Academic literature on the topic 'Aerial photography in ecology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerial photography in ecology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aerial photography in ecology"

1

Scott, Samantha L., Rick Rohde, and Timm Hoffman. "Repeat Landscape Photography, Historical Ecology and the Wonder of Digital Archives in Southern Africa." African Research & Documentation 131 (2017): 35–47. http://dx.doi.org/10.1017/s0305862x00022512.

Full text
Abstract:
Environmental history projects using repeat photography often involve the acquisition of large collections of historical and current images, matching those images for comparative analysis, and then cataloguing and archiving the imagery for long-term storage and later use (Webb et ah, 2010). When used in combination with other techniques, repeat photography is an excellent tool for documenting change (Gruell, 2010) and has been used in a variety of disciplines, including historical ecology, to determine changes in plant populations, soil erosion, climate trends and ecological processes to name a few. Historical photographs often provide greater temporal range to an analysis compared to, for example, satellite imagery and in many cases even aerial photography (Gruell, 2010).
APA, Harvard, Vancouver, ISO, and other styles
2

Scott, Samantha L., Rick Rohde, and Timm Hoffman. "Repeat Landscape Photography, Historical Ecology and the Wonder of Digital Archives in Southern Africa." African Research & Documentation 131 (2017): 35–47. http://dx.doi.org/10.1017/s0305862x00022512.

Full text
Abstract:
Environmental history projects using repeat photography often involve the acquisition of large collections of historical and current images, matching those images for comparative analysis, and then cataloguing and archiving the imagery for long-term storage and later use (Webb et ah, 2010). When used in combination with other techniques, repeat photography is an excellent tool for documenting change (Gruell, 2010) and has been used in a variety of disciplines, including historical ecology, to determine changes in plant populations, soil erosion, climate trends and ecological processes to name a few. Historical photographs often provide greater temporal range to an analysis compared to, for example, satellite imagery and in many cases even aerial photography (Gruell, 2010).
APA, Harvard, Vancouver, ISO, and other styles
3

Fensham, R. J., and R. J. Fairfax. "Assessing woody vegetation cover change in north-west Australian savanna using aerial photography." International Journal of Wildland Fire 12, no. 4 (2003): 359. http://dx.doi.org/10.1071/wf03022.

Full text
Abstract:
Models to calibrate tree and shrub cover assessed from aerial photography with field measurements were developed for a range of vegetation types in north-western Australia. The models verify previous studies indicating that woody cover can be successfully determined from aerial photography. The calibration models were applied to estimates of woody vegetation cover determined for 279 randomly located sample areas in the Ord–Victoria Rivers region using aerial photography from 1948 to 1950 and 1988 to 1997. Overstorey cover increased from a regional average of 11.5% to 13.5% and understorey cover increased from 1.3% to 2.0%. Downs, Limestone Hills and Alluvia land-types showed the most substantial increases in overstorey cover while overstorey cover in the Limestone plains land-type decreased. Relatively open structured vegetation is most susceptible to thickening. Rainfall records reveal an extreme multi-year rainfall deficit in the study area in the 1930s and relatively wet times in the 1970s and 1980s. Interpretation of a limited set of aerial photographs taken between 1964 and 1972 suggests that most of the increases in cover have occurred since this time. The study highlights the possibility that the average trend of vegetation thickening represents recovery during the relatively wet times after the 1970s. There was no relationship between structural change and a grazing intensity surrogate (distance of sample points to stock watering-points). However, the causes of structural change are undoubtedly multi-factored and the relative contributions of climate, fire and grazing vary for different landscapes and tree species.
APA, Harvard, Vancouver, ISO, and other styles
4

Fairfax, R. J., and R. J. Fensham. "Corrigendum to: Assessing woody vegetation cover change in north-west Australian savanna using aerial photography." International Journal of Wildland Fire 13, no. 1 (2004): 131. http://dx.doi.org/10.1071/wf03022_co.

Full text
Abstract:
Models to calibrate tree and shrub cover assessed from aerial photography with field measurements were developed for a range of vegetation types in north-western Australia. The models verify previous studies indicating that woody cover can be successfully determined from aerial photography. The calibration models were applied to estimates of woody vegetation cover determined for 279 randomly located sample areas in the Ord–Victoria Rivers region using aerial photography from 1948 to 1950 and 1988 to 1997. Overstorey cover increased from a regional average of 11.5% to 13.5% and understorey cover increased from 1.3% to 2.0%. Downs, Limestone Hills and Alluvia land-types showed the most substantial increases in overstorey cover while overstorey cover in the Limestone plains land-type decreased. Relatively open structured vegetation is most susceptible to thickening. Rainfall records reveal an extreme multi-year rainfall deficit in the study area in the 1930s and relatively wet times in the 1970s and 1980s. Interpretation of a limited set of aerial photographs taken between 1964 and 1972 suggests that most of the increases in cover have occurred since this time. The study highlights the possibility that the average trend of vegetation thickening represents recovery during the relatively wet times after the 1970s. There was no relationship between structural change and a grazing intensity surrogate (distance of sample points to stock watering-points). However, the causes of structural change are undoubtedly multi-factored and the relative contributions of climate, fire and grazing vary for different landscapes and tree species.
APA, Harvard, Vancouver, ISO, and other styles
5

Zagalikis, G., A. D. Cameron, and D. R. Miller. "The application of digital photogrammetry and image analysis techniques to derive tree and stand characteristics." Canadian Journal of Forest Research 35, no. 5 (May 1, 2005): 1224–37. http://dx.doi.org/10.1139/x05-030.

Full text
Abstract:
Ground-based forest inventory surveys can provide highly accurate measurements of tree and stand characteristics, but these are expensive to carry out. Aerial photography has been used for several decades as a tool in forest management and inventory. However, conventional methods of interpretation are both time-consuming and costly, with results varying among interpreters. With continuing development of personal computer technology, aerial photographs have become more accessible for digital analysis. This paper presents the potential operational use of digitized aerial photographs for the estimation of tree and stand characteristics of two forest plantations of Sitka spruce (Picea sitchensis (Bong.) Carrière) in Scotland. The digitized aerial photographs were processed using softcopy photogrammetry, and image analysis techniques were used for individual tree crown delineation. For the first site the estimations of stand top height, basal area, volume, biomass, and density (–23.7%) were similar to the ground-measured stand characteristics (±10%), whereas for the second site the estimations were less accurate mainly because of the nonoptimal illumination conditions during the acquisition of the aerial photographs.
APA, Harvard, Vancouver, ISO, and other styles
6

Meulstee, C., P. H. Nienhuis, and H. T. C. Van Stokkom. "Biomass assessment of estuarine macrophytobenthos using aerial photography." Marine Biology 91, no. 3 (June 1986): 331–35. http://dx.doi.org/10.1007/bf00428626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alemdag, I. S. "Estimating ovendry mass of trembling aspen and white birch using measurements from aerial photographs." Canadian Journal of Forest Research 16, no. 1 (February 1, 1986): 163–65. http://dx.doi.org/10.1139/x86-030.

Full text
Abstract:
A pilot study tested the estimation of stem, crown, and whole-tree biomass of single trees from measurements of total tree height and crown area taken from large-scale aerial photographs. The results indicated the feasibility of this method, provided that time of photography is optimal. More extensive testing is required to confirm these encouraging preliminary results.
APA, Harvard, Vancouver, ISO, and other styles
8

Booth, D. Terrance, Samuel E. Cox, and Gregg Simonds. "Riparian monitoring using 2-cm GSD aerial photography." Ecological Indicators 7, no. 3 (July 2007): 636–48. http://dx.doi.org/10.1016/j.ecolind.2006.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fensham, R. J., and R. J. Fairfax. "Effect of photoscale, interpreter bias and land type on woody crown-cover estimates from aerial photography." Australian Journal of Botany 55, no. 4 (2007): 457. http://dx.doi.org/10.1071/bt05211.

Full text
Abstract:
Woody vegetation cover interpreted from aerial photography requires assessment against field data as the signature of woody vegetation cover may differ between photoscales, vegetation types and photo-interpreters. Measurements of aerial woody cover taken from aerial photography of four different photoscales were compared with a field dataset from Eucalyptus- and Acacia-dominated landscapes of semi-arid Queensland. Two interpreters employed a method that utilises a stereoscope and sample-point graticule for manual quantified measurements of aerial woody cover. Both interpreters generated highly significant models accounting for 77 and 78% of deviance. Photoscale appears to have a consistent effect whereby the signature of woody cover increases as the photoscale decreases from 1 : 25 000 to 1 : 80 000, although the magnitude of this effect was different between interpreters. The results suggest no substantial differences in the shape of models predicting crown cover between Acacia- and Eucalyptus-dominated land types, although the precision of the models was greater for the Acacia (90–91% of residual deviance) than for the Eucalyptus (50–56% of residual deviance) land type. The reduced accuracy in the Eucalyptus land type probably reflects the relatively diffuse crowns of the dominant trees. The models generated for this dataset are within the range of those from other calibration studies employing photography of a range of scales and methodologies. The effect of photoscale is verified between the available studies, but there may also be variations arising from methodological differences or image properties. The present study highlights the influence of photoscale and interpreter bias for assessing woody crown cover from aerial photography. Studies that employ aerial photography should carefully consider potential biases and cater for them by calibrating assessments with field measurements.
APA, Harvard, Vancouver, ISO, and other styles
10

Hardin, Perry J., and Mark W. Jackson. "An Unmanned Aerial Vehicle for Rangeland Photography." Rangeland Ecology & Management 58, no. 4 (July 2005): 439–42. http://dx.doi.org/10.2111/1551-5028(2005)058[0439:auavfr]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aerial photography in ecology"

1

Wunderly, Martin A. "Defining Zostera marina (Eelgrass) Restoration Sites in Virginia's Coastal Bays with Aerial Images and Bathymetric Mapping." Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1261160088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, Eric B. "Low-cost large scale aerial photography and the Upland South Folk Cemetery a thesis presented to the Department of Geology and Geography in candidacy for the degree of Master of Science /." Diss., Maryville, Mo. : Northwest Missouri State University, 2006. http://www.nwmissouri.edu/library/theses/WolfEricB/index.htm.

Full text
Abstract:
Thesis (M.S.)--Northwest Missouri State University, 2006.
The full text of the thesis is included in the pdf file. Title from title screen of full text.pdf file (viewed on January 25, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
3

Ress, Jennifer Ann. "The Ecology of Aerial Algae." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1332874801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Richards, Daniel L. "Open source UAV platform development for aerial photography." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1587919.

Full text
Abstract:

Aerial photography is an important layer in Geographic Information Systems (GISs), and generally provides the base layer from which many other digital map layers are derived. Capturing these photos from a traditional full-sized airplane is a complex and expensive process. The recent development of Unmanned Aerial Vehicles (UAVs) and associated technology are providing an alternative to the traditional aerial mapping process. UAVs produced by popular commercial vendors are effective at capturing photos, but are highly expensive to acquire, and equally expensive to maintain.

This research project demonstrates the development and successful implementation of a relatively inexpensive ($2000) unmanned aerial vehicle capable of acquiring high-resolution digital aerial photography. The UAV was developed using open source technology and commercially available components. The methods outlined encompass the platform selection, component inventory, design, construction, configuration, implementation, and testing of the UAV, as well as an analysis of the photography produced by the process. This approach can be used by others to implement similar UAV projects.

APA, Harvard, Vancouver, ISO, and other styles
5

Simpson, Andrew David. "DEVELOPMENT OF AN UNMANNED AERIAL VEHICLE FOR LOW-COST REMOTE SENSING AND AERIAL PHOTOGRAPHY." UKnowledge, 2003. http://uknowledge.uky.edu/gradschool_theses/191.

Full text
Abstract:
The paper describes major features of an unmanned aerial vehicle, designed undersafety and performance requirements for missions of aerial photography and remotesensing in precision agriculture. Unmanned aerial vehicles have vast potential asobservation and data gathering platforms for a wide variety of applications. The goalof the project was to develop a small, low cost, electrically powered, unmanned aerialvehicle designed in conjunction with a payload of imaging equipment to obtainremote sensing images of agricultural fields. The results indicate that this conceptwas feasible in obtaining high quality aerial images.
APA, Harvard, Vancouver, ISO, and other styles
6

Gurtner, Alex. "Investigation of fisheye lenses for small UAV aerial photography." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/19323/1/Alex_Gurtner_Final_Thesis.pdf.

Full text
Abstract:
Aerial photography obtained by UAVs (Unmanned Aerial Vehicles) is an emerging market for civil applications. Small UAVs are believed to close gaps in niche markets, such as acquiring airborne image data for remote sensing purposes. Small UAVs will be able to fly at low altitudes, in dangerous environments and over long periods of time. However, the small lightweight constructions of these UAVs lead to new problems, such as higher agility leading to more susceptibility to turbulence and limitations in space and payload for sensor systems. This research investigates the use of low-cost fisheye lenses to overcome such problems which theoretically makes the airborne imaging less sensitive to turbulence. The fisheye lens has the benet of a large observation area (large field of view) and doesn't add additional weight to the aircraft, like traditional mechanical stabilizing systems. This research presents the implementation of a fisheye lens for aerial photography and mapping purposes, including theoretical background of fisheye lenses. Based on the unique feature of the distortion being a function of the viewing angle, methods used to derive the fisheye lens distortion are presented. The lens distortion is used to rectify the fisheye images before these images can be used in aerial photography. A detailed investigation into the inner orientation of the camera and inertial sensor is given, as well as the registration of airborne collected images. It was found that the attitude estimation is critical towards accurate mapping using low quality sensors. A loosely coupled EKF filter applied to the GPS and inertial sensor data estimated the attitude to an accuracy of 3-5° (1-sigma) using low-cost sensors typically found in small UAVs. However, the use of image stitching techniques may improve the outcome. On the other hand, lens distortion caused by the fisheye lens can be addressed by rectification techniques and removed to a sub-pixel level. Results of the process present image sequences gathered from a piloted aircraft demonstrating the achieved performance and potential applications towards UAVs. Further, an unforeseen issue with a vibrating part in the lens lead to the need for vibration compensation. The vibration could be estimated to ±1 pixel in 75% of the cases by applying an extended Hough transform to the fisheye images.
APA, Harvard, Vancouver, ISO, and other styles
7

Gurtner, Alex. "Investigation of fisheye lenses for small UAV aerial photography." Queensland University of Technology, 2008. http://eprints.qut.edu.au/19323/.

Full text
Abstract:
Aerial photography obtained by UAVs (Unmanned Aerial Vehicles) is an emerging market for civil applications. Small UAVs are believed to close gaps in niche markets, such as acquiring airborne image data for remote sensing purposes. Small UAVs will be able to fly at low altitudes, in dangerous environments and over long periods of time. However, the small lightweight constructions of these UAVs lead to new problems, such as higher agility leading to more susceptibility to turbulence and limitations in space and payload for sensor systems. This research investigates the use of low-cost fisheye lenses to overcome such problems which theoretically makes the airborne imaging less sensitive to turbulence. The fisheye lens has the benet of a large observation area (large field of view) and doesn't add additional weight to the aircraft, like traditional mechanical stabilizing systems. This research presents the implementation of a fisheye lens for aerial photography and mapping purposes, including theoretical background of fisheye lenses. Based on the unique feature of the distortion being a function of the viewing angle, methods used to derive the fisheye lens distortion are presented. The lens distortion is used to rectify the fisheye images before these images can be used in aerial photography. A detailed investigation into the inner orientation of the camera and inertial sensor is given, as well as the registration of airborne collected images. It was found that the attitude estimation is critical towards accurate mapping using low quality sensors. A loosely coupled EKF filter applied to the GPS and inertial sensor data estimated the attitude to an accuracy of 3-5° (1-sigma) using low-cost sensors typically found in small UAVs. However, the use of image stitching techniques may improve the outcome. On the other hand, lens distortion caused by the fisheye lens can be addressed by rectification techniques and removed to a sub-pixel level. Results of the process present image sequences gathered from a piloted aircraft demonstrating the achieved performance and potential applications towards UAVs. Further, an unforeseen issue with a vibrating part in the lens lead to the need for vibration compensation. The vibration could be estimated to ±1 pixel in 75% of the cases by applying an extended Hough transform to the fisheye images.
APA, Harvard, Vancouver, ISO, and other styles
8

Buckley, Craig. "Photomosaicing and automatic topography generation from stereo aerial photography." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jansson, Ulrika. "Forest edges in boreal landscapes - factors affecting edge influence." Doctoral thesis, Umeå : Department of Ecology and Environmental Science, Umeå University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-21664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gombos, Andrew David. "DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL PHOTOGRAPHY." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/75.

Full text
Abstract:
The recent growth in inexpensive laser scanning sensors has created entire fields of research aimed at processing this data. One application is determining the polygonal boundaries of roofs, as seen from an overhead view. The resulting building outlines have many commercial as well as military applications. My work in this area has created a segmentation algorithm where the descriptive features are computationally and theoretically simpler than previous methods. A support vector machine is used to segment data points using these features, and their use is not common for roof detection to date. Despite the simplicity of the feature calculations, the accuracy of our algorithm is similar to previous work. I also describe a basic polygonal extraction method, which is acceptable for basic roofs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aerial photography in ecology"

1

Walker, Clive. Above Africa: Aerial photography from the Okavango swamplands. London, England: New Holland, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hatakeyama, Shirō. '94 IGAC/APARE/PEACAMPOT kōkūki chijō kansoku dēta-shū: Heisei 6-nendo Kankyōchō chikyū kankyō kenkyū sōgō suishinhi "Higashi Ajia ni okeru sansei sankasei busshitsu no dōtai kaimei ni kansuru kenkyū", kōkūki chijō kansoku dēta-shū. Tsukuba-shi: Kankyōchō, Kokuritsu Kankyō Kenkyūjo Chikyū Kankyōbu Kenkyū Centā, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hatakeyama, Shirō. '95 IGAC/APARE/PEACAMPOT kōkūki chijō kansoku dēta-shū: Heisei 7-nendo Kankyōchō chikyū kankyō kenkyū sōgō suishinhi "Higashi Ajia ni okeru sansei sankasei busshitsu no dōtai kaimei ni kansuru kenkyū", kōkūki chijō kansoku dēta-shū. Tsukuba-shi: Kankyōchō, Kokuritsu Kankyō Kenkyūjo Chikyū Kankyōbu Kenkyū Centā, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paul, Cuplin, Crisco Wallace A, and United States. Bureau of Land Management, eds. The use of aerial photography to inventory and monitor riparian areas. Denver, Colo: Dept. of the Interior, Bureau of Land Management, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. Bureau of Land Management. Denver Service Center., ed. The use of aerial photography to manage riparian-wetland areas. Denver, Colo: U.S. Department of the Interior, Bureau of Land Management, Service Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clemmer, Pam. The use of aerial photography to manage riparian-wetland areas. 2nd ed. Denver, Colo. (P.O. Box 25047, Denver 80225-0047): U.S. Dept. of the Interior, Bureau of Land Management, National Science and Technology Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clemmer, Pam. The use of aerial photography to manage riparian-wetland areas. 2nd ed. Denver, Colo. (P.O. Box 25047, Denver 80225-0047): U.S. Department of the Interior, Bureau of Land Management, Service Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clemmer, Pam. The use of aerial photography to manage riparian-wetland areas. Denver, Colo: U.S. Department of the Interior, Bureau of Land Management, National Science and Technology Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Faber, Thomas F. Die Luftbildauswertung: Eine Methode zur ökologischen Analyse von Strukturveränderungen bei Fliessgewässern. Bonn-Bad Godesberg: Bundesforschungsanstalt für Naturschutz und Landschaftsökologie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Future of Land Imaging Interagency Working Group (U.S.), ed. A plan for a U.S. national land imaging program. Washington, D.C: Future of Land Imaging Interagency Working Group, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Aerial photography in ecology"

1

Morgan, Jessica L., Sarah E. Gergel, Collin Ankerson, Stephanie A. Tomscha, and Ira J. Sutherland. "Historical Aerial Photography for Landscape Analysis." In Learning Landscape Ecology, 21–40. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6374-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gilbertson, D. D., M. Kent, and F. B. Pyatt. "Aerial photography and satellite imagery." In Practical Ecology for Geography and Biology, 176–93. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1415-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trichon, Valérie. "Crown typology and the identification of rain forest trees on large-scale aerial photographs." In Tropical Forest Canopies: Ecology and Management, 301–12. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-3606-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guthrie, Richard. "Aerial Photography." In Selective Neck Dissection for Oral Cancer, 1–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_7-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guthrie, Richard. "Aerial Photography." In Selective Neck Dissection for Oral Cancer, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-12127-7_7-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hangay, George, Severiano F. Gayubo, Marjorie A. Hoy, Marta Goula, Allen Sanborn, Wendell L. Morrill, Gerd GÄde, et al. "Aerial Photography." In Encyclopedia of Entomology, 53. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mancini, Keith, and John Sidoriak. "Aerial Photography." In Fundamentals of Forensic Photography, 129–51. New York : Routledge, 2017. | Series: Applications in scientific photography: Routledge, 2017. http://dx.doi.org/10.4324/9781315693125-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guthrie, Richard. "Aerial Photography." In Encyclopedia of Earth Sciences Series, 8–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmidt, Dietmar, and Friedrich Kühn. "Aerial Photography." In Environmental Geology, 23–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74671-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aldred, Oscar. "The Aerial Imagination." In Archaeology and Photography, 193–208. London; New York: Bloomsbury Visual Arts, 2019. |: Routledge, 2020. http://dx.doi.org/10.4324/9781003103325-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aerial photography in ecology"

1

Ferreira, Michel, Hugo Conceição, Ricardo Fernandes, and Ozan K. Tonguz. "Stereoscopic aerial photography." In the sixth ACM international workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1614269.1614279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Onyett, Samuel. "Kite Aerial Photography and Unmanned Aerial Systems." In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). IEEE, 2022. http://dx.doi.org/10.1109/dasc55683.2022.9925791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sattar, Naw Safrin, Muhammad Abdullah Adnan, and Maimuna Begum Kali. "Secured aerial photography using Homomorphic Encryption." In 2017 International Conference on Networking, Systems and Security (NSysS). IEEE, 2017. http://dx.doi.org/10.1109/nsyss.2017.7885810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Xinle, Zhanxin Yang, and Chao Chen. "An OFDM Transmission System for Aerial photography." In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5305836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tiziani, Hans J. "Measurement of image disturbance in aerial photography." In 8th Meeting in Israel on Optical Engineering, edited by Moshe Oron, Itzhak Shladov, and Yitzhak Weissman. SPIE, 1993. http://dx.doi.org/10.1117/12.150990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Lijuan, Yuanyuan Sun, Jian Zhao, Shuai Han, Jingxiao Bi, and Wenhua Dong. "3D Modeling Based on UAV Aerial Photography." In 2020 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2020. http://dx.doi.org/10.1109/icvrv51359.2020.00065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knowles, James, James J. Pearson, Brian Ringer, and Joan B. Lurie. "Model-based object recognition in aerial photography." In Interdisciplinary Computer Vision: Applications and Changing Needs--22nd AIPR Workshop, edited by J. Michael Selander. SPIE, 1994. http://dx.doi.org/10.1117/12.169474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yurchuk, Iryna, Vladyslav Kovdrya, and Lolita Bilyanska. "Segmentation of Digital Images of Aerial Photography." In 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). IEEE, 2019. http://dx.doi.org/10.1109/apuavd47061.2019.8943841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murray, John C., Nark J. Neal, and Frederic Labrosse. "Intelligent Kite Aerial Platform for Site Photography." In 2007 IEEE International Conference on Automation Science and Engineering. IEEE, 2007. http://dx.doi.org/10.1109/coase.2007.4341813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dimitrov, Kalin, Iliyan Damyanov, Durhan Saliev, and Tsvetan Valkovski. "Pasture Research Using Aerial Photography and Photogrammetry." In 2021 29th National Conference with International Participation (TELECOM). IEEE, 2021. http://dx.doi.org/10.1109/telecom53156.2021.9659796.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aerial photography in ecology"

1

DeRaps, M. R., and N. E. M. Kinsman. Spatially referenced oblique aerial photography of the Golovin shoreline, July 2012. Alaska Division of Geological & Geophysical Surveys, October 2012. http://dx.doi.org/10.14509/24465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DeRaps, M. R., and N. E. M. Kinsman. Spatially referenced oblique aerial photography of the Eastern Norton Sound shoreline, July 2011. Alaska Division of Geological & Geophysical Surveys, February 2012. http://dx.doi.org/10.14509/23143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lannom, Keith B., David L. Evans, and Zhiliang Zhu. Comparison of AVHRR classification and aerial photography interpretation for estimation of forest area. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1995. http://dx.doi.org/10.2737/so-rp-292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Christel, L. M. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/658133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: dune. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: esker. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: moraine. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: pingo. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: reef. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fyfield, Paul. Transportation and Land Use Patterns: Monitoring Urban Change Using Aerial Photography, Portland, Oregon 1925-1945. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography