Academic literature on the topic 'Aero-acoustics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aero-acoustics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aero-acoustics"

1

HIRSCHBERG, A., J. GILBERT, A. P. J. WIJNANDS, and A. M. C. VALKERING. "Musical aero-acoustics of the clarinet." Le Journal de Physique IV 04, no. C5 (May 1994): C5–559—C5–568. http://dx.doi.org/10.1051/jp4:19945120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabard, G., R. J. Astley, P. Gamallo, and G. Kennedy. "Physics-based computational methods for aero-acoustics." Procedia Engineering 6 (2010): 183–92. http://dx.doi.org/10.1016/j.proeng.2010.09.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, John S., and Kevin 0'Rourke. "Advances in aero-acoustics of flying beetles." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A276. http://dx.doi.org/10.1121/10.0016255.

Full text
Abstract:
An understanding of the acoustics of invasive species of beetles is needed for potential detection and tracking methods in agricultural monitoring. However, the underlying mechanisms of sound generation are not well understood, especially with respect to the higher harmonic sounds. The Coconut Rhinoceros Beetle (Oryctes rhinoceros) and the Oriental Flower Beetle (Protaetia orientalis) have been studied during tethered flight with synchronized microphone array measurements and high speed video (1000–10,000 fps). The larger Coconut Rhinoceros Beetles have fundamental ∼50 Hz with distinctive torsional wing rotation compared to Oriental Flower Beetle (∼100 Hz). Computational fluid dynamics simulations were performed using the unsteady compressible flow solver (CAESIM, Adaptive Research, Inc.) using a highresolution (TVD) methodology. Models of the wing flapping motion were accomplished using mesh deformation techniques with the flapping following from rotation with prescribed bending and coupled rotation and translation from the wing’s hinge position. Fluid structure interactions with respect to the wing’s flexibility are investigated in terms of the wing bending and the leading edge vortex formation.
APA, Harvard, Vancouver, ISO, and other styles
4

Seshadri, Muralidhar, Jonathan B. Freund, Pranab N. Jha, Atchyuta Ramayya Venna, Darren Walters, and Srinivasan Jagannathan. "Improved Aero/Hydro Flow-Rate Model Using Acoustics." Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description 59, no. 4 (August 2018): 429–38. http://dx.doi.org/10.30632/pjv59v4-2018a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ICHIKAWA, Nariyoshi, and Ye Li. "Aero Acoustics Simulation on the geometry of vehicle." Proceedings of Conference of Hokuriku-Shinetsu Branch 2003.40 (2003): 103–4. http://dx.doi.org/10.1299/jsmehs.2003.40.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hashem, I., M. H. Mohamed, and A. A. Hafiz. "Aero-acoustics noise assessment for Wind-Lens turbine." Energy 118 (January 2017): 345–68. http://dx.doi.org/10.1016/j.energy.2016.12.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zheng, Zheng Yu, and Ren Xian Li. "Analysis of the Automobile’s External Aerodynamic Noise Field Characteristics Based on CAA." Applied Mechanics and Materials 130-134 (October 2011): 58–62. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.58.

Full text
Abstract:
This paper dwelled on the principle of Computational Aero-Acoustics (CAA), and utilized the Boundary Element Method (BEM) combined with the Computational Fluid Dynamics (CFD) based on Lighthill’s analogy to the automobile flow model, and converted the fluctuating flow pressure near the vehicle’s surface into the dipole source boundary condition in acoustics grid, and eventually succeeded in simulating the external aerodynamic noise field of automobile by introducing the dipole source boundary condition into the automobile’s BEM model. The distribution of vehicle’s external aero-acoustics field and the directivity of vehicle’s surface aerodynamic acoustic dipole source were also discussed carefully in this paper. The results show that: The head and tail of car are the main aerodynamic noise source radiation areas, and most of the dipole source’s SPL value is more than 70dB; the variation in car speed greatly impacts on the directivity of aerodynamic noise field near the car’s tail surface (θ=165°~195°).
APA, Harvard, Vancouver, ISO, and other styles
8

KALTENBACHER, MANFRED. "COMPUTATIONAL ACOUSTICS IN MULTI-FIELD PROBLEMS." Journal of Computational Acoustics 19, no. 01 (March 2011): 27–62. http://dx.doi.org/10.1142/s0218396x11004286.

