Dissertations / Theses on the topic 'Advanced Driver Assistance Systems (ADAS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Advanced Driver Assistance Systems (ADAS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aziz, Tabinda. "Empirical Analyses of Human-Machine Interactions focusing on Driver and Advanced Driver Assistance Systems." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/195975.
Full textMattsson, David. "ADAS : A simulation study comparing two safety improving Advanced Driver Assistance Systems." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85151.
Full textAndersson, Naesseth Christian. "Vision and Radar Sensor Fusion for Advanced Driver Assistance Systems." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94222.
Full textGerónimo, Gómez David. "A Global Approach to Vision-Based Pedestrian Detection for Advanced Driver Assistance Systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/5795.
Full textAt the beginning of the 21th century, traffic accidents have become a major problem not only for developed countries but also for emerging ones. As in other scientific areas in which Artificial Intelligence is becoming a key actor, advanced driver assistance systems, and concretely pedestrian protection systems based on Computer Vision, are becoming a strong topic of research aimed at improving the safety of pedestrians. However, the challenge is of considerable complexity due to the varying appearance of humans (e.g., clothes, size, aspect ratio, shape, etc.), the dynamic nature of on-board systems and the unstructured moving environments that urban scenarios represent. In addition, the required performance is demanding both in terms of computational time and detection rates. In this thesis, instead of focusing on improving specific tasks as it is frequent in the literature, we present a global approach to the problem. Such a global overview starts by the proposal of a generic architecture to be used as a framework both to review the literature and to organize the studied techniques along the thesis. We then focus the research on tasks such as foreground segmentation, object classification and refinement following a general viewpoint and exploring aspects that are not usually analyzed. In order to perform the experiments, we also present a novel pedestrian dataset that consists of three subsets, each one addressed to the evaluation of a different specific task in the system. The results presented in this thesis not only end with a proposal of a pedestrian detection system but also go one step beyond by pointing out new insights, formalizing existing and proposed algorithms, introducing new techniques and evaluating their performance, which we hope will provide new foundations for future research in the area.
Wilkerson, Jaxon. "Handoff of Advanced Driver Assistance Systems (ADAS) using a Driver-in-the-Loop Simulator and Model Predictive Control (MPC)." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595262540712316.
Full textDaniel, Jérémie. "Trajectory generation and data fusion for control-oriented advanced driver assistance systems." Phd thesis, Université de Haute Alsace - Mulhouse, 2010. http://tel.archives-ouvertes.fr/tel-00608549.
Full textTang, Zongzhi. "A Novel Road Marking Detection and Recognition Technique Using a Camera-based Advanced Driver Assistance System." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35729.
Full textBareiss, Max. "Effectiveness of Intersection Advanced Driver Assistance Systems in Preventing Crashes and Injuries in Left Turn Across Path / Opposite Direction Crashes in the United States." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/96570.
Full textM.S.
