumatic Gripper via Continuously Adjustable Initial Grasp Postures." IEEE Transactions on Robotics, 2021, 1–15. http://dx.doi.org/10.1109/tro.2021.3060969.
Full textShen, Lingrui, Qingqian Cai, Jie Huang, Hao Liu, Changchun Wu, and Yunquan Li. "Design and applications of a pneumatic-tendon coupled air spring (PTCAS) with variable stiffness and self-sensing properties." Smart Materials and Structures, July 22, 2025. https://doi.org/10.1088/1361-665x/adf30a.
Full textWang, Fengfeng, and Yechen Fan. "Structural design and analysis of a picking robot arm using parallel grippers." Advances in Mechanical Engineering 16, no. 12 (2024). https://doi.org/10.1177/16878132241304610.
Full textАпатов, Ю. Л., В. Л. Лысков, and К. Ю. Апатов. "Design and technological equipment of industrial robots in the form of vacuum grippers with adjustable characteristics." Математический вестник Вятского государственного университета, no. 1(12) (June 21, 2019). http://dx.doi.org/10.25730/vsu.0536.19.010.
Full textHernandez Barraza, Luis Carlos, Ahmed Khalil Khan, and Chen-Hua Yeow. "A bioinspired modular soft robotic arm." Engineering Research Express, January 25, 2023. http://dx.doi.org/10.1088/2631-8695/acb5f0.
Full text"Adjustable grippers by ATM Automation cut changeover time at Legrand." Industrial Robot: An International Journal 26, no. 1 (1999). http://dx.doi.org/10.1108/ir.1999.04926aad.001.
Full textZhilyaeva, Maria, Oyedamola Andrew Asiyanbola, Maksim Lomakin, et al. "Tunable Force Sensor Based on Carbon Nanotube Fiber for Fine Mechanical and Acoustic Technologies." Nanotechnology, August 19, 2022. http://dx.doi.org/10.1088/1361-6528/ac8b18.
Full textZhou, Weimian, Chanchan Xu, Guisong Chen, and Xiaojie Wang. "A soft bioinspired suction cup with tunable adhesion force using shape memory alloy." Smart Materials and Structures, August 7, 2024. http://dx.doi.org/10.1088/1361-665x/ad6cbb.
Full textSong, Yi, Zhiyuan Weng, Jiwei Yuan, et al. "Incline-dependent adjustments of toes in geckos inspire functional strategies for biomimetic manipulators." Bioinspiration & Biomimetics, April 7, 2022. http://dx.doi.org/10.1088/1748-3190/ac6557.
Full text