Full text
Abstract:
We present physical/mathematical models base on partial differential equations (PDEs) and efficient numerical simulation schemes based on the Finite Element (FE) method for multi-field problems, where the acoustic field is the field of main interest. Acoustics, the theory of sound, is an emerging scientific field including disciplines from physics over engineering to medical science. We concentrate on the following three topics: vibro-acoustics, aero-acoustics and high intensity focused ultrasound. For each topic, we discuss the physical/mathematical modeling, efficient numerical schemes and provide practical applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Dang Guo, Yong Hang Wu, Jin Min Liang, and Jun Liu. "An Investigation on Numerical Simulation Method for Aero-Acoustics Based on Acoustics Analogy." Applied Mechanics and Materials 444-445 (October 2013): 462–67. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.462.

Full text
Abstract:
A numerical simulation method on noise prediction, which incorporates aerodynamics and sound wave equations based on acoustic analogy, is presented in the paper. Near-field unsteady aerodynamic characteristic can be obtain by large eddy simulation (LES), and far-field propagation of sound waves and spatial sound-field can be obtain by solving the time-domain integral equations of Ffowcs Williams and Hawings (FW-H). Based on the method, a numerical simulation was done on a two-dimension cylinder and a three-dimension flat plate with blunt leading edge. The agreement of numerical results with experiment data validated the Feasibility of the method. The results also indicate that LES can describe vortex generation and shedding in the flow-fields, and FW-H formulation, which has taken time-lag between sound emission and reception times into account, can simulate time-effect of sound propagation toward far-fields.
APA, Harvard, Vancouver, ISO, and other styles
10

Karim, Ahsanul, Meisam Mehravaran, Brian Lizotte, Keith Miazgowicz, and Yi Zhang. "Computational Aero-Acoustics Simulation of Automotive Radiator Fan Noise." SAE International Journal of Engines 8, no. 4 (April 14, 2015): 1743–49. http://dx.doi.org/10.4271/2015-01-1657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aero-acoustics"

1

Maier, Christian. "Experimental and theoretical aero-acoustics." Thesis, Glasgow Caledonian University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601630.

Full text
Abstract:
Acoustic noise problems are encountered in many fields and are very often undesirable. The localisation of sound sources is the first step 10 reducing noise problems. In this thesis, the ability and feasibility of an acoustic camera in this regard is demonstrated The acoustic camera deals with the problem of sound sources coming from different directions by estimating the sound contributions incident to the acoustic camera. One example of an aero-acoustic noise problem is an air plane with its air foil. These cause unwanted noise due 10 the flowed air. Or another example is the current collector on trains which causes unwanted noise as well as affecting driving. Another problem, dealt with later in this thesis, is a cylinder flowed by air in a wind tunnel. A practical case 0/ this problem is a car antenna in the form of a cylinder; this causes noise due to the driving wind Fans can be optimised for aero-acoustics as well - an example is a cooling fan in a computer, or larger fans for air conditioners that can transport the noise over the whole tunnel in which they are built. Some processing techniques are used and implemented in the acoustic camera. The first technique is the "classical" Delay-and-Sum Beam/arming technique and the improved orthogonal beamforming, with the ability to separate non-correlated sound sources in a Single measurement. The second technique is based on the decomposition of the Eigenvalues of the cross spectral matrix. In addition to the experimental section of this thesis, the results are compared to a simulation, where a flowed object measured with the acoustic camera is compared to a suitable simulation with the same parameters like dimensions and velocity. Here f/owed means that a suitable object, a cylinder for example, is placed in the wind tunnel and flowed by air. The outcome of this thesis is the analysing of a flow induced problem, a fan for example. First steps were done with 2D flow simulations of a cylinder to become familiar with the topic program and implementing MATLAB® code to process the points of interest. This analysing could be done with a simulation or with the acoustic camera. The aim of this work is concerned with sound sources and the mechanism behind it. Suitable aero-acoustic experiments were chosen that can be analysed with the acoustic camera and with numerical simulation as well. With the acoustic camera, these sound sources can be visualised using the beamforming method A similar procedure should be done to the numerical simulations. These simulations are done and the sound sources are visualised there as well by rebuilt an array of microphones, which acts as acoustic camera, in the numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Po-Hsien. "Computational Aero- and Hydro-Acoustics By Space-Time Conservation Element And Solution Element Method." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306952396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Selvaraj, Sudharshan. "Use of CFD to Validate and Predict the Jet Noise from a High Aspect-ratio Nozzle at Off-design Conditions." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850094240426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alenius, Emma. "Flow Duct Acoustics : An LES Approach." Doctoral thesis, KTH, MWL Strömningsakustik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104777.

Full text
Abstract:
The search for quieter internal combustion engines drives the quest for a better understanding of the acoustic properties of engine duct components. Simulations are an important tool for enhanced understanding; they give insight into the flow-acoustic interaction in components where it is difficult to perform measurements. In this work the acoustics is obtained directly from a compressible Large Eddy Simulation (LES). With this method complex flow phenomena can be captured, as well as sound generation and acoustic scattering. The aim of the research is enhanced understanding of the acoustics of engine gas exchange components, such as the turbocharger compressor.In order to investigate methods appropriate for such studies, a simple constriction, in the form of an orifice plate, is considered. The flow through this geometry is expected to have several of the important characteristics that generate and scatter sound in more complex components, such as an unsteady shear layer, vortex generation, strong recirculation zones, pressure fluctuations at the plate, and at higher flow speeds shock waves. The sensitivity of the scattering to numerical parameters, and flow noise suppression methods, is investigated. The most efficient method for reducing noise in the result is averaging, both in time and space. Additionally, non-linear effects were found to appear when the amplitude of the acoustic velocity fluctuations became larger than around 1~\% of the mean velocity, in the orifice. The main goal of the thesis has been to enhance the understanding of the flow and acoustics of a thick orifice plate, with a jet Mach number of 0.4 to 1.2. Additionally, we evaluate different methods for analysis of the data, whereby better insight into the problem is gained. The scattering of incoming waves is compared to measurements with in general good agreement. Dynamic Mode Decomposition (DMD) is used in order to find significant frequencies in the flow and their corresponding flow structures, showing strong axisymmetric flow structures at frequencies where a tonal sound is generated and incoming waves are amplified.The main mechanisms for generating plane wave sound are identified as a fluctuating mass flow at the orifice openings and a fluctuating force at the plate sides, for subsonic jets. This study is to the author's knowledge the first numerical investigation concerning both sound generation and scattering, as well as coupling sound to a detailed study of the flow.With decomposition techniques a deeper insight into the flow is reached. It is shown that a feedback mechanism inside the orifice leads to the generation of strong coherent axisymmetric fluctuations, which in turn generate a tonal sound.

QC 20121113

APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Po-Hsien. "Solving First-Order Hyperbolic Problems For Wave Motion in Nearly Incompressible fluids, Two-Phase Fluids, and Viscoelastic Media By the CESE Method." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420552163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gautam, Prashanta. "Investigation of air-borne noise generation mechanisms in tire noise." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron148552634330808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bayraktar, Songul. "Theoretical And Experimental Investigation On Centrifugal Fan With A Special Interest On Fan Noise." Phd thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12608097/index.pdf.

Full text
Abstract:
In this study, the effects of design parameters on the fan noise level are investigated both theoretically and experimentally. For the theoretical study, a computational aero- acoustic method is used to predict the flow induced noise of a fan. This method involves the coupling of a flow solver and a wave equation solver. Unsteady flow analysis is performed with URANS using FLUENT. Then the time dependent data are processed with LMS Sysnoise to compute the acoustic radiation. Experimental studies are performed to verify the theoretical results and additionally to investigate the effects of different design alternatives on noise level of the fan. The sound pressure and intensity level measurements are performed in the full anechoic room of Arç
elik A.S. Research and Development Laboratories. The validation experiments indicate that there is a good agreement between numerical and experimental results. The experimental study with different fan designs gives information about the noise reduction possibilities.
APA, Harvard, Vancouver, ISO, and other styles
8

Becerril, Aguirre Cesar. "Simulation of noise emitted by a reactive flow." Thesis, Toulouse, INPT, 2017. http://www.theses.fr/2017INPT0067/document.

Full text
Abstract:
Le bruit émis par les nouvelles architectures de moteurs aéronautiques a été considérablement réduit dans les dernières années. Les différentes sources de bruit ont été identifiées et pour la plupart réduites. Cependant, la contribution relative du bruit de combustion au bruit global a augmenté progressivement avec la décroissance des autres sources. Deux mécanismes de génération de bruit de combustion ont été identifiés : le bruit direct qui est produit par des fluctuations du dégagement de chaleur dû à la combustion, et le bruit indirect qui est généré par l’accélération des spots d’entropie. Dans ce travail, les mécanismes de génération et propagation du bruit entropique sont étudiés par des simulations numériques aux grandes échelles (en anglais LES) et par des modèles analytiques. Dans un premier temps, une configuration simplifiée du phénomène est étudiée : des spots d’entropie sont créés par des résistances chauffantes et ensuite accélérés par une tuyère pour générer du bruit indirect. Cette configuration a été simulée et ses résultats validés par des campagnes expérimentales. Ensuite, la simulation numérique est utilisée pour mieux comprendre les mécanismes de génération du bruit indirect et ses interactions avec des effets visqueux et non visqueux. Dans une seconde partie, une configuration de turbine haute pression à un seul étage est utilisée pour étudier le bruit indirect d’une façon plus réaliste. Dans les deux parties de cette thèse, les résultats numériques sont comparés à des théories analytiques pour mieux comprendre les avantages et inconvénients d’une méthode par rapport à l’autre
Combustion noise is increasing its relative contribution to aircraft noise, while other sources are being reduced and new low-NOx emission combustion chambers being built. Two mechanisms are responsible for this noise source: direct noise in which acoustic waves are generated by the flame and propagate to the outlet of the aero-engine, and indirect noise, where entropy waves generate noise as they are accelerated and decelerated in the turbine stages. In this work, the analytical models used for the propagation of waves through non-homogeneous flows, including the generation of indirect noise, are revised and extended. In the first part, the quasi-1D case is studied, extending the analytical method to non-zero frequencies and validating the results with numerical methods and experimental data. In the second part, the 2D method for the case of compact turbine blades is studied and validated using numerical simulations of a rotating blade and of a complete turbine stage. Finally, in the third part of this thesis, these models are combined with reactive and compressible Large Eddy Simulations (LES) of combustion chambers to build a hybrid approach, named CHORUS, able to predict combustion noise
APA, Harvard, Vancouver, ISO, and other styles
9

Gentil, Yann. "Modélisation du bruit de combustion." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP007.

