Academic literature on the topic 'Aerial photogrammetry – data processing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerial photogrammetry – data processing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aerial photogrammetry – data processing"

1

Zheng, S. Y., L. Gui, X. N. Wang, and D. Ma. "A real-time photogrammetry system based on embedded architecture." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5 (June 6, 2014): 633–38. http://dx.doi.org/10.5194/isprsarchives-xl-5-633-2014.

Full text
Abstract:
In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, C., D. Yu, Y. Liang, D. Guo, Q. Wang, and X. Cui. "ASSESSMENT OF INFLUENCE OF IMAGE PROCESSING ON FULLY AUTOMATIC UAV PHOTOGRAMMETRY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (June 4, 2019): 269–75. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-269-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> Nowadays UAVs have been widely used for large scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry is more convenient, cost-effective, and responsive. Aerial images, Position and Orientation System (POS) observations and coordinates of ground control points are usually acquired during a surveying campaign. Aerial images are the data source of feature point extraction, dense matching and ortho-rectification procedures. The quality of the images is one of the most important factors that influence the accuracy and efficiency of UAV photogrammetry. Image processing techniques including image enhancement, image downsampling and image compression are usually used to improve the image quality as well as the efficiency and effectiveness of the photogrammetric data processing. However, all of these image processing techniques bring in uncertainties to the UAV photogrammetry. In this work, the influences of the aforementioned image processing techniques on the accuracy of the automatic UAV photogrammetry are investigated. The automatic photogrammetric data processing mainly consists of image matching, relative orientation, absolute orientation, dense matching, DSM interpolation and orthomosaicing. The results of the experiments show that the influences of the image processing techniques on the accuracy of automatic UAV photogrammetry are insignificant. The image orientation and surface reconstruction accuracies of the original and the enhanced images are comparable. The feature points extraction and image matching procedures are greatly influenced by image downsampling. The accuracies of the image orientations are not influenced by image downsampling and image compression at all.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Ruzgienė, Birutė, Renata Bagdžiūnaitė, and Vilma Ruginytė. "SCANNING AERIAL PHOTOS USING A NON-PROFESSIONAL SCANNER." Geodesy and Cartography 38, no. 3 (October 1, 2012): 118–21. http://dx.doi.org/10.3846/20296991.2012.728901.

Full text
Abstract:
For scanning analog aerial photographs, digital photogrammetry requires specific and expensive photogrammetric scanners. However, we only have a simple A4 format scanner useful for solving some special photogrammetric tasks applied for analyzing the possibilities of scanning photographic material. The paper investigates the peculiarities of scanning analog aerial photos using the scanner processing pictures smaller than an A4 format. The achieved results are compared with digital data obtained using a professional photogrammetric scanner. Experimental photogrammetric measurements have showed that the results of aerial photographs scanned by a nonprofessional scanner satisfy accuracy requirements for topographic mapping at a scale of 1:5000.
APA, Harvard, Vancouver, ISO, and other styles
4

Anurogo, Wenang, Muhammad Zainuddin Lubis, Hanah Khoirunnisa, Daniel Sutopo Pamungkas, Aditya Hanafi, Fajar Rizki, Ganda Surya, et al. "A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs)." Journal of Applied Geospatial Information 1, no. 01 (June 9, 2017): 11–18. http://dx.doi.org/10.30871/jagi.v1i01.360.

Full text
Abstract:
Aerial photogrammetry is one of the Alternative technologies for more detailed data, real time, fast and cheaper. Nowadays, many photogrammetric mapping methods have used UAV / unmanned drones or drones to retrieve and record data from an object in the earth. The application of drones in the field of geospatial science today is in great demand because of its relatively easy operation and relatively affordable cost compared to satellite systems especially high - resolution satellite imagery. This research aims to determine the stage or overview of data retrieval process with DJI Phantom 4 (multi - rotor quad - copter drone) with processing using third party software. This research also produces 2 - dimensional high resolution image data on the research area. Utilization of third party software (Agisoft PhotoScan) making it easier to acquire and process aerial photogrammetric data. The results of aerial photogrammetric recording with a flying altitude of 70 meters obtained high resolution images with a spatial resolution of 2 inches / pixels.
APA, Harvard, Vancouver, ISO, and other styles
5

Zawieska, Dorota, and Zdzisław Kurczyński. "Photogrammetry at the Warsaw University of Technology – Past and Present." Reports on Geodesy and Geoinformatics 100, no. 1 (June 1, 2016): 221–34. http://dx.doi.org/10.1515/rgg-2016-0015.

Full text
Abstract:
Abstract The Department of Photogrammetry, Remote Sensing and Geographic Information Systems at the Warsaw University of Technology is one of six organizational units of the Faculty of Geodesy and Cartography. The photogrammetry has been under interest of scientists in Faculty for over 90 years. The last decades has been characterized by the incredible development of photogrammetric technologies, mainly towards wide automation and popularization of derivative products for processing data acquired at satellite, aerial, and terrestrial levels. The paper presents achievements of scientists employed in Photogrammetric Research Group during last decades related to projects that were carried out in this department.
APA, Harvard, Vancouver, ISO, and other styles
6

Damian Wierzbicki and Kamil Krasuski. "Determining the Elements of Exterior Orientation in Aerial Triangulation Processing Using UAV Technology." Communications - Scientific letters of the University of Zilina 22, no. 1 (January 2, 2020): 15–24. http://dx.doi.org/10.26552/com.c.2020.1.15-24.

