Academic literature on the topic 'Aerodynamic calculation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerodynamic calculation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aerodynamic calculation"
Дмитрій Миколайович Зінченко, Г. Ортамевзи, and А. Рахмати. "THE CALCULATION AERODYNAMIC CHARACTERISTICS OF A HYBRID AEROSTATIC AIRCRAFT." MECHANICS OF GYROSCOPIC SYSTEMS, no. 27 (October 6, 2014): 102–11. http://dx.doi.org/10.20535/0203-377127201438208.
Full textWang, Jianfeng, Hao Li, Yiqun Liu, Tao Liu, and Haibo Gao. "Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics." MATEC Web of Conferences 153 (2018): 04011. http://dx.doi.org/10.1051/matecconf/201815304011.
Full textOvchinnicov, V. V., and Yu V. Petrov. "THE AERODYNAMIC CHRACTERISTICS CALCULATION METHODOLOGY OF TWO-SHELL PARAGLIDERS." Civil Aviation High TECHNOLOGIES 21, no. 3 (July 3, 2018): 91–100. http://dx.doi.org/10.26467/2079-0619-2018-21-3-91-100.
Full textBondarenko, Oleksandr, and Anton Smagliy. "Software complex for aircraft characteristics calculation." MECHANICS OF GYROSCOPIC SYSTEMS, no. 40 (December 26, 2021): 93–100. http://dx.doi.org/10.20535/0203-3771402020249156.
Full textYu, Jing Mei, Yan Hong Yu, and Pan Pan Liu. "Horizontal Axis Wind Turbine Numerical Simulation of Two Dimensional Angle of Attack." Advanced Materials Research 619 (December 2012): 111–14. http://dx.doi.org/10.4028/www.scientific.net/amr.619.111.
Full textShen, Kai, Hong Chen, Shi Fan Gu, and Ji Min Ni. "Research on Calculation Method of Engine Cooling Fan." