Academic literature on the topic 'Adsorption induced deformation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adsorption induced deformation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adsorption induced deformation"
Fomkin, A. A., A. V. Shkolin, A. L. Pulin, I. E. Men’shchikov, and E. V. Khozina. "Adsorption-Induced Deformation of Adsorbents." Colloid Journal 80, no. 5 (September 2018): 578–86. http://dx.doi.org/10.1134/s1061933x18050083.
Full textGor, Gennady Yu, and Alexander V. Neimark. "Adsorption-Induced Deformation of Mesoporous Solids." Langmuir 26, no. 16 (August 17, 2010): 13021–27. http://dx.doi.org/10.1021/la1019247.
Full textKolesnikov, A. L., Yu A. Budkov, and G. Y. Gor. "Models of adsorption-induced deformation: ordered materials and beyond." Journal of Physics: Condensed Matter 34, no. 6 (November 22, 2021): 063002. http://dx.doi.org/10.1088/1361-648x/ac3101.
Full textMorak, Roland, Stephan Braxmeier, Lukas Ludescher, Florian Putz, Sebastian Busch, Nicola Hüsing, Gudrung Reichenauer, and Oskar Paris. "Quantifying adsorption-induced deformation of nanoporous materials on different length scales." Journal of Applied Crystallography 50, no. 5 (September 14, 2017): 1404–10. http://dx.doi.org/10.1107/s1600576717012274.
Full textBrochard, Laurent, Matthieu Vandamme, Roland J. M. Pellenq, and Teddy Fen-Chong. "Adsorption-Induced Deformation of Microporous Materials: Coal Swelling Induced by CO2–CH4 Competitive Adsorption." Langmuir 28, no. 5 (January 23, 2012): 2659–70. http://dx.doi.org/10.1021/la204072d.
Full textZou, Jie, Chunyan Fan, Junfang Zhang, Xiu Liu, Wen Zhou, Liang Huang, and Hao Xu. "Effect of Adsorbent Properties on Adsorption-Induced Deformation." Langmuir 37, no. 51 (December 15, 2021): 14813–22. http://dx.doi.org/10.1021/acs.langmuir.1c02512.
Full textShkolin, A. V., A. A. Fomkin, A. L. Pulin, and V. Yu Yakovlev. "A technique for measuring an adsorption-induced deformation." Instruments and Experimental Techniques 51, no. 1 (January 2008): 150–55. http://dx.doi.org/10.1134/s0020441208010211.
Full textGor, Gennady Y., Patrick Huber, and Noam Bernstein. "Adsorption-induced deformation of nanoporous materials—A review." Applied Physics Reviews 4, no. 1 (March 2017): 011303. http://dx.doi.org/10.1063/1.4975001.
Full textKowalczyk, Piotr, Sylwester Furmaniak, Piotr A. Gauden, and Artur P. Terzyk. "Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons." Journal of Physical Chemistry C 114, no. 11 (February 25, 2010): 5126–33. http://dx.doi.org/10.1021/jp911996h.
Full textBakhshian, Sahar, and Seyyed A. Hosseini. "Prediction of CO2 adsorption-induced deformation in shale nanopores." Fuel 241 (April 2019): 767–76. http://dx.doi.org/10.1016/j.fuel.2018.12.095.
Full textDissertations / Theses on the topic "Adsorption induced deformation"
Diao, Rui. "Fundamental Study of Simple Gas Adsorption and Adsorption-Induced Deformation in Carbonaceous Materials." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/56504.
Full textBalzer, Christian [Verfasser], Vladimir [Gutachter] Dyakonov, and Oskar [Gutachter] Paris. "Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling / Christian Balzer ; Gutachter: Vladimir Dyakonov, Oskar Paris." Würzburg : Universität Würzburg, 2018. http://d-nb.info/1151818690/34.
Full textMekonnen, Benhur. "Synthesis and characterization of microporous materials : towards a versatile adsorbent and a simple model material for the study of adsorption-induced deformation in microporous media." Electronic Thesis or Diss., Pau, 2025. http://www.theses.fr/2025PAUU3002.
Full textThis work contains two parts dealing with the elaboration of microporous materials. In the first part, we address the three-step synthesis (in order: bulk radical polymerization, functionalization, and hypercrosslinking via Friedel-Crafts alkylation reaction) of functionalized fluorinated hypercrosslinked polymers (HCP) starting from three functional monomer units: divinyl benzene, vinylbenzyl chloride, and pentafluorostyrene. The textural properties of the HCPs were found to be strongly influenced by the initial monomer ratio. Therefore, the latter was optimized for a reasonable compromise between textural properties and functionalization degree. A selective, rapid, and energy-efficient functionalization route known as the para-fluoro-thiol reaction is utilized in order to functionalize the pentafluorobenzene ring with a series of widely available thiols bearing various chemical groups (sulfonate, alkyl, amine, and hydroxyl), yielding functionalized HCPs with diverse chemical moieties. The high-pressure CO2 adsorption performance of the materials was assessed using manometry. The results showed the discrepancies brought by the presence of functional groups at ambient pressure. They underlined the importance of textural properties, particularly of microporous volume, for high-pressure sorption performances, with a probable contribution of adsorption-induced swelling of the HCP.The second part of this work deals with the synthesis of microporous silica films from dipodal organosilane compounds. After assessing a series of techniques including electrochemically assisted self-assembly (EASA), Stöber solution deposition, and evaporation-induced self-assembly (EISA), the latter was chosen for producing uniform and crack-free films. These films will serve as a straightforward model material for the initial step of the experimental validation of a poromechanics model. First, a series of films have been elaborated from five dipodal organosilane precursors by solvent-casting in order to identify the suitable precursors and protocol for the obtention of nanoporous films. Three of these dipodal organosilane precursors yielded nanoporous films with variable PSD dispersity, as evidenced by Ar porosimetry. Consequently, the latter were selected to elaborate thin films by dip-coating-coating. Two types of substrates were considered (PVC and Si wafer) and the withdrawal speed was adjusted to obtain crack-free and uniform films. Films deposited on Si wafers in the draining regime were selected to conduct water sorption-induced deformation studies using environmental ellipsometry porosimetry (EEP). Over four continuous adsorption/desorption cycles, the results revealed that the chemisorption of water led to a gradual change of the adsorption and deformation properties of all the materials between the cycles. A monotonous swelling was observed for two of the materials while a contraction followed by swelling, typical of a capillary condensation, was observed for one film
Chou, Chia-Ching, and 周佳靚. "Multiscale analysis of adsorption-induced deformation of antilever-based biosensor." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/76614701094441854425.
Full text國立臺灣大學
土木工程學研究所
96
Microcantilever-based biosensors are rapidly becoming an enabling sensing technology for a variety of label-free biological applications due to their wide applicability, versatility and low cost. It is thus imperative for us to reveal the physical origin of adsorption-induced deformation, and to further analyze its implication of microscopic mechanisms on macroscopic deformation. The objective of this work is to develop a multi-scale theory that can analyze deformation of micro-cantilever beam subjected to bio-adsorption mechanisms calculated by ab- initio simulation and classical molecular dynamics. The multi-scale theory developed herein has successfully correlated atomistic information (the mechanism of bio-adsorption) and continuum description (bending behavior of a cantilever beam). We have studied the adsorption mechanisms of bio-molecules for SAM (self-assembly monolayer, alkanethiolic molecular for n=1~14) adsorbed on gold through ab-initio and molecular dynamics simulation. The ab-initio simulation results are in a good agreement with the literature, and the error of calculated absorption energy is less than 13%. We then extend to longer SAM simulation by molecular dynamics and the calculated absorption energy is less than 7% when comparing with the ab-initio results. Adsorption-induced stresses for different SAMs (for n=4, 6, 8, 12 and 14) are calculated by the multi-scale method. Calculated deflection based on the adsorption-induced stress agrees well with experimental measurements. Physical origin of adsorption induced deformation is revealed through the change of atomic positions and forces.
Balzer, Christian. "Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling." Doctoral thesis, 2018. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-157145.
Full textZiel dieser Arbeit ist es, dass Verständnis der adsorptionsinduzierter Deformation von nanoporösen (insbesondere mikroporösen) Materialien zu erweitern, um ihr Potenzial für die Materialcharakterisierung zu erforschen. Zusätzlich sollen Orientierungshilfen für technische Anwendungen, wie z.B. adsorptionsgetriebene Aktuatoren, bereitgestellt werden. Hierfür kombiniert diese Arbeit in-situ Dilatometriemessungen und detaillierte Modellierung der gemessenen adsorptionsinduzierten Dehnungen. Der wesentliche Vorteil dieser Arbeit gegenüber vorherigen Studien ist die Kombination des dilatometrischen Messaufbaus mit einer kommerziellen Gasadsorptionsanlage, was die Messung qualitativ hochwertiger Adsorptions- und Dehnungsisothermen erlaubt. Die betrachteten Materialsysteme sind (aktivierte und geglühte) Kohlenstoffxerogele, ein gesintertes Silica-Aerogel, ein gesintertes, hierarchisch strukturiertes, poröses Silica und binderlose Zeolithe der Typen LTA und FAU. Diese Auswahl umfasst mikro-, meso- und makroporöse ebenso wie geordnete und ungeordnete Modellmaterialien. Alle Modellmaterialien wurden mit Rasterelektronenmikroskopie, Gasadsorption und Schallgeschwindigkeitsmessungen charakterisiert. In-situ Dilatometriemessungen an mesoporösen Modellsystemen wurden für N2-Adsorption bei 77 K durchgeführt, während alle mikroporösen Modellsysteme zusätzlich bei CO2-Adsorption (273 K), Ar-Adsorption (77 K) und H2O-Adsorption (298 K) untersucht wurden. Der verfügbare Messaufbau für in-situ Dilatometrie wurde im Rahmen dieser Arbeit weiterentwickelt, um Auflösung und Reproduzierbarkeit der Messungen von kleinen Dehnungen zu verbessern, was insbesondere für mikroporöse Materialien von Bedeutung ist. Die experimentellen Adsorptions- und Dehnungsisothermen des hierarchisch strukturierten, porösen Silicas und des mikro-makroporösen Kohlenstoff-Xerogels wurden mit dem adsorption-stress-Modell quantitativ ausgewertet. Hierfür wurde das adsorption-stress-Modell, ursprünglich eingeführt von Ravikovitch et al., für die Verwendung von anisotropen Porengeometrien erweitert. Während die der Deformation zu Grunde liegende Adsorption im Fall des mesoporösen Silicas gut mit der klassischen und analytischen Theorie von Derjaguin, Broekhoff und de Boer beschrieben werden konnte, erforderte die Adsorption in den Kohlenstoffmikroporen umfassende Berechnungen mittels nichtlokaler Dichtefunktionaltheorie. Um die adsorptionsinduzierten Spannungen mit entsprechenden Dehnungen zu korrelieren, wurden zusätzlich mechanische Modelle für die untersuchten Materialien entworfen. Das resultierende theoretische Konstrukt aus Adsorptions-, adsorption-stress- und mechanischem Modell wurde auf die ermittelten experimentellen Daten angewandt und strukturelle und mechanische Eigenschaften der Modellmaterialien bestimmt, d.h. Porengröße bzw. Porengrößenverteilung sowie die mechanischen Module der porösen Matrix und des unporösen Festkörperskeletts. Es konnte gezeigt werden, dass die ermittelten Materialeigenschaften konsistent mit unabhängigen Messungen und/oder Literaturwerten sind. Hierbei ist zu beachten, dass sich die Erweiterung des adsorption-stress-Modells für eine korrekte Auswertung der experimentellen Daten als zwingend erforderlich erwies. Des Weiteren konnte gezeigt werden, dass die adsorptionsinduzierte Deformation von ungeordneten mesoporösen Aero-/Xerogelstrukturen qualitativ denselben Mechanismen folgt, die für das geordnete, hierarchisch strukturierte, poröse Silica identifiziert wurden. Die entsprechende quantitative Modellierung erwies sich allerdings als schwierig, da die Poren in Aero-/Xerogelstrukturen geometrisch schlecht zu fassen sind. Gute Übereinstimmung zwischen Modell und Experiment konnte nur für das Stadium gefüllter Poren und den relativen Druckbereich der Monolagenbildung erzielt werden. Der Zwischenbereich der Multilagenadsorption erfordert ein komplexeres Modell, um die Spannung quantitativ korrekt zu beschreiben, die sich auf Grund der gekrümmten Adsorbat-Adsorptiv-Grenzfläche im Material ausbildet. Mit Hinblick auf mikro-mesoporöse Kohlenstoffxerogele konnte gezeigt werden, dass sich dort Deformationsmechanismen von Mikro- und Mesoporen überlagern. Die Dehnungsisothermen der Zeolithe wurden nur qualitativ ausgewertet. Das Ergebnis für den Zeolithen vom Typ FAU stimmt gut mit anderen in der Literatur beschriebenen Experimenten und dem theoretischen Verständnis überein, das sich aus dem adsorption-stress-Modell ergibt. Im Gegensatz dazu ist die gemessene Dehnungsisotherme des Zeolithen vom Typ LTA eher ungewöhnlich, da sie monotone Expansion des LTA-Zeolithen über den gesamten Druckbereich zeigt. Qualitativ kann dieses Ergebnis ebenfals mit dem adsorption-stress-Modell erklärt werden, aber eine detaillierte, quantitative Analyse übersteigt den Rahmen dieser Arbeit. Insgesamt erweist sich die Analyse der adsorptionsinduzierten Dehnungen der Modellmaterialien als geeignetes Mittel, um Informationen über deren strukturelle und mechanische Eigenschaften zu erlangen, was auch die Steifigkeit des unporösen Festkörperskeletts miteinschließt. Desweiteren zeigen Untersuchungen an aktivierten und geglühten Kohlenstoffxerogelen, dass adsorptionsinduzierte Deformation insbesondere geeignet ist, um kleine Änderungen an Mikroporenstrukturen zu analysieren
Book chapters on the topic "Adsorption induced deformation"
Xing, Wenhao, Aimin Wang, Long Wu, Baode Xu, Jiayu Zhang, and Yuan Yu. "Analysis of Deformation in Aircraft Skin Vacuum Adsorption Clamping." In Lecture Notes in Mechanical Engineering, 1271–79. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_102.
Full textOtake, Mihoko. "Adsorption-Induced Deformation Model of Electroactive Polymer Gel." In Springer Tracts in Advanced Robotics, 19–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-44705-4_2.
Full textPerrier, Laurent, Frédéric Plantier, Gilles Pijaudier-Cabot, and David Grégoire. "Adsorption-induced Instantaneous Deformation in Double Porosity Media: Modeling and Experimental Validations." In Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics, 33–59. Elsevier, 2018. http://dx.doi.org/10.1016/b978-1-78548-278-6.50002-5.
Full textBeris, Antony N., and Brian J. Edwards. "Transport Phenomena in Viscoelastic Fluids." In Thermodynamics of Flowing Systems: with Internal Microstructure. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195076943.003.0014.
Full textConference papers on the topic "Adsorption induced deformation"
Weigel, Coralie, Alain Polian, Mathieu Kint, Jerome Rouquette, Julien Haines, Marie Foret, René Vacher, Benoit Rufflé, and Benoit Coasne. "Poroelastic Theory Applied to the Adsorption-Induced Deformation of Amorphous Silica." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.003.
Full textPuibasset, J. "Adsorption-Induced Deformation in Nanopores: Unexpected Results Obtained by Molecular Simulations." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.067.
Full textChou, Chia-Ching, Shu-Wei Chang, and Chuin-Shan Chen. "Alkanethiol Self-Assembled Monolayers on Microcantilever Biosensor." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13214.
Full textTakahashi, Kazuhiro, Ryo Ozawa, Makoto Ishida, and Kazuaki Sawada. "Estimation of diaphragm deformation induced by molecuar adsorption on mems optical interferometric biosensor." In 2014 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2014. http://dx.doi.org/10.1109/omn.2014.6924511.
Full textVandamme, M., L. Brochard, O. Coussy, and Kambiz Vafai. "Adsorption-induced deformation in porous media and application to CO[sub 2]-injected coal beds." In POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING, AND INDUSTRY: 3rd International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3453831.
Full textYang, S. M., T. I. Yin, and C. Chang. "Measurement of DNA Hybridization by Nano-Deformation of Microcantilever in CMOS Biosensor." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47047.
Full textZhang, Wei, and Amin Mehrabian. "The Positive Effect of Geomechanics on Adsorption and Transport Processes During Co2 Huff-N-Puff in Organic Shale." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210189-ms.
Full textZhou, Weimian, Xiaojie Wang, and Xuan Wu. "A Suction Cup With Tunable Stiffness Based on Shape Memory Alloy." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67760.
Full textZhang, Kunming, and Shimin Liu. "Determination of Thermo-Mechanical Coal Deformations and Implication for CO2 Storage in Deep Coal Formations." In 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0409.
Full textMandal, Partha Pratim, Joel Sarout, Reza Rezaee, and Mofazzal Hossain. "Can We Predict Primary Creep and Least Principal Stress Shmin at Depth Either from Specific Surface Area or Weak Phase of Gas Shales?" In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22212-ms.
Full text