Future vehicles will have electronic systems that can avoid crashes in some cases where a human driver is unable, unaware, or reacts insufficiently to avoid the crash without assistance. The objective of this work was to determine, on a national scale, how many crashes and injuries could be avoided due to Intersection Advanced Driver Assistance Systems (I-ADAS), a hypothetical version of one of these up-and-coming systems. This work focused on crashes where one car is turning left at an intersection and the other car is driving through the intersection and not turning. The I-ADAS system has sensors which continuously search for other vehicles. When the I-ADAS system determines that a crash may happen, it applies the brakes or otherwise alerts the driver to apply the brakes. Rather than conduct actual crash tests, this was simulated on a computer for a large number of variations of the I-ADAS system. The basis for the simulations was real crashes that happened from 2005 to 2007 across the United States. The variations that were simulated changed the time at which the I-ADAS system triggered the brakes (or alert) and the simulated amount of computer time required for the I-ADAS system to make a choice. In some turning crashes, the car cannot see the other vehicle because of obstructions, such as a line of people waiting to turn left across the road. Because of this, simulations were conducted both with and without the visual obstruction. For comparison, we performed a simulation of the original crash as it happened in real life. Finally, since there are two cars in each crash, there are simulations when either car has the I-ADAS system or when both cars have the I-ADAS system. Each simulation either ends in a crash or not, and these are tallied up for each system variation. The number of crashes avoided compared to the number of simulations run is crash effectiveness. Crash effectiveness ranged from 1% to 84% based on the system variation. For each crash that occurred, there is another simulation of the time immediately after impact to determine how severe the impact was. This is used to determine how many injuries are avoided, because often the crashes which still happened were made less severe by the I-ADAS system. In order to determine how many injuries can be avoided by making the crash less severe, the first chapter focuses on injury modeling. This analysis was based on crashes from 2008 to 2015 which were severe enough that one of the vehicles was towed. This was then filtered down by only looking at crashes where the front or sides were damaged. Then, we compared the outcome (injury as reported by the hospital) to the circumstances (crash severity, age, gender, seat belt use, and others) to develop an estimate for how each of these crash circumstances affected the injury experienced by each driver and front row passenger. A second goal for this chapter was to evaluate whether federal government crash ratings, commonly referred to as “star ratings”, are related to whether the driver and passengers are injured or not. In frontal crashes (where a vehicle hits something going forwards), the star rating does not seem to be related to the injury outcome. In near-side crashes (the side next to the occupant is hit), a higher star rating is better. For frontal crashes, the government test is more extreme than all but a few crashes observed in real life, and this might be why the injury outcomes measured in this study are not related to frontal star rating. Finally, these crash and injury effectiveness values will only ever be achieved if every car has an I-ADAS system. The objective of the third chapter was to evaluate how the crash and injury effectiveness numbers change each year as new cars are purchased and older cars are scrapped. Early on, few cars will have I-ADAS and crashes and injuries will likely still occur at roughly the rate they would without the system. This means that crashes and injuries will continue to increase each year because the United States drives more miles each year. Eventually, as consumers buy new cars and replace older ones, left turn intersection crashes and injuries are predicted to be reduced. Long into the future (around 2050), the increase in crashes caused by miles driven each year outpaces the gains due to new cars with the I-ADAS system, since almost all of the old cars without I-ADAS have been removed from the fleet. In 2025, there will be 173,075 crashes and 15,949 injured persons that could be affected by the I-ADAS system. By 2060, many vehicles will have I-ADAS and there will be 70,439 crashes and 3,836 injuries remaining. Real cars will not have a system identical to the hypothetical I-ADAS system studied here, but systems like it have the potential to significantly reduce crashes and injuries.
Balasubramanian, ArunKumar. "Benchmarking of Vision-Based Prototyping and Testing Tools." Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-229999.
Full textMeijer, Max Jan. "Exploring Augmented Reality for enhancing ADAS and Remote Driving through 5G : Study of applying augmented reality to improve safety in ADAS and remote driving use cases." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277857.
Full textDenna avhandling består av två projekt med fokus på hur 5G kan användas för att göra fordon säkrare. Det första projektet fokuserar på att konceptualisera användningsfall i närmaste framtid av hur Advanced Driver Assistance Systems (ADAS) kan förbättras genom 5G-teknik. Fyra koncept utvecklades i samarbete med olika branschpartner. Dessa koncept demonstrerade i ett proof-of- concept på 5G Automotive Association (5GAA) “5G Path of Vehicle to to Everything Communication: From Local to Global” -konferensen i Turin, Italien. Detta bevis-of-concept var världens första demonstration av ett sådant system. Det andra projektet fokuserar på ett långt futuristiskt användningsfall, nämligen fjärrstyrning av semi-autonoma fordon (sAVs). Som en del av detta arbete undersöktes det om augmented reality (AR) kan användas för att varna fjärroperatörer om farliga händelser. Det undersöktes om sådana förstärkningar kan användas för att kompensera under kritiska händelser. Dessa händelser definieras som händelser där nätverksförhållandena är suboptimala och information som tillhandahålls till operatören är begränsad. För att utvärdera detta utvecklades en simulatormiljö som använder ögonspårningsteknologi för att studera effekterna av sådana scenarier genom en användarstudie. Simulatorn bildar en utdragbar plattform för framtida arbete. Genom experiment fann man att AR kan vara fördelaktigt när det gäller att upptäcka fara. Men det kan också användas för att direkt påverka skanningsmönstret där operatören tittar på scenen och direkt påverka deras visuella skanningsbeteende.
Akhlaq, Muhammad. "A Smart-Dashboard : Augmenting safe & smooth driving." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-6162.
Full textPhone# 00966-56-00-56-471
Cattin, Johana. "Consideration of dynamic traffic conditions in the estimation of industrial vehicules energy consumption while integrating driving assistance strategies." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSET003/document.
Full textThe industrial world, and in particular the automotive industry, is seeking to best represent the real world in order to design tools and products that are best adapted to current challenges and markets, by reducing development times and prototyping costs. With this in mind, the Volvo Group has developed powerful tools to simulate the dynamics of industrial vehicles. These tools allow the optimization of vehicle components or control strategies. Many research activities focus on innovative technologies to reduce the consumption of industrial vehicles and increase the safety of their use in different environments. Particularly, the development of ITS and ADAS is booming. In order to be able to develop these systems, a simulation environment must be set up to take into account the various factors that can influence the driving of a vehicle. The work focuses on simulating the vehicle environment and the interactions between the vehicle and its direct environment, i.e. the vehicle in front of it. The interactions between the vehicle under study and the vehicle in front of it are modelled using mathematical models, called car-following models. Many models exist in the literature, but few of them deals specifically with heavy duty vehicles. A specific focus on these models and their calibration is realized. The vehicle environment can be represented by two categories of parameters: static (intersections, number of lanes) and dynamic parameters (state of the network). From a database of usuals roads, these parameters are computed, then, they are used to automatically generate realist traffic simulation scenarios
Morand, Audrey. "Commande asssitée au conducteur basée sur la conduite en formation de type "banc de poissons"." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0335/document.
Full textSwarm behavior refers to individuals travelling in a group and using only localknowledge of their environment.The scientific objective of the thesis is to implement this type of behaviormodel to vehicles traveling on road, in order to assist the driver in his actions for bothits comfort and security.From a literature review, a prioritization strategy was set up to create anAdvanced Driver Assistance System (ADAS). At first, it is to generate a path from thistype of model that respects the motorway constraints. Then, vehicle dynamics istaken into account in order to transmit to the driver through cruise control and hapticfeedback steering wheel, both based on the CRONE control, maneuvers needed tofollow this trajectory. Finally, the driver assistance system is not only implemented ona dynamic driving simulator to gather driver’s feelings but it is also implemented intraffic simulation software to evaluate gains obtained for a set of equipped vehicles
Lu, Shuxian. "Modélisation et validation expérimentale de concept de Détection Vidéo Coopérative destiné à un système stéréo anticollision inter-véhicule." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112154/document.
Full textThis thesis was devoted to the development of a new detection method for vehicular collision avoidance system based on trajectory measurement, which could contribute to driver assistance systems.In order to obtain high detection probability, we have chosen the cooperative stereoscopic video solution: the cooperation between vehicles makes it easier and more reliable when they aim to detect each other. There are two participants in the system: the “system carriers" vehicles, or the " followers" are equipped with stereoscopic cameras (two image sensors), who belong to high speed technology families; the "targets" vehicles are equipped with modulated LED lights, with the modulation frequency being already known by the "followers". After space-time filtering, the system detects the signals emitted bymodulated lights sources, which greatly reduces the amount of information to be processed comparing to traditional trajectory calculations methods. The detection of modulated light is achieved by filtering based on digital image processing, which is adapted to the desired modulation frequency. We have proposed three types of filters suitable for detecting the modulation at this frequency and at the same time for rejecting the background as well as possible.In order to be able to evaluate the performances of both detecting signals and rejecting false alarms, we first performed numerical simulations based on the model signals, then calculations on real signals acquired in static and driving experiments. The tested speeds were from 30km/h up to 100km/h, which allowed us to analyze the signals emitted from vehicle lights as well as the behavior of our filters under different angular velocities of the lights (zero, low and high). The result of these experiments showed that our method of filtering could detect LED-type DRL lights up to 140m without any false alarm. This is essential to define more precisely the values of thresholds of such systems. We have also evaluated technologies that are possible to improve system performance in the future, which are not yet ready to be used in industry productions. For example, artificial "retinas" could allow us to integrate analog filters in the chips, and thus to reduce bandwidth of the filters
Tapani, Andreas. "A Traffic Simulation Modeling Framework for Rural Highways." Licentiate thesis, Linköping : Linköpings universitet, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4803.
Full textVelandia, Henry Roncancio. "Object detection and classication in outdoor environments for autonomous passenger vehicle navigation based on Data Fusion of Articial Vision System and LiDAR sensor." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18149/tde-24072016-152124/.
Full textEste projeto de pesquisa fez parte do projeto SENA (Sistema Embarcado de Navegação Autônoma), ele foi realizado no Laboratório de Robótica Móvel do Grupo de Mecatrônica da Escola de Engenharia de São Carlos (EESC), em colaboração com o Instituto de Física de São Carlos (IFSC). A grande motivação do projeto SENA é o desenvolvimento de tecnologias assistidas e autônomas que possam atender às necessidades de diferentes tipos de motoristas (inexperientes, idosos, portadores de limitações, etc.). Vislumbra-se que a aplicação em larga escala desse tipo de tecnologia, em um futuro próximo, certamente reduzirá drasticamente a quantidade de pessoas feridas e mortas em acidentes automobilísticos em estradas e em ambientes urbanos. Nesse contexto, este projeto de pesquisa teve como objetivo proporcionar informações relativas ao ambiente ao redor do veículo, ao sistema de controle e de tomada de decisão embarcado no veículo autônomo. As informações mais básicas fornecidas são as posições dos objetos (obstáculos) ao redor do veículo; além disso, informações como o tipo de objeto (ou seja, sua classificação em carros, pedestres, postes e a própria rua mesma), assim como o tamanho deles. Os dados do ambiente são adquiridos através do emprego de uma câmera e um Velodyne LiDAR. Um estudo do tipo ceiling foi usado para simular a metodologia da detecção dos obstáculos. Estima-se que , após realizar o estudo, que analisar regiões especificas da imagem, chamadas de regiões de interesse, onde é mais provável encontrar um obstáculo, é o melhor jeito de melhorar o sistema de reconhecimento. Observou-se na implementação da fusão dos sensores que encontrar regiões de interesse usando LiDAR, e classificá-las usando visão artificial fornece um melhor resultado na hora de compará-lo com os resultados ao usar apenas câmera ou LiDAR. Obteve-se uma classificação com precisão de 100% para pedestres e 92,3% para carros, rodando em uma frequência de 6 Hz. A fusão dos sensores também forneceu um método para estimar a estrada mesmo quando esta tinha sombra ou faixas de cor. Em geral, a classificação baseada em visão artificial e LiDAR mostrou uma solução para detecção de objetos em várias escalas e mesmo para o problema da iluminação não uniforme do ambiente.
Dugarry, Alexandre. "Advanced driver assistance systems information management and presentation." Thesis, Cranfield University, 2004. http://hdl.handle.net/1826/833.
Full textDemilew, Selameab. "3D Object Detection for Advanced Driver Assistance Systems." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42343.
Full textElyasi-Pour, Roya. "Simulation Based Evaluation of Advanced Driver Assistance Systems." Licentiate thesis, Linköpings universitet, Kommunikations- och transportsystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122715.
Full textWege, Claudia. "Adaptive Eyes." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-164158.
Full textTechnologie durchdringt unser tägliches Leben und ist zunehmend integriert in Fahrzeuge – das Resultat sind veränderte Anforderungen an Fahrzeugführer. Einerseits besteht die Gefahr, dass er durch die Bedienung innovativer Technologien (z.B. Mobiltelefone) unachtsam wird und visuell abgelenkt ist, andererseits kann die Nutzung von Fahrerassistenzsystemen die den Fahrer bei der Fahraufgabe unterstützten einen wertvollen Beitrag zur Fahrsicherheit bieten. Die steigende Aktualität beider Problematiken wirft die Frage auf: "Kann der Fahrer sich erfolgreich dem ständig wachsenden technologischen Fortschritt anpassen?" Das Ziel der vorliegenden Arbeit ist der Erkenntnisgewinn zur Verbesserung des Fahrverhaltens indem der Verhaltensänderungen zugrunde liegende psychologische Mechanismen untersucht werden. Eine Vielzahl an Literatur zu Fahrerassistenzsystemen und Aufmerksamkeitsverteilung wurde vor dem Hintergrund von Verhaltensanpassung der Fahrer recherchiert. Daten mehrerer empirischer Quellen, z. B. Fahrverhalten, Blickbewegungen, Videomitschnitte und subjektive Daten dienten zur Datenauswertung zweier Fahrerassistenzsysteme. Im Rahmen einer Feldstudie zeigte sich, dass Bremskapazitäts-Kollisionswarnungen zur sofortigen visuellen Aufmerksamkeitsverteilung zur Fahrbahn und zum Bremsen führen, Fahrer allerdings ihre Reaktion anpassen indem sie zur Warnanzeige im Kombinationsinstrument schauen. Ein anderes Phänomen der Verhaltensanpassung wurde in einer Fahrsimulatorstudie zur Untersuchung eines Ablenkungswarnsystems, das dabei hilft die Blicke von Autofahrern stets auf die Straße zu lenken, gefunden. Diese Ergebnisse weisen nach, dass solch ein System unterstützt achtsamer zu sein und sicherer zu fahren. Die vorliegenden Befunde wurden im Zusammenhang zu Vorbefunden zur Verhaltensanpassung zu Fahrerassistenzsystemen, Fahrerkalibrierung und Akzeptanz von Technik diskutiert. Basierend auf den gewonnenen Erkenntnissen wurde ein neues Vorgehen zur Untersuchung von Mensch- Maschine-Interaktion eingeführt. Aufbauend auf den Resultaten der vorliegenden Arbeit wurde ein ganzheitliches Modell zur Fahrsicherheit und -management, das DO-IT BEST Feedback Modell, entwickelt. Das Modell bezieht sich auf multitemporale Fahrer-Feedbackstrategien und soll somit einen entscheidenen Beitrag zur Verkehrssicherheit und dem Umgang mit Fahrerunaufmerksamkeit leisten. Die zentralen Beiträge dieser Arbeit sind die Gewinnung neuer Erkenntnisse in den Bereichen der Angewandten Psychologie und der Verkehrspsychologie in den Kontexten der Aufmerksamkeitsverteilung und der Verbesserung der Gestaltung von Fahrerassistenzsystemen fokusierend auf den Bediener. Die Dissertation besteht aus einem Einleitungsteil, drei empirischen Beiträgen sowie drei Buchkapiteln und einer abschliessenden Zusammenfassung
Laika, Andreas [Verfasser]. "Monoscopic Object-Recognition for Advanced Driver Assistance Systems / Andreas Laika." München : Verlag Dr. Hut, 2011. http://d-nb.info/1018982078/34.
Full textKühnl, Tobias [Verfasser]. "Road terrain detection for Advanced Driver Assistance Systems / Tobias Kühnl." Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1044072245/34.
Full textBacklund, Tomas. "Overtake assistance." Thesis, Linköpings universitet, Fordonssystem, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59988.
Full textRapus, Martin [Verfasser]. "Component-based Pedestrian Recognition for Advanced Driver Assistance Systems / Martin Rapus." München : Verlag Dr. Hut, 2013. http://d-nb.info/1034003232/34.
Full textEmanuelsson, Kajsa. "Examining factors for low use behavior of Advanced Driving Assistance Systems." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166400.
Full textAdvanced Driving Assistance Systems (ADAS) har potential att förhindra antalet dödsfall i trafiken. Det förekommer att förare som har systemen i sin bil, väljer bort att använda dem. Syftet med den här uppsatsen var att undersöka underliggande orsaker och faktorer till låg användningsgrad av ADAS. Uppsatsen består av två studier. Studie I är en explorativ intervjustudie med tio förare som hade bilar med ADAS. Målet med Studie I var att ringa in de möjliga bakomliggande faktorerna för låg användningsgrad av ADAS. Resultaten från Studie I användes för att utforma en enkätstudie till Studie II som var riktad till förare som hade bilar med förarstödsystemen adaptiv farthållare och körfältsassistans (N = 49). Resultaten pekar på att de underliggande orsakerna och faktorerna beror på vilken ADAS som avses samt vilket användargrupp föraren tillhör. Några underliggande faktorer för låg användingsgruppen tycks vara känsla av att behöva övervaka fordonet samt lägre grad av tilltro till den egna förmågan än vad höganvändingsgrupper rapporterade.
Auckland, Robin Allen. "The impact of advanced driver assistance systems on vehicle dynamic performance and on the driver." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/169/.
Full textGheorghe, I. V. "Semantic segmentation of terrain and road terrain for advanced driver assistance systems." Thesis, Coventry University, 2015. http://curve.coventry.ac.uk/open/items/42ddefa0-42d3-4e6e-81d4-7b84452652a5/1.
Full textAsghar, Jawaria. "Jointly Ego Motion and Road Geometry Estimation for Advanced Driver Assistance Systems." Thesis, Linköpings universitet, Reglerteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179491.
Full textReza, Tasmia. "Object Detection Using Feature Extraction and Deep Learning for Advanced Driver Assistance Systems." Thesis, Mississippi State University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841471.
Full textA comparison of performance between tradition support vector machine (SVM), single kernel, multiple kernel learning (MKL), and modern deep learning (DL) classifiers are observed in this thesis. The goal is to implement different machine-learning classification system for object detection of three-dimensional (3D) Light Detection and Ranging (LiDAR) data. The linear SVM, non linear single kernel, and MKL requires hand crafted features for training and testing their algorithm. The DL approach learns the features itself and trains the algorithm. At the end of these studies, an assessment of all the different classification methods are shown.
Kämpchen, Nico. "Feature-level fusion of laser scanner and video data for advanced driver assistance systems." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59588.
Full textEriksson, Viktor. "Evaluation of Decentralized Information Matrix Fusion for Advanced Driver-Assistance Systems in Heavy-Duty Vehicles." Thesis, KTH, Optimeringslära och systemteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191993.
Full textAvancerade förarsystem (ADAS) är en av de snabbast växande områdena inom fordonselektronik och blir mer och mer viktigt även för lastbilar. ADAS riktar sig till att ge föraren möjligheten att låta fordonet ta beslut om köningen och utföra autonoma manövrar. För att kunna utföra sådana manövrar krävs objektföljning av omkringvarande fordon. Sensorfusion inom objektföljning är tekniken att kombinera data från olika sensorer till ett värde med målet att skapa en så precis skattning av verkligheten som möjligt. Två decentraliserade informationsmatris-fusions algoritmer och en viktad minsta- kvadrat fusions algoritm för objektskattning har blivit utvärderade utifrån två simulerade omkörningar utförda av ett enskilt objekt. Den första algoritmen är optimal decentralized algorithm (ODA), som är ett optimalt informationsmatris-fusions fil- ter, den andra algoritmen är decentralized-minimum-information algorithm (DMIA), som approximerar kovariansmatrisen av residualerna från mottagna skattningar, samt den tredje algoritmen är naïve algorithm (NA), som kombinerar data från sensorerna med hjälp av viktad minsta-kvadrat fusion. Utöver detta är DMIA och NA även utvärderade på riktig sensordata från ett testfordon. Resultaten är genererade från 100 Monte Carlo körningar av simuleringarna. Residualerna för position och hastighet samt minsta-kvadrat felet är minst för ODA följt av NA och DMIA. ODA ger konsistenta skattningar under den första simulerade omkörningen men inte under den andra omkörningen. DMIA och NA är inte kon- sistenta på en 95 % signifikansnivå under någon av omkörningarna. ODA är robust och ger liknande resultat i simuleringarna med och utan sensorfel. DMIA och NA är känsliga mot sensorfel och ger instabila resultat. ODA är det klart bästa alternativet för sensorfusion inom objektföljning.
Sachdeva, Arjun. "Collective Enrichment of OpenStreetMap Spatial Data Through Vehicles Equipped with Driver Assistance Systems." Master's thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-163050.
Full textNie, Qiong. "Cumulative methods for image based driver assistance systems : applications to egomotion estimation, motion analysis and object detection." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112095/document.
Full textThis thesis is based on the detection of objects from an onboard moving camera by exploiting the monocular approach "c-velocity". This method is inspired by the method called "v-disparity" used in stereovision: both methods aim at detecting objects by approximating objects into plans with different orientations. Such approximation can avoid to estimate the depth in monocularvision. These two approaches, monocular and binocular, allow to transform the complex objet détection problem into a more simple parametric forms (eg. lines) detection in a new space, where these formes can be easily extracted using Hough Transform.The “c-velocity”, to make it effective, requires an accurate computation of optical flow and a good estimation of the focus of expansion (FOE) location. Therefore, we have studied the existing approaches of optical flow estimation and arrived at the conclusion that none of them is really powerful especially on the homogeneous regions such as road surface. In addition, the optical flow estimation methods also struggle to provide a good estimate in the case of huge displacement in the areas close to the camera. We propose in this thesis to exploit both a 3D model of the scene and a rough estimate about the vehicle speed from other integrated sensors. Using a priori knowledge allows to compensate the dominant optical flow and to facilitate the estimation of the rest part by a classical approach. In addition, three different approaches are proposed to detect the focus of expansion. Among them, we propose a novel method for estimating FOE by leveraging the flow norm and the scene structure from an inverse “c-velocity“ process. In addition to improve these preliminary steps, we also propose an acceleration and optimization of the “c-velocity“ algorithm by a multi-thread implementation. Finally, we propose a modification to the original “c-velocity“ approach in order to anticipate a possible cooperation motion/stereo, proposed in perspective, with the “v-disparity“ approach
Schennings, Jacob. "Deep Convolutional Neural Networks for Real-Time Single Frame Monocular Depth Estimation." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336923.
Full textTampère, Chris M. J. "Human-kinetic multiclass traffic flow theory and modelling. With application to Advanced Driver Assistance Systems in congestion." Diss., Delft University of Technology, 2004. http://hdl.handle.net/10919/71567.
Full textAgha, Jafari Wolde Bahareh. "A systematic Mapping study of ADAS and Autonomous Driving." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42754.
Full textMatts, Tobias, and Anton Sterner. "Vision-based Driver Assistance Systems for Teleoperation of OnRoad Vehicles : Compensating for Impaired Visual Perception Capabilities Due to Degraded Video Quality." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167146.
Full textSchulz, Andreas [Verfasser], and R. [Akademischer Betreuer] Stiefelhagen. "Video-based Pedestrian Intention Recognition and Path Prediction for Advanced Driver Assistance Systems / Andreas Schulz ; Betreuer: R. Stiefelhagen." Karlsruhe : KIT-Bibliothek, 2017. http://d-nb.info/1129258920/34.
Full textKang, Yong Suk. "Development of Predictive Vehicle Control System using Driving Environment Data for Autonomous Vehicles and Advanced Driver Assistance Systems." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85106.
Full textPh. D.
Wege, Claudia [Verfasser], Josef [Akademischer Betreuer] Krems, Josef [Gutachter] Krems, and Trent [Akademischer Betreuer] Victor. "Adaptive Eyes : Driver Distraction and Inattention PreventionThrough Advanced Driver Assistance Systems and Behaviour-Based Safety / Claudia Wege ; Gutachter: Josef Krems ; Josef Krems, Trent Victor." Chemnitz : Universitätsbibliothek Chemnitz, 2015. http://d-nb.info/1214303757/34.
Full textWege, Claudia Andrea [Verfasser], Josef [Akademischer Betreuer] Krems, Josef [Gutachter] Krems, and Trent [Akademischer Betreuer] Victor. "Adaptive Eyes : Driver Distraction and Inattention PreventionThrough Advanced Driver Assistance Systems and Behaviour-Based Safety / Claudia Wege ; Gutachter: Josef Krems ; Josef Krems, Trent Victor." Chemnitz : Universitätsbibliothek Chemnitz, 2015. http://d-nb.info/1214303757/34.
Full textWang, Xiebing [Verfasser], Alois [Akademischer Betreuer] Knoll, Kai [Gutachter] Huang, Xuehai [Gutachter] Qian, and Alois [Gutachter] Knoll. "Heterogeneous Computing for Advanced Driver Assistance Systems / Xiebing Wang ; Gutachter: Kai Huang, Xuehai Qian, Alois Knoll ; Betreuer: Alois Knoll." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1205069402/34.
Full textAlin, Andreas Berthold [Verfasser], and Martin V. [Akademischer Betreuer] Butz. "On-Board Vehicle Tracking and Behavior Anticipation for Advanced Driver Assistance Systems / Andreas Berthold Alin ; Betreuer: Martin V. Butz." Tübingen : Universitätsbibliothek Tübingen, 2014. http://d-nb.info/1196981078/34.
Full textMeuser, Tobias [Verfasser], Ralf [Akademischer Betreuer] Steinmetz, and Ioannis [Akademischer Betreuer] Stavrakakis. "Data Management in Vehicular Networks - Relevance-Aware Networking for Advanced Driver Assistance Systems / Tobias Meuser ; Ralf Steinmetz, Ioannis Stavrakakis." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/120380184X/34.
Full textLamprecht, Bernhard. "A testbed for vision based advanced driver assistance systems with special emphasis on multi-camera calibration and depth perception /." Aachen : Shaker, 2008. http://d-nb.info/990314847/04.
Full textAlin, Andreas [Verfasser], and Martin V. [Akademischer Betreuer] Butz. "On-Board Vehicle Tracking and Behavior Anticipation for Advanced Driver Assistance Systems / Andreas Berthold Alin ; Betreuer: Martin V. Butz." Tübingen : Universitätsbibliothek Tübingen, 2014. http://d-nb.info/1196981078/34.
Full textScanlon, John Michael. "Evaluating the Potential of an Intersection Driver Assistance System to Prevent U.S. Intersection Crashes." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85505.
Full textPh. D.
Otto, Carola [Verfasser]. "Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems / Carola Otto." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Full textBücs, Róbert Lajos [Verfasser], Rainer Akademischer Betreuer] Leupers, and Antonello [Akademischer Betreuer] [Monti. "Multi-scale multi-domain co-simulation for rapid prototyping of advanced driver assistance systems / Róbert Lajos Bücs ; Rainer Leupers, Antonello Monti." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1210862964/34.
Full textLamprecht, Bernhard [Verfasser]. "A Testbed for Vision-based Advanced Driver Assistance Systems with Special Emphasis on Multi-Camera Calibration and Depth Perception / Bernhard Lamprecht." Aachen : Shaker, 2008. http://d-nb.info/1161303995/34.
Full text