Academic literature on the topic 'Aerial photogrammetry – data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerial photogrammetry – data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aerial photogrammetry – data processing"
Zheng, S. Y., L. Gui, X. N. Wang, and D. Ma. "A real-time photogrammetry system based on embedded architecture." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5 (June 6, 2014): 633–38. http://dx.doi.org/10.5194/isprsarchives-xl-5-633-2014.
Full textFeng, C., D. Yu, Y. Liang, D. Guo, Q. Wang, and X. Cui. "ASSESSMENT OF INFLUENCE OF IMAGE PROCESSING ON FULLY AUTOMATIC UAV PHOTOGRAMMETRY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (June 4, 2019): 269–75. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-269-2019.
Full textRuzgienė, Birutė, Renata Bagdžiūnaitė, and Vilma Ruginytė. "SCANNING AERIAL PHOTOS USING A NON-PROFESSIONAL SCANNER." Geodesy and Cartography 38, no. 3 (October 1, 2012): 118–21. http://dx.doi.org/10.3846/20296991.2012.728901.
Full textAnurogo, Wenang, Muhammad Zainuddin Lubis, Hanah Khoirunnisa, Daniel Sutopo Pamungkas, Aditya Hanafi, Fajar Rizki, Ganda Surya, et al. "A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs)." Journal of Applied Geospatial Information 1, no. 01 (June 9, 2017): 11–18. http://dx.doi.org/10.30871/jagi.v1i01.360.
Full textZawieska, Dorota, and Zdzisław Kurczyński. "Photogrammetry at the Warsaw University of Technology – Past and Present." Reports on Geodesy and Geoinformatics 100, no. 1 (June 1, 2016): 221–34. http://dx.doi.org/10.1515/rgg-2016-0015.
Full textDamian Wierzbicki and Kamil Krasuski. "Determining the Elements of Exterior Orientation in Aerial Triangulation Processing Using UAV Technology." Communications - Scientific letters of the University of Zilina 22, no. 1 (January 2, 2020): 15–24. http://dx.doi.org/10.26552/com.c.2020.1.15-24.
Full textHudec, P. "Analysis of accuracy of digital elevation models created from captured data by digital photogrammetry method." Slovak Journal of Civil Engineering 19, no. 4 (December 1, 2011): 28–36. http://dx.doi.org/10.2478/v10189-011-0021-0.
Full textChild, Sarah F., Leigh A. Stearns, Luc Girod, and Henry H. Brecher. "Structure-From-Motion Photogrammetry of Antarctic Historical Aerial Photographs in Conjunction with Ground Control Derived from Satellite Data." Remote Sensing 13, no. 1 (December 23, 2020): 21. http://dx.doi.org/10.3390/rs13010021.
Full textAicardi, I., F. Chiabrando, N. Grasso, A. M. Lingua, F. Noardo, and A. Spanò. "UAV PHOTOGRAMMETRY WITH OBLIQUE IMAGES: FIRST ANALYSIS ON DATA ACQUISITION AND PROCESSING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 835–42. http://dx.doi.org/10.5194/isprsarchives-xli-b1-835-2016.
Full textAicardi, I., F. Chiabrando, N. Grasso, A. M. Lingua, F. Noardo, and A. Spanò. "UAV PHOTOGRAMMETRY WITH OBLIQUE IMAGES: FIRST ANALYSIS ON DATA ACQUISITION AND PROCESSING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 835–42. http://dx.doi.org/10.5194/isprs-archives-xli-b1-835-2016.
Full textDissertations / Theses on the topic "Aerial photogrammetry – data processing"
Ma, Ruijin. "Building model reconstruction from lidar data and aerial photographs /." Ann Arbor : UMI Dissertation Services, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1104114425.
Full textGrotefendt, Richard. "Accurate and cost-effective natural resource data from super large scale aerial photography /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/5454.
Full textWalstra, Jan. "Historical aerial photographs and digital photogrammetry for landslide assessment." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/2501.
Full textHoward, Donald Benton. "Remote sensing, processing and transmission of data for an unmanned aerial vehicle." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA283104.
Full textThornton, Victor. "DETERMINING TIDAL CHARACTERISTICS IN A RESTORED TIDAL WETLAND USING UNMANNED AERIAL VEHICLES AND DERIVED DATA." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5369.
Full textKrishnan, Niranjan Rao. "A Web-Based Software Platform for Data Processing Workflows and its Applications in Aerial Data Analysis." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1562842713394706.
Full textWildschek, Reto. "Surface capture using near-real-time photogrammetry for a computer numerically controlled milling system." Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/18605.
Full textRubio, Manuel Sánchez, Rafael G. Armengod, Luis de-Marcos, and José-Javier Martinez. "Contributions to Data Postprocessing in Sending Samples Parameters at Critical Moments on Unmanned Aerial." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595674.
Full textIn this paper we investigate the different stages that allow us to create a model that would provide a better understanding of what happens on certain parameters that measure physical quantities related to the behavior of both, burst and reaction, unmanned aircraft as well as unmanned helicopters based on a data transmission to land via radio modem.
Aqdus, Syed Ali. "Airborne multispectral and hyperspectral remote sensing techniques in archaeology a comparative study /." Thesis, Thesis restricted. Connect to e-thesis to view abstract, 2009. http://theses.gla.ac.uk/812/.
Full textPh.D. thesis submitted to the Faculty of Physical Sciences, Department of Geographical and Earth Sciences and the Faculty of Arts, Department of Archaeology, University of Glasgow, 2009. Includes bibliographical references. Print version also available.
Fernandes, Vanessa Jordão Marcato [UNESP]. "Extração de contornos de telhados de edifícios a partir da integração de imagem aérea de alta-resolução e dados LASER, utilizando campos aleatórios de Markov." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/148686.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-03T16:39:11Z (GMT) No. of bitstreams: 1 fernandes_vjm_dr_prud.pdf: 25329126 bytes, checksum: 92c837eb39ae9af74c15ccf278cd2a84 (MD5)
Made available in DSpace on 2017-02-03T16:39:11Z (GMT). No. of bitstreams: 1 fernandes_vjm_dr_prud.pdf: 25329126 bytes, checksum: 92c837eb39ae9af74c15ccf278cd2a84 (MD5) Previous issue date: 2016-12-19
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Esse trabalho propõe o desenvolvimento de um método para a extração automática de contornos de telhados de edifícios com a combinação de dados de Varredura a LASER Aerotransportado (VLA) e dados fotogramétricos e campos aleatórios de Markov (MRF). Inicialmente, um Modelo Digital de Superfície normalizado (MDSn) é gerado através da diferença entre o Modelo Digital de Superfície (MDS) e o Modelo Digital de Terreno (MDT), obtidos a partir da nuvem de pontos LASER. Em seguida, o MDSn é segmentado para a obtenção dos polígonos que representam objetos altos da cena. Esses polígonos são projetados na imagem para restringir o espaço de busca para a segmentação da imagem em regiões. Esse processo possibilita a extração de polígonos na imagem que representem objetos altos. O processo de identificação de contornos de telhados, em meio aos objetos altos detectados na imagem, na etapa anterior, é realizado através da otimização de uma função de energia estabelecida com base em MRF que modela propriedades específicas de contornos de telhados de edifícios. No modelo MRF são utilizados tanto os polígonos extraídos da imagem quanto os extraídos dos dados VLA. A função de energia é otimizada pelo método Algoritmo Genético (AG). O método proposto nesse trabalho foi avaliado com base em dados reais - imagens aéreas de alta resolução e dados VLA. Os resultados obtidos na avaliação experimental mostraram que a metodologia funciona adequadamente na tarefa de extrair os contornos de telhados de edifícios. A função de energia proposta associada ao método de otimização AG diferenciou corretamente os contornos de telhados de edifícios dos demais objetos altos presentes nas cenas. Os contornos de telhados extraídos apresentam boa qualidade, o que é evidenciado por meio dos índices de completeza e correção obtidos pela avaliação numérica. Com base nos índices médios obtidos para cada experimento, têm-se as médias de completeza e correção para os experimentos iguais a 90,96% e 98,99%, respectivamente. Os valores máximos de completeza e correção são de 99,19% e 99,94%, respectivamente, e os valores mínimos de 78,08% e 97,46%, respectivamente. Os menores valores de completeza estão associados às áreas de oclusão por vegetação e presença de sombras.
This paper proposes a method for the automatic extraction of building roof contours through a combination of Airborne Laser Scanner (ALS) and photogrammetric data, and Markov Random Field (MRF). Initially, a normalized digital surface model (nDSM) is generated on the basis of the difference between the digital surface model and the digital terrain model, obtained from the LiDAR point cloud. Then the nDSM is segmented to obtain the polygons representing aboveground objects. These polygons are projected onto image to restrict the search space for image segmentation into regions. This process enables the extraction of polygons in the image representing aboveground objects. Building roof contours are identified from among the aboveground objects in the image by optimizing a Markov-random-field-based energy function that embodies roof contour specific properties. In the MRF model are used both polygons extracted from image and from ALS data. The energy function is optimized by the Genetic Algorithm (GA) method. The method proposed in this work was evaluated based on real data - high-resolution aerial images and ALS data. The results obtained in the experimental evaluation showed that the methodology works adequately in the task of extracting the contours of building roofs. The proposed energy function associated with the GA optimization method correctly differentiated the building roof contours from the other high objects present in the scenes. The extracted roof contours show good quality, which is evidenced by the indexes of completeness and correctness obtained by numerical evaluation. Based on the mean indexes obtained for each experiment, the average completeness and correctness for the experiments were equal to 90.96% and 98.99%, respectively. The maximum completeness and correctness values are 99.19% and 99.94%, respectively, and the minimum values are 78.08% and 97.46%, respectively. The lowest values of completeness are associated to the vegetation occlusion areas and presence of shadows.
FAPESP: 2012/22332-2
Books on the topic "Aerial photogrammetry – data processing"
O'Connor, R. P. 1992 compact disk aerial imagery product database market survey report. [Rome, N.Y.] (P.O. Box 4194, Rome 13442-4194): [R.P. O'Connor Consulting, 1993.
Find full textZhigui, Hu. Robust estimation applied to SPACE - M. Mississauga, Ont: University of Toronto, Erindale Campus, Survey Science, 1989.
Find full textD, Graham Ron Ph, and Graham Ron Ph D, eds. Manual of aerial survey: Primary data acquisition. Boca Raton, FL: CRC Press/Whittles Publishing, 2002.
Find full textDuval, Joseph S. Data processing programs for aerial gamma-ray data. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1985.
Find full textLagerqvist, Bosse. The conservation information system: Photogrammetry as a base for designing documentation in conservation and cultural resources management. Göteborg, Sweden: Acta Universitatis Gothoburgensis, 1996.
Find full textLinder, Wilfried. Digital photogrammetry: Theory and applications. Berlin: Springer, 2003.
Find full textInternational Society for Photogrammetry and Remote Sensing (18th 1996 Vienna, Austria). International archives of photogrammetry and remote sensing = Archives internationales de photogrammétrie et de télédétection = Internationales Archiv für Photogrammetrie und Fernerkundung: [Papers presented at the ISPRS XVIII Congress, Vienna, Austria, 1996]. [Bethesda, Md.]: Committee of the XVIII International Congress for Photogrammetry and Remote Sensing, 1996.
Find full textBook chapters on the topic "Aerial photogrammetry – data processing"
Mohamad Azmi, Mohamad Aizat Asyraff, Mohd Azwan Abbas, Khairulazhar Zainuddin, Mohamad Asrul Mustafar, Mohd Zainee Zainal, Zulkepli Majid, Khairulnizam M. Idris, Mohd Farid Mohd Ariff, Lau Chong Luh, and Anuar Aspuri. "3D Data Fusion Using Unmanned Aerial Vehicle (UAV) Photogrammetry and Terrestrial Laser Scanner (TLS)." In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017 – Volume 2, 295–305. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8471-3_29.
Full textLi, Yanyang, Sanqing Hu, Wenhao Huang, and Jianhai Zhang. "Application of Data Augmentation Methods to Unmanned Aerial Vehicle Monitoring System for Facial Camouflage Recognition." In Neural Information Processing, 190–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70090-8_20.
Full textTian, Jiuling. "Mountain Monitoring System Based on the Digital Photogrammetry and the Component GIS." In Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 1393–99. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_164.
Full textNishimura, Akira. "Simulation of Long-Distance Aerial Transmissions for Robust Audio Data Hiding." In Advances in Intelligent Information Hiding and Multimedia Signal Processing, 361–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63856-0_44.
Full textLiu, Zhaohua, and Jingyu Yang. "Discuss on the Teaching Reform of Photogrammetry Course Based on Data Processing Flow." In Advances in Intelligent and Soft Computing, 155–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24775-0_24.
Full textStamatescu, Grigore, Dan Popescu, and Cristian Mateescu. "Dynamic Task Planning of Aerial Robotic Platforms for Ground Sensor Data Collection and Processing." In Advances in Intelligent Systems and Computing, 397–405. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21290-6_40.
Full textPudumalar, S., S. Muthuramalingam, and R. Shanmugapriyan. "A Review and Impact of Data Mining and Image Processing Techniques for Aerial Plant Pathology." In Emerging Trends in Computing and Expert Technology, 747–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32150-5_75.
Full textLasaponara, Rosa, and Nicola Masini. "On the Processing of Aerial LiDAR Data for Supporting Enhancement, Interpretation and Mapping of Archaeological Features." In Computational Science and Its Applications - ICCSA 2011, 392–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21887-3_31.
Full textGenge, Matthew J. "Modern techniques in illustration and recording in geology." In Geological Field Sketches and Illustrations, 267–82. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198835929.003.0016.
Full textPanisova, J., M. Fraštia, T. Wunderlich, and R. Pašteka. "DIGITAL PHOTOGRAMMETRY IN MICROGRAVITY DATA PROCESSING:." In Archaeological Prospection, 330–33. Verlag der österreichischen Akademie der Wissenschaften, 2013. http://dx.doi.org/10.2307/j.ctvjsf630.125.
Full textConference papers on the topic "Aerial photogrammetry – data processing"
Jankauskiene, Dainora, Indrius Kuklys, Lina Kukliene, and Birute Ruzgiene. "Surface modelling of a unique heritage object: use of UAV combined with camera and LiDAR for mound inspection." In Research for Rural Development 2020. Latvia University of Life Sciences and Technologies, 2020. http://dx.doi.org/10.22616/rrd.26.2020.030.
Full textDaugėla, Ignas, Juratė Sužiedelytė Visockienė, Arminas Stanionis, Eglė Tumelienė, Urtė Antanavičiūtė, and Vladislovas Ceslovas Aksamitauskas. "Comparing Quality of Aerial Photogrammetry and 3D Laser Scanning Methods for Creating 3D Models of Objects." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.182.
Full textWierzbicki, Damian, and Anna Fryskowska. "Radiometric Quality Assessment of Video Sequences Acquired from UAV Photogrammetric Systems." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.249.
Full textGrigoriev, Gleb, Vladimir Gulin, Alexei Nikitin, Nikita Sivoy, Eugene Bondarev, Marat Islamuratov, Oksana Zakharova, Igor Karpov, Evgenii Liubimov, and Vladislav Votsalevskiy. "Integrated Droneborne Geophysics Application as a Tool for Exploration Optimization. Case Studies." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206250-ms.
Full textLiu, Dandan, Qianwei Hu, and Yanming Li. "The application of simulation platform and innovation of aerial photogrammetry." In Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015), edited by Jianguo Liu and Hong Sun. SPIE, 2015. http://dx.doi.org/10.1117/12.2205230.
Full textCongress, Surya Sarat Chandra, Prince Kumar, Ujwalkumar D. Patil, Tejo V. Bheemasetti, and Anand J. Puppala. "Three-Dimensional Stability Analysis of Rock Slope Using Aerial Photogrammetry Data." In Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482810.041.
Full textRanieri, G., A. Trogu, F. Loddo, L. Piroddi, and M. Cogoni. "Digital Museum from Integrated 3D Aerial Photogrammetry, Laser Scanner and Geophysics Data." In 24th European Meeting of Environmental and Engineering Geophysics. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802469.
Full textWu, Zhenli, and Xiuxiao Yuan. "Accuracy analysis of exterior orientation elements on vertical parallax in POS-supported aerial photogrammetry." In International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, edited by Yaolin Liu and Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.838417.
Full textWang, Xiao, Junyong Fang, Jingyu Ma, Xiaohong Zhang, Dong Zhao, and Xue Liu. "Research on calibration method of axis-shift multi-camera for aerial photogrammetry." In Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015), edited by Jianguo Liu and Hong Sun. SPIE, 2015. http://dx.doi.org/10.1117/12.2205220.
Full textBobkowska, Katarzyna, Adam Inglot, Marek Przyborski, Jedrzej Sieniakowski, and Paweł Tysiac. "Low-Level Aerial Photogrammetry as a Source of Supplementary Data for ALS Measurements." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.168.
Full textReports on the topic "Aerial photogrammetry – data processing"
Bruder, Brittany L., Katherine L. Brodie, Tyler J. Hesser, Nicholas J. Spore, Matthew W. Farthing, and Alexander D. Renaud. guiBath y : A Graphical User Interface to Estimate Nearshore Bathymetry from Hovering Unmanned Aerial System Imagery. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39700.
Full textFernandes, R. A., F. Canisius, S. G. Leblanc, M. Maloley, S. Oakes, C. Prévost, and C. Schmidt. Assessment of UAV-based photogrammetry for snow-depth mapping: data collection and processing. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300553.
Full textRidgard, Chris. Complex Structures for Manned/Unmanned Aerial Vehicles. Delivery Order 0019: Low Temp Composite Processing Mechanical Property Data. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada477586.
Full textSmyre, J. L., M. E. Hodgson, B. W. Moll, A. L. King, and Yang Cheng. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/204019.
Full textBodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.
Full textBerney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman, and John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.
Full textLasko, Kristofer, and Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.
Full textBerney, Ernest, Andrew Ward, and Naveen Ganesh. First generation automated assessment of airfield damage using LiDAR point clouds. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40042.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text