Full text
Abstract:
Le bruit issu de la combustion dans les turbomoteurs tend à devenir l’une des principales sources de bruits des avions, du fait des améliorations successives visant à diminuer le bruit de jet, la consommation de carburant et la génération de dioxyde d’azote. Les nouvelles générations de turbomoteurs sont ainsi caractérisées par une taille plus compacte (avec notamment moins d’étage de turbine) et une activité thermo-acoustique plus intense. Deux mécanismes sont à la source du bruit de combustion : le bruit direct issue des ondes acoustiques générées par la flame et le bruit indirect issu de l’accélération et décélération des fluctuations non-acoustiques dans les étages de la turbine. Dans ce contexte, il est essentiel pour la conception de ces moteurs de s’appuyer sur une méthodologie de calcul permettant la prédiction du bruit de combustion et de ces deux principaux mécanismes générateurs. Pour cela, le CERFACS travaille depuis plusieurs années sur le développement d’une méthodologie de calcul basée sur la simulation aux grandes échelles (SGE) des chambres de combustion couplée à une méthode analytique pour propager le bruit dans les étages de turbine.Cette thèse s’est focalisée sur les modèles analytiques décrivant la génération de bruit dans des tuyères (domaine simplifié de turbine) et de leur validation par des simulations numériques instationnaires précises. Ainsi, le modèle de prédiction du bruit indirect lié aux fluctuations de composition a été revisité et validé à l’aide de simulations nécessitant le développement de nouvelles conditions non-réfléchissantes. Ce modèle est par la suite étendu afin de prendre en compte la variation des capacités calorifiques des espèces de l’écoulement en fonction de la température. Son impact sur les mécanismes de génération de bruit est évalué à l’aide d’études paramétriques. Enfin, la génération de bruit dans les turbines a été étudiée de manière théorique et applicative. D’un côté, après avoir proposé un modèle analytique réduit décrivant la propagation des ondes 1D à fréquences nulles, ce modèle est étendu à toutes les fréquences et comparé à des résultats instationnaires dans un stator. La propagation d’ondes 2D de type entropique dans un stator et une tuyère sont ensuite réalisées et analysées. D’un autre côté, la méthodologie de calcul du bruit de combustion complète, appelée CONOCHAIN, est appliquée en partant de résultat de simulation numérique diphasique du moteur d’hélicoptère TEENI dans le cadre du projet CIRRUS. Les niveaux de bruit de combustion sont analysés et comparés en sortie turbine et en champs-lointain à des résultats expérimentaux et numériques précédents
Combustion noise in turboshaft engines is becoming one of the main sources of aircraft noise, thanks to successive improvements aimed at reducing jet noise, fuel consumption and nitrogen dioxide generation. New-generation turboshaft engines are thus characterized by a more compact size (with fewer turbine stages) and more intense thermo-acoustic activity. Two mechanisms are responsible for combustion noise: direct noise from acoustic waves generated by the flame, and indirect noise from the acceleration and deceleration of non-acoustic fluctuations in the turbine stages. In this context, it is essential for the design of these engines to rely on a calculation methodology enabling the prediction of combustion noise and these two main generating mechanisms. To this end, CERFACS has been working for several years on the development of a calculation methodology based on large-scale simulation (LSS) of combustion chambers, coupled with an analytical method for propagating noise in the turbine stages.This thesis focused on the analytical models describing noise generation in nozzles (simplified turbine domain) and their validation by accurate unsteady numerical simulations. The model used to predict indirect noise due to composition fluctuations has been revisited and validated using simulations requiring the development of new non-reflecting conditions. This model was then extended to take into account temperature-dependent variations in the heat capacities of the species in the flow. Its impact on noise generation mechanisms is assessed using parametric studies. Finally, noise generation in turbines has been studied both theoretically and in an applicative way. On the one hand, after proposing a reduced analytical model describing 1D wave propagation at zero frequencies, this model is extended to all frequencies and compared with unsteady results in a stator. The propagation of 2D entropic waves in a stator and a nozzle is then performed and analyzed. On the other hand, the complete combustion noise calculation methodology, called CONOCHAIN, is applied on the basis of two-phase numerical simulation results for the TEENI helicopter engine as part of the CIRRUS project. Combustion noise levels are analyzed and compared at turbine outlet and far-field with previous experimental and numerical results
APA, Harvard, Vancouver, ISO, and other styles
10

Legros, Maxime. "Synthèse acoustique d'un module de ventilation automobile." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2295/document.

Full text
Abstract:
La problématique de la qualité sonore à l'intérieur de l'habitacle est importante dans le domaine de l'automobile, particulièrement dans le cas des véhicules haut de gamme. La réduction du bruit des motorisations thermiques et l'émergence de solutions hybrides ou électriques ont transformé la perception du bruit par l'utilisateur. La contribution acoustique des équipements tels que le module de ventilation est devenue prépondérante et doit donc être étudiée dès la phase de conception. Afin de traiter la problématique acoustique et de fournir un outil de prototypage virtuel, ce travail a été mené dans le cadre du projet Cevas (Conception d'Equipement de Ventilation à Air Silencieux). Une approche de synthèse acoustique permet d'identifier les composants responsables du bruit produit et transmis. Leurs caractéristiques actives, traduites par un terme de source, et passives, traduites par un terme de perte par transmission, sont étudiées et représentées par des spectres en bandes fines. Cette définition permet la synthèse sonore du bruit produit et l'étude de la qualité sonore à l'aide de lois d'acceptation. Le ventilateur est la source principale d'un module de ventilation. Son terme de source est prédit par une loi originale, basée sur des données expérimentales et inspirée de la loi ASHRAE. Le terme de source du volet est caractérisé à l'aide de la méthode empirique de Nelson et Morphey. Le terme de source de l'échangeur thermique est déterminé à partir de mesures. Les termes de perte par transmission du volet et de l'échangeur thermique sont obtenus à l'aide de la matrice de diffusion expérimentale. L'environnement du milieu de propagation acoustique a une influence sur le bruit produit. La transposition des termes de source d’un environnement d'essai normalisé à un environnement représentatif des modules de ventilation a donc été étudiée. La méthode développée repose sur la modélisation du terme de source par une force volumique dont l'amplitude et la localisation sont indépendantes du milieu. Le développement de cette méthode a nécessité des modèles analytiques et numériques. L'application de la méthode pour un ventilateur placé dans un module de ventilation simplifié est confrontée à des essais. Un outil de prototypage virtuel est présenté pour un module de ventilation simplifié. La prédiction du bruit produit est confrontée à des mesures de puissance acoustique. L'usage de l'outil de prototypage permet d'étudier la contribution de chaque composant en considérant différents cas de ventilation
The sound quality problem inside the car cabin is important in the automotive field, especially in the case of upmarket vehicles. The reductions of the noise produced by internal combustion engines and the emergence of hybrid and electric solutions have transformed the perception of sound by the user. The acoustic contribution of equipment such as the HVAC has become paramount and must be studied from the design stage. In order to treat acoustic problems and provide virtual prototyping tools, t his thesis was conducted within the framework of the Cevas project (Conception d'Equipement de Ventilation à Air Silencieux) to study and characterize the components of an automotive HVAC. An acoustic synthesis approach is used to identify the components responsible for the noise generated and transmitted. Their active and passive properties, translated by a source term and a transmission loss, have been studied and represented by thin strips spectra. This definition allows sound synthesis of the noise produced and the study of sound quality using acceptance laws. The source term of the fan is predicted by an original law, based on experimental data and inspired by ASHRAE law. The source term of the flap is characterized by using the Nelson and Morphey empirical method. The source term of the heat exchanger is determined from measurements. The transmission losses of the flap and the heat exchanger are obtained using the scattering matrix. The transposition of the source terms from a standardized test environment to an acoustic medium representative of the HVAC has been studied. The developed method is based on modeling t he source term by acoustic excitation whose amplitude and location are independent of the environment. The application of this method has required analytical and numerical models to characterize the acoustic excitation. In the case of the fan, its propagation in a simplified HVAC is studied. A virtual prototyping tool has been implemented in the case of the simplified HVAC. The noise prediction is confronted with sound power measurements. The use of the prototyping tool allows studying the contribution of each component considering various cases of ventilation
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aero-acoustics"

1

Comte-Bellot, Geneviève, and John E. Ffowcs Williams, eds. Aero- and Hydro-Acoustics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

J, McColgan C., and United States. National Aeronautics and Space Administration., eds. User's manual for UCAP: Unified counter-rotation aero-acoustics program. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geneviève, Comte-Bellot, Ffowcs Williams John E, and International Union of Theoretical and Applied Mechanics., eds. Aero- and hydro-acoustics: IUTAM symposium, Ecole centrale de Lyon, 3-6 July 1985. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Comte-Bellot, Geneviève. Aero- and Hydro-Acoustics: IUTAM Symposium, Ecole Centrale de Lyon, 3-6 July, 1985. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

R, Mankbadi R., and American Society of Mechanical Engineers. Fluids Engineering Division., eds. Computational aero- and hydro-acoustics 1993: Presented at the Fluids Engineering Conference, Washington, D.C., June 20-24, 1993. New York, N.Y: ASME, United Engineering Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen-Schäfer, Hung. Aero and Vibroacoustics of Automotive Turbochargers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aero- and Hydro-Acoustics. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Comte-Bellot, G. Aero-And Hydro-Acoustics: Iutam Symposium Ecole Centrale De Lyon 3-6 July, 1985. Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Proceedings of the ASME noise control and acoustics division 2004: Active noise control, aero/hydro acoustincs, structural acoustics : presented at 2004 ASME International Mechanical Engineering Congress and Exposition, November 13-19, 2004 .. United States: ASME, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen-Schäfer, Hung. Aero and Vibroacoustics of Automotive Turbochargers. Springer Berlin / Heidelberg, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aero-acoustics"

1

Candel, Sébastien M. "Numerical Methods in Acoustics." In Aero- and Hydro-Acoustics, 229–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sevik, Maurice M. "Topics in Hydro-acoustics." In Aero- and Hydro-Acoustics, 285–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crighton, D. G. "Acoustics of Unstable Flows." In Aero- and Hydro-Acoustics, 455–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Levine, Harold. "Diffraction and Radiation." In Aero- and Hydro-Acoustics, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Richarz, W. G. "Source Identification Techniques — A Critical Evaluation." In Aero- and Hydro-Acoustics, 95–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Y. P. "Sound Generation in the Ocean Under a Turbulent Airflow." In Aero- and Hydro-Acoustics, 103–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lyamshev, L. M., and A. T. Skvortsov. "Acoustic Radiation from Vortex Solitons." In Aero- and Hydro-Acoustics, 113–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

George, A. R. "Noise of High Speed Surfaces." In Aero- and Hydro-Acoustics, 119–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahan, J. R., and C. R. Fuller. "Comparison of Two Propeller Source Models for Aircraft Interior Noise Studies." In Aero- and Hydro-Acoustics, 135–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blake, W. K., J. L. Gershfeld, and L. J. Maga. "Modelling of Trailing Edge Flow Tones in Elastic Structures." In Aero- and Hydro-Acoustics, 145–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aero-acoustics"

1

ASTLEY, RJ, MJ FISHER, KR HOLLAND, PF JOSEPH, A. MCALPINE, RH SELF, and MCM WRIGHT. "RESEARCH IN AERO-ACOUSTICS AT THE ISVR." In Spring Conference Acoustics 2002. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/18248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shah, Parthiv, Darius Mobed, Zoltan Spakovszky, Thomas Brooks, and William Humphreys. "Aero-Acoustics of Drag Generating Swirling Exhaust Flows." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ming, Pingjian, Minggang Zhu, Peng Hou, and Wenping Zhang. "A Parallel 2D/3D Aero-acoustics Numerical Algorithm and Implementation." In 2009 Fourth International Conference on Internet Computing for Science and Engineering (ICICSE). IEEE, 2009. http://dx.doi.org/10.1109/icicse.2009.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patel, Chirag Bharatbhai, Sharad Goyal, Bhanu Gupta, and Abhishek Saraswat. "Aero-Acoustics Noise Prediction of 3D Treaded Tyre Using CFD." In Symposium on International Automotive Technology 2019. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-26-0362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Chao. "Automotive Wind Noise Prediction using Deterministic Aero-Vibro-Acoustics Method." In 23rd AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sakaliyski, Kiril, James Hileman, and Zoltan Spakovszky. "Aero-Acoustics of Perforated Drag Plates for Quiet Transport Aircraft." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abom, Mats, Sabry Allam, and Susann Boij. "Aero-Acoustics of Flow Duct Singularities at Low Mach Numbers." In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-2687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LOWSON, MARTIN. "Applications of aero-acoustics to wind turbine noise prediction and control." In 31st Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Avinash, D., M. Shankar, Rathish Maller, and Ravindran V. "Reduction of Aero-Acoustics Tonal Noise for a Tractor Cooling Fan." In Symposium on International Automotive Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-26-0299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bae, Il-Sung, Hooi-Joong Kim, and Seungbae Lee. "Computation of Turbulent Flows and Aero-Acoustics From an Axial Fan." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31327.

Full text
Abstract:
LES formulation was applied to simulate the flow fields around rotating fan blades tested by DLR. The turbulent flows around fan blade rotating with 500 RPM were simulated and the far-field noise was exactly computed by using the Ffowcs Williams and Hawkings equation with an inclusion of quadrupole source formulation. Variations of lift forces and deviation angles in the spanwise direction were analyzed to correlate flow parameters with acoustics parameters and identify noise sources. The dipole noise computed at the far-field by computed drag and lift forces was in good agreement with experimental data and the dipole source was also found to be the major contributor to overall far-field noise from unsteady calculation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography