Academic literature on the topic 'Advanced Reactors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Advanced Reactors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Advanced Reactors"
Cabet, C., J. Jang, J. Konys, and P. F. Tortorelli. "Environmental Degradation of Materials in Advanced Reactors." MRS Bulletin 34, no. 1 (January 2009): 35–39. http://dx.doi.org/10.1557/mrs2009.10.
Full textAllen, T., H. Burlet, R. K. Nanstad, M. Samaras, and S. Ukai. "Advanced Structural Materials and Cladding." MRS Bulletin 34, no. 1 (January 2009): 20–27. http://dx.doi.org/10.1557/mrs2009.8.
Full textAlbagnac, G. "Biomass Retention in Advanced Anaerobic Reactors." Water Science and Technology 22, no. 1-2 (January 1, 1990): 17–24. http://dx.doi.org/10.2166/wst.1990.0132.
Full textSozzi, A., and F. Taghipour. "The importance of hydrodynamics in UV advanced oxidation reactors." Water Science and Technology 55, no. 12 (June 1, 2007): 53–58. http://dx.doi.org/10.2166/wst.2007.378.
Full textGolay, Michael W., and Neil E. Todreas. "Advanced Light-Water Reactors." Scientific American 262, no. 4 (April 1990): 82–89. http://dx.doi.org/10.1038/scientificamerican0490-82.
Full textGolay, M. W. "Advanced Fission Power Reactors." Annual Review of Nuclear and Particle Science 43, no. 1 (December 1993): 297–332. http://dx.doi.org/10.1146/annurev.ns.43.120193.001501.
Full textKATO, Yasuyoshi, Masaya OHTSUKA, Koji FUJIMURA, Hideaki HEKI, Kouji HIRAIWA, Masanori ARITOMI, Yoshiaki MAKIHARA, et al. "Development of Advanced Small Reactors." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 43, no. 11 (2001): 1054–99. http://dx.doi.org/10.3327/jaesj.43.1054.
Full textRiznic, Jovica, Carsten Schroer, and Yassin Hassan. "Material challenges for advanced reactors." Nuclear Engineering and Design 280 (December 2014): 651. http://dx.doi.org/10.1016/j.nucengdes.2014.06.002.
Full textCarmack, W. J., D. L. Porter, Y. I. Chang, S. L. Hayes, M. K. Meyer, D. E. Burkes, C. B. Lee, T. Mizuno, F. Delage, and J. Somers. "Metallic fuels for advanced reactors." Journal of Nuclear Materials 392, no. 2 (July 2009): 139–50. http://dx.doi.org/10.1016/j.jnucmat.2009.03.007.
Full textDutton, R., E. O. Moeck, N. J. Spinks, C. E. Coleman, B. A. Cheadle, A. D. Lane, A. I. Miller, R. A. Judd, and L. R. Lupton. "Advanced technologies for CANDU reactors." Nuclear Engineering and Design 144, no. 2 (October 1993): 269–81. http://dx.doi.org/10.1016/0029-5493(93)90143-w.
Full textDissertations / Theses on the topic "Advanced Reactors"
Sommer, Christopher. "Fuel cycle design and analysis of SABR subrcritical advanced burner reactor /." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24720.
Full textBopp, Andrew T. "The calculation of fuel bowing reactivity coefficients in a subcritical advanced burner reactor." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50295.
Full textZakova, Jitka. "Advanced fuels for thermal spectrum reactors." Doctoral thesis, KTH, Reaktorfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103085.
Full textQC 20121004
Chand, Rashmi. "Advanced oxidative wastewater treatment using cavitational reactors." Thesis, Abertay University, 2008. https://rke.abertay.ac.uk/en/studentTheses/fdce9629-7b22-43c6-9162-d03848e5df3b.
Full textElshahat, Ayah Elsayed. "Enhancing nuclear energy sustainability using advanced nuclear reactors." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/enhancing-nuclear-energy-sustainability-using-advanced-nuclear-reactors(2c39b9ca-86a9-446f-8832-ae9469485a2d).html.
Full textLange, Carsten. "Advanced nonlinear stability analysis of boiling water nuclear reactors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24954.
Full textDie vorliegende Dissertation leistet einen Beitrag zum tieferen Verständnis des nichtlinearen Stabilitätsverhaltens von Siedewasserreaktoren (SWR). Trotz der Tatsache, dass in diesem technischen System nur negative innere Rückkopplungskoeffizienten auftreten, können in bestimmten Arbeitspunkten oszillatorische Instabilitäten auftreten. Obwohl relativ gute Kenntnisse über die signifikanten physikalischen Einflussgrößen vorliegen, fehlt bisher ein umfassendes Verständnis des SWR-Stabilitätsverhaltens. Das betrifft insbesondere die Bereiche der Systemparameter, in denen lineare Stabilitätsindikatoren, wie zum Beispiel das asymptotische Decay Ratio (DR), ihren Sinn verlieren. Die nichtlineare Stabilitätsanalyse wird im Allgemeinen mit Systemcodes (nichtlineare partielle Differentialgleichungen, PDG) durchgeführt. Jedoch kann mit Systemcodes kein oder nur ein sehr lückenhafter Überblick über die Typen von nichtlinearen Phänomenen, die in bestimmten System-Parameterbereichen auftreten, erhalten werden. Deshalb wurde im Rahmen der vorliegenden Arbeit eine neuartige Methode (RAM-ROM Methode) zur nichtlinearen SWR-Stabilitätsanalyse erprobt, bei der integrale Systemcodes und sog. vereinfachte SWR-Modelle (ROM) als sich gegenseitig ergänzende Methoden eingesetzt werden, um die Stabilitätseigenschaften von Fixpunkten und periodischen Lösungen (Grenzzyklen) des nichtlinearen Differentialgleichungssystems, welches das Stabilitätsverhalten des SWR beschreibt, zu bestimmen. Das ROM, in denen das dynamische System durch gewöhnliche Differentialgleichungen (GDG) beschrieben wird, kann relativ einfach mit leistungsfähigen Methoden aus der nichtlinearen Dynamik, wie zum Beispiel die semianalytische Bifurkationsanalyse, gekoppelt werden. Mit solchen Verfahren kann, ohne das DG-System explizit lösen zu müssen, ein Überblick über mögliche Typen von stabilen und instabilen oszillatorischen Verhalten des SWR erhalten werden. Insbesondere sind die Stabilitätseigenschaften von Grenzzyklen, die in Hopf-Bifurkationspunkten entstehen, und die Bedingungen, unter denen sie auftreten, von Interesse. Mit dem Systemcode (RAMONA5) werden dann die mit dem ROM vorhergesagten Phänomene in den entsprechenden Parameterbereichen detaillierter untersucht (Validierung des ROM). Die Methodik dient daher nicht der Verfeinerung der Berechnung linearer Stabilitätsindikatoren (wie das DR). Das ROM-Gleichungssystem entsteht aus den PDGs des Systemcodes durch geeignete (nichttriviale) räumliche Mittelung der PDG. Es wird davon ausgegangen, dass die Reduzierung der räumlichen Komplexität die Stabilitätseigenschaften des SWR nicht signifikant verfälschen, da durch geeignete Mittlungsverfahren, räumliche Effekte näherungsweise in den GDGs berücksichtig werden. Beispielsweise wird die raum- und zeitabhängige Neutronenflussdichte nach räumlichen Moden entwickelt, wobei für eine Simulation der Stabilitätseigenschaften der In-phase- und Out-of-Phase-Leistungsoszillationen nur der Fundamentalmode und der erste azimuthale Mode berücksichtigt werden muss. Das ROM, welches ursprünglich am Paul Scherrer Institut (PSI, Schweiz) in Zusammenarbeit mit der Universität Illinois (USA) entwickelt wurde, ist in zwei wesentlichen Punkten erweitert und verbessert worden: • Entwicklung und Implementierung einer neuen Methode zur Berechnung der Rückkopplungsreaktivitäten • Entwicklung und Implementierung eines Modells zur Beschreibung der Rezirkulationsschleife (insbesondere wurde der Einfluss der Rezirkulationsschleife auf den In-Phase-Oszillationszustand und auf den Out-of-Phase-Oszillationszustand untersucht) • Entwicklung einer physikalisch begründeten Methode zur Berechnung der ROM-Inputdaten • Abschätzung des Einflusses des unterkühlten Siedens im Rahmen der ROM-Näherungen Mit dem erweiterten ROM wurden nichtlineare Stabilitätsanalysen für drei Arbeitspunkte (KKW Leibstadt (Zyklus 7) KKW Ringhals (Zyklus 14) und KKW Brunsbüttel (Zyklus 16)), für die Messdaten vorliegen, durchgeführt. In der Dissertationsschrift wird die RAM-ROM Methode ausführlich am Beispiel eines Arbeitspunktes (OP) des KKW Leibstadt (KKLc7_rec4-OP), in dem eine aufklingende regionale Leistungsoszillation bei einem Stabilitätstest gemessen worden ist, demonstriert. Das ROM sagt die Existenz eines Umkehrpunktes (saddle-node bifurcation of cycles, fold-bifurcation) voraus, der sich im linear stabilen Gebiet nahe der Stabilitätsgrenze befindet. Mit diesem ROM-Ergebnis ist eine neue Interpretation der Stabilitätseigenschaften des KKLc7_rec4-OP möglich. Die Resultate der in der Dissertation durchgeführten RAM-ROM Analyse bestätigen, dass das weiterentwickelte ROM für die Analyse des Stabilitätsverhaltens realer Leistungsreaktoren qualifiziert wurde
Can, Levent. "Analysis of coolant options for advanced metal cooled nuclear reactors." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FCan%5FAP.pdf.
Full textThesis Advisor(s): Craig F. Smith "December 2006." Includes bibliographical references (p. 69-70). Also available in print.
Allen, Kenneth S. "Advanced polymeric burnable poison rod assemblies for pressurized water reactors." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000628.
Full textPauli, Lisa M. "Containment building : architecture between the city and advanced nuclear reactors." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62885.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Page 127 blank Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 124-126).
Since the inception of nuclear energy research, the element thorium (Th) has been considered the superior fuel for nuclear reactions because of its potency, safety, abundance and reduced waste. Cold War agendas broke from the logic of efficient energy production to establish a nationwide network of reactors designed to enrich uranium fuel for a nuclear arsenal. Contemporary dilemmas of global warming, increasing fuel prices, carbon emissions, and anti-proliferation movements have brought the discussion of clean, safe nuclear power to the forefront of American energy policy; it is no longer tolerable or sustainable to rely on a uranium (U) nuclear network. The architectural typology of nuclear energy has not been addressed in America for 35 years and is one that belies the promise of clean energy's progress through technology and public intervention. Containment Building is an architectural response to nuclear technological advancement that challenges historical separation between nuclear power and the public. It is a self-sustained, thorium-powered nuclear plant sited in and powering New York City. It is a nuclear campus that programatically and urbanistically engages the public and contains radio isotope labs, a nuclear medicine and imaging facility, a food irradiation center, a wellness hotel and spa, an electric taxi charging station, and a plug-in park along the Hudson River waterfront.
by Lisa M. Pauli.
M.Arch.
Chaleff, Ethan S. "The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480539289737113.
Full textBooks on the topic "Advanced Reactors"
Zohuri, Bahman, and Patrick McDaniel. Advanced Smaller Modular Reactors. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3.
Full textUnited States. Congress. House. Committee on Science and Technology. Subcommittee on Energy Research and Production. Regulatory policy for advanced nuclear reactors: Report. Washington: U.S. G.P.O., 1986.
Find full textAgency, OECD Nuclear Energy, and British Nuclear Fuels Limited, eds. Advanced reactors with innovative fuels: Second workshop proceedings, Chester, United Kingdom, 22-24 October 2001. Paris: Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2002.
Find full textInternational Symposium on Advanced Nuclear Power Systems: Design, Technology, Safety and Strategies for Their Deployment (1993 Seoul, Korea). Advanced nuclear power systems: Design, technology, safety and strategies for their deployment : proceedings of an International Symposium on Advanced Nuclear Power Systems: Design, Technology, Safety and Strategies for their Deployment. Vienna: International Atomic Energy Agency, 1994.
Find full textHallbert, B. P. A study of control room staffing levels for advanced reactors. Washington, D.C: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2000.
Find full textSapra, M. K. Design, development, and testing of 25 NB size accumulator isolation passive value (AIPV) for advanced heavy water reactor (AHWR). Mumbai: Bhabha Atomic Research Centre, 2010.
Find full textUS-Japan Fusion Cooperation Program Exchange P148 Workshop on Advanced Current Drive Concepts (1988 Kyoto University). Proceedings of US-Japan Fusion Cooperation Program Exchange P148 Workshop on Advanced Current Drive Concepts, Dec. 6-8, 1988. Nagoya, Japan: Institute of Plasma Physics, Nagoya University, 1989.
Find full textInternational Topical Meeting on Advanced Reactors Safety (1994 Pittsburgh, Pa.). Proceedings of the International Topical Meeting on Advanced Reactors Safety: Pittsburgh, Pennsylvania, April 17-21, 1994. La Grange Park, Ill: American Nuclear Society, 1994.
Find full textLillington, J. N. Light water reactor safety: The development of advanced models and codes for light water reactor safety analysis. Amsterdam: Elsevier, 1995.
Find full textSapra, M. K. Functional and performance evaluation of 28 bar hot shutdown passive valve (HSPV) at integral test loop (ITL) for advanced heavy water reactor (AHWR). Mumbai: Bhabha Atomic Research Centre, 2007.
Find full textBook chapters on the topic "Advanced Reactors"
Kulsrud, R. M. "Polarized Advanced Fuel Reactors." In Muon-Catalyzed Fusion and Fusion with Polarized Nuclei, 161–68. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-5930-3_13.
Full textOsada, Hiroo, and Kiyonobu Yamashita. "Design of Advanced Reactors." In An Advanced Course in Nuclear Engineering, 231–303. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54898-0_4.
Full textZohuri, Bahman, and Patrick McDaniel. "Economics of Advanced Small Modular Reactors." In Advanced Smaller Modular Reactors, 69–102. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_3.
Full textZohuri, Bahman, and Patrick McDaniel. "Advanced Small Modular Reactor and Environment Consideration." In Advanced Smaller Modular Reactors, 135–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_5.
Full textZohuri, Bahman, and Patrick McDaniel. "Advanced Power Conversion System for Small Modular Reactors." In Advanced Smaller Modular Reactors, 103–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_4.
Full textZohuri, Bahman, and Patrick McDaniel. "Integrating Energy Storage with Advanced Small Modular Reactors." In Advanced Smaller Modular Reactors, 177–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_8.
Full textZohuri, Bahman, and Patrick McDaniel. "Safety and Nonproliferation Aspect of Advanced Small Modular Reactor." In Advanced Smaller Modular Reactors, 143–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_6.
Full textZohuri, Bahman, and Patrick McDaniel. "The Electricity: An Essential Necessity in Our Life." In Advanced Smaller Modular Reactors, 1–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_1.
Full textZohuri, Bahman, and Patrick McDaniel. "Energy Resources and the Role of Nuclear Energy." In Advanced Smaller Modular Reactors, 23–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_2.
Full textZohuri, Bahman, and Patrick McDaniel. "Reliable Electricity Grids and Renewable Source of Energy." In Advanced Smaller Modular Reactors, 165–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23682-3_7.
Full textConference papers on the topic "Advanced Reactors"
Reyes, Jose´ N., and Eric Young. "The NuScale Advanced Passive Safety Design." In ASME 2011 Small Modular Reactors Symposium. ASMEDC, 2011. http://dx.doi.org/10.1115/smr2011-6658.
Full textSmith, Curtis. "Advanced Small Modular Reactor Probabilistic Risk Assessment Framework." In ASME 2014 Small Modular Reactors Symposium. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smr2014-3332.
Full textHugo, Jacques V., and David I. Gertman. "Development of Operational Concepts for Advanced SMRs: The Role of Cognitive Systems Engineering." In ASME 2014 Small Modular Reactors Symposium. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smr2014-3395.
Full textVilim, R. B., S. Passerini, and R. Ponciroli. "Active Control and Inherently Safe Operation in Advanced SMRs." In ASME 2014 Small Modular Reactors Symposium. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smr2014-3410.
Full textSuzuki, Toshio, Toshiaki Yamaguchi, Yoshinobu Fujishiro, Masanobu Awano, and Yoshihiro Funahashi. "Recent Development of Micro Ceramic Reactors for Advanced Ceramic Reactor System." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65016.
Full textJolly, Clifford D., Leonard J. Schussel, and Layne Carter. "Advanced Development of Immobilized Enzyme Reactors." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911505.
Full textRead, J. S. Benftez, M. Jamshidi, and R. Kisner. "Advanced Control Techniques for Nuclear Reactors." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791373.
Full textKurata, Yuji, Hitoshi Yokota, and Tetsuya Suzuki. "Development of Aluminum Alloy Coating for Advanced Nuclear Systems Using Lead Alloys." In ASME 2011 Small Modular Reactors Symposium. ASMEDC, 2011. http://dx.doi.org/10.1115/smr2011-6545.
Full textLe Blanc, Katya L., and Johanna H. Oxstrand. "Initiators and Triggering Conditions for Adaptive Automation in Advanced Small Modular Reactors." In ASME 2014 Small Modular Reactors Symposium. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smr2014-3401.
Full textCetiner, Sacit M., David L. Fugate, Roger A. Kisner, Michael D. Muhlheim, and Richard T. Wood. "Development of a Supervisory Control System Concept for Advanced Small Modular Reactors." In ASME 2014 Small Modular Reactors Symposium. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smr2014-3403.
Full textReports on the topic "Advanced Reactors"
Kulsrud, R. M. Polarized advanced fuel reactors. Office of Scientific and Technical Information (OSTI), July 1987. http://dx.doi.org/10.2172/6169161.
Full textForsberg, C. (Advanced technologies for water-cooled reactors). Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6888806.
Full textBOWEN, W. W. Advanced Reactors Transition Program Resource Loaded Schedule. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/798702.
Full textDurst, Philip C., Ike Therios, Robert Bean, A. Dougan, Brian Boyer, Rick L. Wallace, Michael H. Ehinger, Don N. Kovacic, and K. Tolk. Advanced Safeguards Approaches for New Fast Reactors. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/949148.
Full textGANTT, D. A. Advanced Reactors Transition Program Resource Loaded Schedule. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/801171.
Full textKorsah, Kofi, Pradeep Ramuhalli, R. Vlim, Roger A. Kisner, Charles L. Britton, Jr, D. W. Wootan, N. C. Anheier, Jr, et al. Assessment of Sensor Technologies for Advanced Reactors. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1345781.
Full textNowlen, Steven Patrick, Victor G. Figueroa, Tara Jean Olivier, John C. Hewson, and Thomas K. Blanchat. Metal fires and their implications for advanced reactors. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1010415.
Full textGoodarz Ahmadi. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/825379.
Full textGoodarz Ahmadi. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/825380.
Full textCetiner, Sacit M., Michael D. Muhlheim, Askin Guler Yigitoglu, Randall (Randy) J. Belles, Michael Scott Greenwood, Thomas Jay Harrison, Richard S. Denning, et al. Supervisory Control System for Multi-Modular Advanced Reactors. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1615832.
Full text