Full text
Abstract:
Unmanned Aerial Vehicles (UAVs) are still an interesting and current research topic in photogrammetry. An important issue in this area is determining the elements of exterior orientation of image data acquired at low altitudes. The article presents selected mathematical methods (TGC, TIC, TAD) of estimating elements of exterior orientation for image data obtained at low altitudes. The measurement data for the experimental test were recorded by the Unmanned Aerial Vehicle platform Trimble UX-5. In the framework of the test photogrammetric flight, the authors obtained 506 images and navigation data specifying the position and orientation of the Unmanned Aerial Vehicle. As a result of the research, it is proven possible to show the usefulness of the mathematical models (TGC, TIC, TAD) in estimation of elements of exterior orientation.
APA, Harvard, Vancouver, ISO, and other styles
7

Hudec, P. "Analysis of accuracy of digital elevation models created from captured data by digital photogrammetry method." Slovak Journal of Civil Engineering 19, no. 4 (December 1, 2011): 28–36. http://dx.doi.org/10.2478/v10189-011-0021-0.

Full text
Abstract:
Analysis of accuracy of digital elevation models created from captured data by digital photogrammetry methodA digital elevation model (DEM) is an important part of many geoinformatic applications. For the creation of DEM, spatial data collected by geodetic measurements in the field, photogrammetric processing of aerial survey photographs, laser scanning and secondary sources (analogue maps) are used. It is very important from a user's point of view to know the vertical accuracy of a DEM. The article describes the verification of the vertical accuracy of a DEM for the region of Medzibodrožie, which was created using digital photogrammetry for the purposes of water resources management and modeling and resolving flood cases based on geodetic measurements in the field.
APA, Harvard, Vancouver, ISO, and other styles
8

Child, Sarah F., Leigh A. Stearns, Luc Girod, and Henry H. Brecher. "Structure-From-Motion Photogrammetry of Antarctic Historical Aerial Photographs in Conjunction with Ground Control Derived from Satellite Data." Remote Sensing 13, no. 1 (December 23, 2020): 21. http://dx.doi.org/10.3390/rs13010021.

Full text
Abstract:
A longer temporal scale of Antarctic observations is vital to better understanding glacier dynamics and improving ice sheet model projections. One underutilized data source that expands the temporal scale is aerial photography, specifically imagery collected prior to 1990. However, processing Antarctic historical aerial imagery using modern photogrammetry software is difficult, as it requires precise information about the data collection process and extensive in situ ground control is required. Often, the necessary orientation metadata for older aerial imagery is lost and in situ data collection in regions like Antarctica is extremely difficult to obtain, limiting the use of traditional photogrammetric methods. Here, we test an alternative methodology to generate elevations from historical Antarctic aerial imagery. Instead of relying on pre-existing ground control, we use structure-from-motion photogrammetry techniques to process the imagery with manually derived ground control from high-resolution satellite imagery. This case study is based on vertical aerial image sets collected over Byrd Glacier, East Antarctica in December 1978 and January 1979. Our results are the oldest, highest resolution digital elevation models (DEMs) ever generated for an Antarctic glacier. We use these DEMs to estimate glacier dynamics and show that surface elevation of Byrd Glacier has been constant for the past ∼40 years.
APA, Harvard, Vancouver, ISO, and other styles
9

Aicardi, I., F. Chiabrando, N. Grasso, A. M. Lingua, F. Noardo, and A. Spanò. "UAV PHOTOGRAMMETRY WITH OBLIQUE IMAGES: FIRST ANALYSIS ON DATA ACQUISITION AND PROCESSING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 835–42. http://dx.doi.org/10.5194/isprsarchives-xli-b1-835-2016.

Full text
Abstract:
In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (e.g. including façades and building footprints). Expensive airborne cameras, installed on traditional aerial platforms, usually acquired the data. The purpose of this paper is to evaluate the possibility of acquire and use oblique images for the 3D reconstruction of a historical building, obtained by UAV (Unmanned Aerial Vehicle) and traditional COTS (Commercial Off-the-Shelf) digital cameras (more compact and lighter than generally used devices), for the realization of high-level-of-detail architectural survey. The critical issues of the acquisitions from a common UAV (flight planning strategies, ground control points, check points distribution and measurement, etc.) are described. Another important considered aspect was the evaluation of the possibility to use such systems as low cost methods for obtaining complete information from an aerial point of view in case of emergency problems or, as in the present paper, in the cultural heritage application field. The data processing was realized using SfM-based approach for point cloud generation: different dense image-matching algorithms implemented in some commercial and open source software were tested. The achieved results are analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested on the S. Maria Chapel, a part of the Novalesa Abbey (Italy).
APA, Harvard, Vancouver, ISO, and other styles
10

Aicardi, I., F. Chiabrando, N. Grasso, A. M. Lingua, F. Noardo, and A. Spanò. "UAV PHOTOGRAMMETRY WITH OBLIQUE IMAGES: FIRST ANALYSIS ON DATA ACQUISITION AND PROCESSING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 835–42. http://dx.doi.org/10.5194/isprs-archives-xli-b1-835-2016.

Full text
Abstract:
In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (e.g. including façades and building footprints). Expensive airborne cameras, installed on traditional aerial platforms, usually acquired the data. The purpose of this paper is to evaluate the possibility of acquire and use oblique images for the 3D reconstruction of a historical building, obtained by UAV (Unmanned Aerial Vehicle) and traditional COTS (Commercial Off-the-Shelf) digital cameras (more compact and lighter than generally used devices), for the realization of high-level-of-detail architectural survey. The critical issues of the acquisitions from a common UAV (flight planning strategies, ground control points, check points distribution and measurement, etc.) are described. Another important considered aspect was the evaluation of the possibility to use such systems as low cost methods for obtaining complete information from an aerial point of view in case of emergency problems or, as in the present paper, in the cultural heritage application field. The data processing was realized using SfM-based approach for point cloud generation: different dense image-matching algorithms implemented in some commercial and open source software were tested. The achieved results are analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested on the S. Maria Chapel, a part of the Novalesa Abbey (Italy).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aerial photogrammetry – data processing"

1

Ma, Ruijin. "Building model reconstruction from lidar data and aerial photographs /." Ann Arbor : UMI Dissertation Services, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1104114425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grotefendt, Richard. "Accurate and cost-effective natural resource data from super large scale aerial photography /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/5454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walstra, Jan. "Historical aerial photographs and digital photogrammetry for landslide assessment." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/2501.

Full text
Abstract:
This study demonstrates the value of historical aerial photographs as a source for monitoring long-term landslide evolution, which can be unlocked by using appropriate photogrammetric methods. The understanding of landslide mechanisms requires extensive data records; a literature review identified quantitative data on surface movements as a key element for their analysis. It is generally acknowledged that, owing to the flexibility and high degree of automation of modern digital photogrammetric techniques, it is possible to derive detailed quantitative data from aerial photographs. In spite of the relative ease of such techniques, there is only scarce research available on data quality that can be achieved using commonly available material, hence the motivation of this study. In two landslide case-studies (the Mam Tor and East Pentwyn landslides) the different types of products were explored, that can be derived from historical aerial photographs. These products comprised geomorphological maps, automatically derived elevation models (DEMs) and displacement vectors. They proved to be useful and sufficiently accurate for monitoring landslide evolution. Comparison with independent survey data showed good consistency, hence validating the techniques used. A wide range of imagery was used in terms of quality, media and format. Analysis of the combined datasets resulted in improvements to the stochastic model and establishment of a relationship between image ground resolution and data accuracy. Undetected systematic effects provided a limiting constraint to the accuracy of the derived data, but the datasets proved insufficient to quantify each factor individually. An important advancement in digital photogrammetry is image matching, which allows automation of various stages of the working chain. However, it appeared that the radiometric quality of historical images may not always assure good results, both for extracting DEMs and vectors using automatic methods. It can be concluded that the photographic archive can provide invaluable data for landslide studies, when modern photogrammetric techniques are being used. As ever, independent and appropriate checks should always be included in any photogrammetric design.
APA, Harvard, Vancouver, ISO, and other styles
4

Howard, Donald Benton. "Remote sensing, processing and transmission of data for an unmanned aerial vehicle." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA283104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thornton, Victor. "DETERMINING TIDAL CHARACTERISTICS IN A RESTORED TIDAL WETLAND USING UNMANNED AERIAL VEHICLES AND DERIVED DATA." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5369.

Full text
Abstract:
Unmanned aerial vehicle (UAV) technology was used to determine tidal extent in Kimages Creek, a restored tidal wetland located in Charles City County, Virginia. A Sensefly eBee Real-Time Kinematic UAV equipped with the Sensor Optimized for Drone Applications (SODA) camera (20-megapixel RGB sensor) was flown during a single high and low tide event in Summer 2017. Collectively, over 1,300 images were captured and processed using Pix4D. Horizontal and vertical accuracy of models created using ground control points (GCP) ranged from 0.176 m to 0.363 m. The high tide elevation model was subtracted from the low tide using the ArcMap 10.5.1 raster calculator. The positive difference was displayed to show the portion of high tide that was above the low tide. These results show that UAVs offer numerous spatial and temporal advantages, but further research is needed to determine the best method of GCP placement in areas of similar forest structure.
APA, Harvard, Vancouver, ISO, and other styles
6

Krishnan, Niranjan Rao. "A Web-Based Software Platform for Data Processing Workflows and its Applications in Aerial Data Analysis." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1562842713394706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wildschek, Reto. "Surface capture using near-real-time photogrammetry for a computer numerically controlled milling system." Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/18605.

Full text
Abstract:
During the past three years, a research project has been carried out in the Department of Mechanical Engineering at UCT, directed at developing a system to accurately reproduce three-dimensional (3D), sculptured surfaces on a three axis computer numerically controlled (CNC) milling machine. Sculptured surfaces are surfaces that cannot easily be represented mathematically. The project was divided into two parts: the development of an automatic noncontact 3D measuring system, and the development of a milling system capable of machining 30 sculptured surfaces (Back, 1988). The immediate need for such a system exists for the manufacture of medical prostheses. The writer undertook to investigate the measurement system, .with the objective to develop a non-contact measuring system that can be used to 'map' a sculptured surface so that it can be represented by a set of XYZ coordinates in the form required by the milling system developed by Back (1988). This thesis describes the development of a PC-based near-realtime photogrammetry system (PHOENICS) for surf ace capture. The topic is introduced by describing photogrammetric principles as used for non-contact measurements of objects. A number of different algorithms for image target detection, centering and matching is investigated. The approach to image matching adopted was the projection of a regular grid onto the surface with subsequent matching of conjugate grid intersections. A general algorithm which automatically detects crosses on a line and finds their accurate centres was developed. This algorithm was then extended from finding the crosses on a line, to finding all the intersection points of a grid. The algorithms were programmed in TRUE BASIC and specifically adapted for use with PHOENICS as an object point matching tool. The non-contact surface measuring technique which was developed was used in conjunction with the milling system developed by Back (1988) to replicate a test object. This test proved that the combined system is suitable for the manufacture of sculptured surf aces. The accuracy requirements for the manufacture of medical prostheses can be achieved with the combined measuring and milling system. At an object-to-camera distance of 0.5 m, points on a surface can be measured with an accuracy of approximately 0.3 mm at an interval of 5 mm. This corresponds to a relative accuracy of 1:1600. Back (1988) reported an average undercutting error of 0.46 mm for the milling system. This combines to an uncertainty of 0.55 mm. Finally, the limitations of PHOENICS at its prototype stage as a surface measuring tool are discussed, in particular the factors influencing the system's accuracy. PHOENICS is an ongoing project and the thesis is concluded by some recommendations for further research work.
APA, Harvard, Vancouver, ISO, and other styles
8

Rubio, Manuel Sánchez, Rafael G. Armengod, Luis de-Marcos, and José-Javier Martinez. "Contributions to Data Postprocessing in Sending Samples Parameters at Critical Moments on Unmanned Aerial." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595674.

Full text
Abstract:
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada
In this paper we investigate the different stages that allow us to create a model that would provide a better understanding of what happens on certain parameters that measure physical quantities related to the behavior of both, burst and reaction, unmanned aircraft as well as unmanned helicopters based on a data transmission to land via radio modem.
APA, Harvard, Vancouver, ISO, and other styles
9

Aqdus, Syed Ali. "Airborne multispectral and hyperspectral remote sensing techniques in archaeology a comparative study /." Thesis, Thesis restricted. Connect to e-thesis to view abstract, 2009. http://theses.gla.ac.uk/812/.

Full text
Abstract:
Thesis (Ph.D.) - University of Glasgow, 2009.
Ph.D. thesis submitted to the Faculty of Physical Sciences, Department of Geographical and Earth Sciences and the Faculty of Arts, Department of Archaeology, University of Glasgow, 2009. Includes bibliographical references. Print version also available.
APA, Harvard, Vancouver, ISO, and other styles
10

Fernandes, Vanessa Jordão Marcato [UNESP]. "Extração de contornos de telhados de edifícios a partir da integração de imagem aérea de alta-resolução e dados LASER, utilizando campos aleatórios de Markov." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/148686.

Full text
Abstract:
Submitted by VANESSA JORDÃO MARCATO FERNANDES null (vanessamarcato@yahoo.com.br) on 2017-01-30T18:15:29Z No. of bitstreams: 1 fernandes_vjm_tese.pdf: 25329126 bytes, checksum: 92c837eb39ae9af74c15ccf278cd2a84 (MD5)
Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-03T16:39:11Z (GMT) No. of bitstreams: 1 fernandes_vjm_dr_prud.pdf: 25329126 bytes, checksum: 92c837eb39ae9af74c15ccf278cd2a84 (MD5)
Made available in DSpace on 2017-02-03T16:39:11Z (GMT). No. of bitstreams: 1 fernandes_vjm_dr_prud.pdf: 25329126 bytes, checksum: 92c837eb39ae9af74c15ccf278cd2a84 (MD5) Previous issue date: 2016-12-19
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Esse trabalho propõe o desenvolvimento de um método para a extração automática de contornos de telhados de edifícios com a combinação de dados de Varredura a LASER Aerotransportado (VLA) e dados fotogramétricos e campos aleatórios de Markov (MRF). Inicialmente, um Modelo Digital de Superfície normalizado (MDSn) é gerado através da diferença entre o Modelo Digital de Superfície (MDS) e o Modelo Digital de Terreno (MDT), obtidos a partir da nuvem de pontos LASER. Em seguida, o MDSn é segmentado para a obtenção dos polígonos que representam objetos altos da cena. Esses polígonos são projetados na imagem para restringir o espaço de busca para a segmentação da imagem em regiões. Esse processo possibilita a extração de polígonos na imagem que representem objetos altos. O processo de identificação de contornos de telhados, em meio aos objetos altos detectados na imagem, na etapa anterior, é realizado através da otimização de uma função de energia estabelecida com base em MRF que modela propriedades específicas de contornos de telhados de edifícios. No modelo MRF são utilizados tanto os polígonos extraídos da imagem quanto os extraídos dos dados VLA. A função de energia é otimizada pelo método Algoritmo Genético (AG). O método proposto nesse trabalho foi avaliado com base em dados reais - imagens aéreas de alta resolução e dados VLA. Os resultados obtidos na avaliação experimental mostraram que a metodologia funciona adequadamente na tarefa de extrair os contornos de telhados de edifícios. A função de energia proposta associada ao método de otimização AG diferenciou corretamente os contornos de telhados de edifícios dos demais objetos altos presentes nas cenas. Os contornos de telhados extraídos apresentam boa qualidade, o que é evidenciado por meio dos índices de completeza e correção obtidos pela avaliação numérica. Com base nos índices médios obtidos para cada experimento, têm-se as médias de completeza e correção para os experimentos iguais a 90,96% e 98,99%, respectivamente. Os valores máximos de completeza e correção são de 99,19% e 99,94%, respectivamente, e os valores mínimos de 78,08% e 97,46%, respectivamente. Os menores valores de completeza estão associados às áreas de oclusão por vegetação e presença de sombras.
This paper proposes a method for the automatic extraction of building roof contours through a combination of Airborne Laser Scanner (ALS) and photogrammetric data, and Markov Random Field (MRF). Initially, a normalized digital surface model (nDSM) is generated on the basis of the difference between the digital surface model and the digital terrain model, obtained from the LiDAR point cloud. Then the nDSM is segmented to obtain the polygons representing aboveground objects. These polygons are projected onto image to restrict the search space for image segmentation into regions. This process enables the extraction of polygons in the image representing aboveground objects. Building roof contours are identified from among the aboveground objects in the image by optimizing a Markov-random-field-based energy function that embodies roof contour specific properties. In the MRF model are used both polygons extracted from image and from ALS data. The energy function is optimized by the Genetic Algorithm (GA) method. The method proposed in this work was evaluated based on real data - high-resolution aerial images and ALS data. The results obtained in the experimental evaluation showed that the methodology works adequately in the task of extracting the contours of building roofs. The proposed energy function associated with the GA optimization method correctly differentiated the building roof contours from the other high objects present in the scenes. The extracted roof contours show good quality, which is evidenced by the indexes of completeness and correctness obtained by numerical evaluation. Based on the mean indexes obtained for each experiment, the average completeness and correctness for the experiments were equal to 90.96% and 98.99%, respectively. The maximum completeness and correctness values are 99.19% and 99.94%, respectively, and the minimum values are 78.08% and 97.46%, respectively. The lowest values of completeness are associated to the vegetation occlusion areas and presence of shadows.
FAPESP: 2012/22332-2
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aerial photogrammetry – data processing"

1

Kasser, Michel. Digital Photogrammetry. London: Taylor & Francis Group Plc, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yves, Egels, ed. Digital photogrammetry. London: Taylor & Francis, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

O'Connor, R. P. 1992 compact disk aerial imagery product database market survey report. [Rome, N.Y.] (P.O. Box 4194, Rome 13442-4194): [R.P. O'Connor Consulting, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhigui, Hu. Robust estimation applied to SPACE - M. Mississauga, Ont: University of Toronto, Erindale Campus, Survey Science, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

D, Graham Ron Ph, and Graham Ron Ph D, eds. Manual of aerial survey: Primary data acquisition. Boca Raton, FL: CRC Press/Whittles Publishing, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duval, Joseph S. Data processing programs for aerial gamma-ray data. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Computational models in surveying and photogrammetry. Glasgow: Blackie, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lagerqvist, Bosse. The conservation information system: Photogrammetry as a base for designing documentation in conservation and cultural resources management. Göteborg, Sweden: Acta Universitatis Gothoburgensis, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Linder, Wilfried. Digital photogrammetry: Theory and applications. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Society for Photogrammetry and Remote Sensing (18th 1996 Vienna, Austria). International archives of photogrammetry and remote sensing = Archives internationales de photogrammétrie et de télédétection = Internationales Archiv für Photogrammetrie und Fernerkundung: [Papers presented at the ISPRS XVIII Congress, Vienna, Austria, 1996]. [Bethesda, Md.]: Committee of the XVIII International Congress for Photogrammetry and Remote Sensing, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Aerial photogrammetry – data processing"

1

Mohamad Azmi, Mohamad Aizat Asyraff, Mohd Azwan Abbas, Khairulazhar Zainuddin, Mohamad Asrul Mustafar, Mohd Zainee Zainal, Zulkepli Majid, Khairulnizam M. Idris, Mohd Farid Mohd Ariff, Lau Chong Luh, and Anuar Aspuri. "3D Data Fusion Using Unmanned Aerial Vehicle (UAV) Photogrammetry and Terrestrial Laser Scanner (TLS)." In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017 – Volume 2, 295–305. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8471-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Yanyang, Sanqing Hu, Wenhao Huang, and Jianhai Zhang. "Application of Data Augmentation Methods to Unmanned Aerial Vehicle Monitoring System for Facial Camouflage Recognition." In Neural Information Processing, 190–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70090-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tian, Jiuling. "Mountain Monitoring System Based on the Digital Photogrammetry and the Component GIS." In Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 1393–99. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nishimura, Akira. "Simulation of Long-Distance Aerial Transmissions for Robust Audio Data Hiding." In Advances in Intelligent Information Hiding and Multimedia Signal Processing, 361–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63856-0_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Zhaohua, and Jingyu Yang. "Discuss on the Teaching Reform of Photogrammetry Course Based on Data Processing Flow." In Advances in Intelligent and Soft Computing, 155–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24775-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stamatescu, Grigore, Dan Popescu, and Cristian Mateescu. "Dynamic Task Planning of Aerial Robotic Platforms for Ground Sensor Data Collection and Processing." In Advances in Intelligent Systems and Computing, 397–405. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21290-6_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pudumalar, S., S. Muthuramalingam, and R. Shanmugapriyan. "A Review and Impact of Data Mining and Image Processing Techniques for Aerial Plant Pathology." In Emerging Trends in Computing and Expert Technology, 747–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32150-5_75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lasaponara, Rosa, and Nicola Masini. "On the Processing of Aerial LiDAR Data for Supporting Enhancement, Interpretation and Mapping of Archaeological Features." In Computational Science and Its Applications - ICCSA 2011, 392–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21887-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Genge, Matthew J. "Modern techniques in illustration and recording in geology." In Geological Field Sketches and Illustrations, 267–82. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198835929.003.0016.

Full text
Abstract:
Advances in technology have enabled new methods in the acquisition and recording of field data in geology and its presentation within publications. These techniques compliment, rather than replace, traditional field observations. This chapter describes the use of photogrammetry and aerial drone surveys in constructing three-dimensional models of geological features, which provide valuable data when combined with field notes on lithology. Digital methods in the analysis and processing of images are discussed together with methods in digital drawing and painting to produce publication-ready diagrams for Earth Science. Photographs for use in publications should be corrected to ensure optimal contrast and brightness.
APA, Harvard, Vancouver, ISO, and other styles
10

Panisova, J., M. Fraštia, T. Wunderlich, and R. Pašteka. "DIGITAL PHOTOGRAMMETRY IN MICROGRAVITY DATA PROCESSING:." In Archaeological Prospection, 330–33. Verlag der österreichischen Akademie der Wissenschaften, 2013. http://dx.doi.org/10.2307/j.ctvjsf630.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aerial photogrammetry – data processing"

1

Jankauskiene, Dainora, Indrius Kuklys, Lina Kukliene, and Birute Ruzgiene. "Surface modelling of a unique heritage object: use of UAV combined with camera and LiDAR for mound inspection." In Research for Rural Development 2020. Latvia University of Life Sciences and Technologies, 2020. http://dx.doi.org/10.22616/rrd.26.2020.030.

Full text
Abstract:
Nowadays, the use of Unmanned Aerial Vehicle flying at a low altitude in conjunction with photogrammetric and LiDAR technologies allows to collect images of very high-resolution to generate dense points cloud and to simulate geospatial data of territories. The technology used in experimental research contains reconstruction of topography of surface with historical structure, observing the recreational infrastructure, obtaining geographic information for users who are involved in preservation and inspection of such unique cultural/ heritage object as are mounds in Lithuania. In order to get reliable aerial mapping products of preserved unique heritage object, such photogrammetric/ GIS procedures were performed: UAV flight for taking images with the camera; scanning surface by LiDAR simultaneously; processing of image data, 3D modelling and generation of orthophoto. Evaluation of images processing results shows that the accuracy of surface modelling by the use of UAV photogrammetry method satisfied requirements – mean RMSE equal to 0.031 m. The scanning surface by LiDAR from low altitude is advisable, relief representation of experimental area was obtained with mean accuracy up to 0.050 m. Aerial mapping by the use of UAV requires to specify appropriate ground sample distance (GSD) that is important for reducing number of images and time duration for modelling of area. Experiment shows that specified GSD of 1.7 cm is not reasonable, GSD size increased by 1.5 time would be applicable. The use of different software in addition for DSM visualization and analysis is redundant action.
APA, Harvard, Vancouver, ISO, and other styles
2

Daugėla, Ignas, Juratė Sužiedelytė Visockienė, Arminas Stanionis, Eglė Tumelienė, Urtė Antanavičiūtė, and Vladislovas Ceslovas Aksamitauskas. "Comparing Quality of Aerial Photogrammetry and 3D Laser Scanning Methods for Creating 3D Models of Objects." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.182.

Full text
Abstract:
Latest technologies are modern and productive, therefore they are increasingly becoming integral part of any engineering work. Information about real-world objects are collected very quickly and accurately using either spatial data of a terrestrial 3D laser scanners or photographic material obtained from unmanned aircraft vehicle (UAV). After processing data with special software three-dimensional spatial data of objects are obtained, which use is extensive. These data are needed for building facades measurements and inventory, construction, environmental studies, mining, archeology, civil engineering works and for building infrastructure modeling (BIM) systems that are currently being integrated in Lithuania. The result should ensure a high level of accuracy and quality. The article examines 3D modeling using different methods of the selected object. Systems characteristics, quality analysis of 3D models, recommendations and conclusions has been made.
APA, Harvard, Vancouver, ISO, and other styles
3

Wierzbicki, Damian, and Anna Fryskowska. "Radiometric Quality Assessment of Video Sequences Acquired from UAV Photogrammetric Systems." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.249.

Full text
Abstract:
The issue of imagery data collection and its implementation in photogrammetric studies with the use of unmanned aerial vehicles is still valid and provides a wide field of research in the creation of new and expansion of existing solutions. It is particularly important to increase the accuracy of photogrammetric products. These days low altitude unmanned aerial vehicles are being used more and more often in photogrammetric applications. Compact digital cameras had acquired single, high-resolution imagery. Data obtained from low altitudes were often (and still are) used in mapping and 3D modelling. Due to the low costs of flights of UAV systems in comparison with traditional flights, applications of such platforms are also attractive for many remote sensing applications. However, due to the use of non-metric video cameras, one of the main problems when trying to automate the video data processing, is the video sequences’ relatively poor radiometric quality. The article addresses the issue of assessing the quality of the video imagery acquired from a low altitude UAV platform. The Authors presented quality Indicators dedicated to UAV video sequences. The method is based on the analysis of the video stream, obtained in the different weather and lighting conditions. As a result of the research, an objective quality index for video acquired from low altitudes was determined.
APA, Harvard, Vancouver, ISO, and other styles
4

Grigoriev, Gleb, Vladimir Gulin, Alexei Nikitin, Nikita Sivoy, Eugene Bondarev, Marat Islamuratov, Oksana Zakharova, Igor Karpov, Evgenii Liubimov, and Vladislav Votsalevskiy. "Integrated Droneborne Geophysics Application as a Tool for Exploration Optimization. Case Studies." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206250-ms.

Full text
Abstract:
Abstract Unmanned aerial vehicles (UAV) have a great potential for geological exploration optimization at all stages. This study considers UAV implementation at different exploration stage. Integrated approach using unmanned aerial systems shows great effectiveness based on the completed surveys. Low-depth electrical exploration using the shallow electrical exploration method is one of the possible UAVs technologies with great potential. In this study there are several cases describing main field data acquisition, models and cross-sections processing. Unmanned aerial systems are applicable at all stages of the oil and gas value chain and are already an integral part of oil&gas production process. Now there are more than 70 unmanned aerial systems application scenarios. The main advantages of drones are that the use of this operational data collection tool allows: – to reduce the duration of collecting geospatial data by 70%, and the cost by 3 times; – make the best decisions quickly; – to realize additional potential for increasing efficiency (application at all stages of the production chain) – increase the production processes safety level The most promising and actively developing areas of technology application are: Geophysical surveys at different stages of geological exploration. Drones have great potential for application in non-seismic exploration methods in the early stages of geological exploration. In addition, UAV surveys are suitable for planning geological exploration and working out the conceptual arrangement of the terrain. The presence of an accurate digital elevation model at the start of work of the project team makes it possible to remove a number of uncertainties and questions about conducting field work on seismic exploration, the placement of infrastructure and corridor communications. Objective control of the capital construction progress. Another important area of drones application is aerial photography at all stages of capital construction. With the help of UAVs, it is possible to control such parameters as the status and quality of construction and installation works, equipment of contractors, compliance with safety and environmental standards, and others. To do this, the unmanned vehicle flies around the object with a given regularity, filming it from different angles. After aerial photography, special software stitches the results into photogrammetric products (digital terrain model, orthophotomaps, 3D models) with an accuracy of 4–6 centimeters. On the constructed models, you can calculate the dynamics by one or another parameter. Operational fieldwork and intrastructure monitoring. At the same time, one of the key goals of technology application is the creation of a network of autonomous stations with drones at all assets for remote control of the company's production processes. The first step in this direction was the joint pilot testing of an automated take-off and landing station with an unmanned aerial vehicle of a multi-rotor type. The use of the station will reduce the time and cost of collecting data on capital construction and infrastructure. Project teams will be able to react faster to changes. An automated take-off and landing station allows the use of unmanned aerial vehicles without human intervention. The drone can independently take off, perform the necessary operations, land and recharge. Thus, flight operations and data collection can be performed remotely without the constant presence of a specialist on site.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Dandan, Qianwei Hu, and Yanming Li. "The application of simulation platform and innovation of aerial photogrammetry." In Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015), edited by Jianguo Liu and Hong Sun. SPIE, 2015. http://dx.doi.org/10.1117/12.2205230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Congress, Surya Sarat Chandra, Prince Kumar, Ujwalkumar D. Patil, Tejo V. Bheemasetti, and Anand J. Puppala. "Three-Dimensional Stability Analysis of Rock Slope Using Aerial Photogrammetry Data." In Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482810.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ranieri, G., A. Trogu, F. Loddo, L. Piroddi, and M. Cogoni. "Digital Museum from Integrated 3D Aerial Photogrammetry, Laser Scanner and Geophysics Data." In 24th European Meeting of Environmental and Engineering Geophysics. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Zhenli, and Xiuxiao Yuan. "Accuracy analysis of exterior orientation elements on vertical parallax in POS-supported aerial photogrammetry." In International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, edited by Yaolin Liu and Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.838417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xiao, Junyong Fang, Jingyu Ma, Xiaohong Zhang, Dong Zhao, and Xue Liu. "Research on calibration method of axis-shift multi-camera for aerial photogrammetry." In Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015), edited by Jianguo Liu and Hong Sun. SPIE, 2015. http://dx.doi.org/10.1117/12.2205220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bobkowska, Katarzyna, Adam Inglot, Marek Przyborski, Jedrzej Sieniakowski, and Paweł Tysiac. "Low-Level Aerial Photogrammetry as a Source of Supplementary Data for ALS Measurements." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.168.

Full text
Abstract:
The development of laser scanning technology ALS allows to make high-resolution measurements for large areas result-ing in significant reduction of costs. The main stakeholders at heights data received from the airborne laser scanning is mainly state administration. The state institutions appear among projects such as ISOK. Each point is classified in ac-cordance with the standard LAS 1.2, our research focuses on the class 6 – buildings. In the project ISOK, the buildings are not measured in whole (from every side). A typical way to measure the missing elements is to increase the coverage of the cross and additional raids which unfortunately increases the cost measurements. An alternative solution density point clouds ALS is the use of optical scanning and UAV. The article shows the process of density the point clouds coming from ALS using point cloud obtained through optical scanning. The methods that illustrate the process of compaction data format LAS using the following methods: point cloud having field coordinates in the system compatible with the system of clouds acquired with ALS, point cloud in the local system, point cloud in the local system without the scale. The file size, depending on the density of the point cloud was analyzed.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aerial photogrammetry – data processing"

1

Bruder, Brittany L., Katherine L. Brodie, Tyler J. Hesser, Nicholas J. Spore, Matthew W. Farthing, and Alexander D. Renaud. guiBath y : A Graphical User Interface to Estimate Nearshore Bathymetry from Hovering Unmanned Aerial System Imagery. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39700.

Full text
Abstract:
This US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, technical report details guiBathy, a graphical user interface to estimate nearshore bathymetry from imagery collected via a hovering Unmanned Aerial System (UAS). guiBathy provides an end-to-end solution for non-subject-matter-experts to utilize commercia-off-the-shelf UAS to collect quantitative imagery of the nearshore by packaging robust photogrammetric and signal-processing algorithms into an easy-to-use software interface. This report begins by providing brief background on coastal imaging and the photogrammetry and bathymetric inversion algorithms guiBathy utilizes, as well as UAS data collection requirements. The report then describes guiBathy software specifications, features, and workflow. Example guiBathy applications conclude the report with UAS bathymetry measurements taken during the 2020 Atlantic Hurricane Season, which compare favorably (root mean square error = 0.44 to 0.72 m; bias = -0.35 to -0.11 m) with in situ survey measurements. guiBathy is a standalone executable software for Windows 10 platforms and will be freely available at www.github.com/erdc.
APA, Harvard, Vancouver, ISO, and other styles
2

Fernandes, R. A., F. Canisius, S. G. Leblanc, M. Maloley, S. Oakes, C. Prévost, and C. Schmidt. Assessment of UAV-based photogrammetry for snow-depth mapping: data collection and processing. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ridgard, Chris. Complex Structures for Manned/Unmanned Aerial Vehicles. Delivery Order 0019: Low Temp Composite Processing Mechanical Property Data. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada477586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smyre, J. L., M. E. Hodgson, B. W. Moll, A. L. King, and Yang Cheng. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/204019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.

Full text
Abstract:
The Mobility in Complex Environments project used unmanned aerial systems (UAS) to identify obstacles and to provide path planning in forward operational locations. The UAS were equipped with remote-sensing devices, such as photogrammetry and lidar, to identify obstacles. The path-planning algorithms incorporated the detected obstacles to then identify the fastest and safest vehicle routes. Future algorithms should incorporate vehicle characteristics as each type of vehicle will perform differently over a given obstacle, resulting in distinctive optimal paths. This study explored the effect of snow-covered obstacles on dynamic vehicle response. Vehicle tests used an instrumented HMMWV (high mobility multipurpose wheeled vehicle) driven over obstacles with and without snow cover. Tests showed a 45% reduction in normal force variation and a 43% reduction in body acceleration associated with a 14.5 cm snow cover. To predict vehicle body acceleration and normal force response, we developed two quarter-car models: rigid terrain and deformable snow terrain quarter-car models. The simple quarter models provided reasonable agreement with the vehicle test data. We also used the models to analyze the effects of vehicle parameters, such as ground pressure, to understand the effect of snow cover on vehicle response.
APA, Harvard, Vancouver, ISO, and other styles
6

Berney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman, and John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.

Full text
Abstract:
The ability to remotely assess road and airfield pavement condition is critical to dynamic basing, contingency deployment, convoy entry and sustainment, and post-attack reconnaissance. Current Army processes to evaluate surface condition are time-consuming and require Soldier presence. Recent developments in the area of photogrammetry and light detection and ranging (LiDAR) enable rapid generation of three-dimensional point cloud models of the pavement surface. Point clouds were generated from data collected on a series of asphalt, concrete, and unsurfaced pavements using ground- and aerial-based sensors. ERDC-developed algorithms automatically discretize the pavement surface into cross- and grid-based sections to identify physical surface distresses such as depressions, ruts, and cracks. Depressions can be sized from the point-to-point distances bounding each depression, and surface roughness is determined based on the point heights along a given cross section. Noted distresses are exported to a distress map file containing only the distress points and their locations for later visualization and quality control along with classification and quantification. Further research and automation into point cloud analysis is ongoing with the goal of enabling Soldiers with limited training the capability to rapidly assess pavement surface condition from a remote platform.
APA, Harvard, Vancouver, ISO, and other styles
7

Lasko, Kristofer, and Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.

Full text
Abstract:
Monitoring the impacts of ecosystem restoration strategies requires both short-term and long-term land surface monitoring. The combined use of unmanned aerial systems (UAS) and satellite imagery enable effective landscape and natural resource management. However, processing, analyzing, and creating derivative imagery products can be time consuming, manually intensive, and cost prohibitive. In order to provide fast, accurate, and standardized UAS and satellite imagery processing, we have developed a suite of easy-to-use tools integrated into the graphical user interface (GUI) of ArcMap and ArcGIS Pro as well as open-source solutions using NodeOpenDroneMap. We built the Monitoring Ecological Restoration with Imagery Tools (MERIT) using Python and leveraging third-party libraries and open-source software capabilities typically unavailable within ArcGIS. MERIT will save US Army Corps of Engineers (USACE) districts significant time in data acquisition, processing, and analysis by allowing a user to move from image acquisition and preprocessing to a final output for decision-making with one application. Although we designed MERIT for use in wetlands research, many tools have regional or global relevancy for a variety of environmental monitoring initiatives.
APA, Harvard, Vancouver, ISO, and other styles
8

Berney, Ernest, Andrew Ward, and Naveen Ganesh. First generation automated assessment of airfield damage using LiDAR point clouds. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40042.

Full text
Abstract:
This research developed an automated software technique for identifying type, size, and location of man-made airfield damage including craters, spalls, and camouflets from a digitized three-dimensional point cloud of the airfield surface. Point clouds were initially generated from Light Detection and Ranging (LiDAR) sensors mounted on elevated lifts to simulate aerial data collection and, later, an actual unmanned aerial system. LiDAR data provided a high-resolution, globally positioned, and dimensionally scaled point cloud exported in a LAS file format that was automatically retrieved and processed using volumetric detection algorithms developed in the MATLAB software environment. Developed MATLAB algorithms used a three-stage filling technique to identify the boundaries of craters first, then spalls, then camouflets, and scaled their sizes based on the greatest pointwise extents. All pavement damages and their locations were saved as shapefiles and uploaded into the GeoExPT processing environment for visualization and quality control. This technique requires no user input between data collection and GeoExPT visualization, allowing for a completely automated software analysis with all filters and data processing hidden from the user.
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.

Full text
Abstract:
Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography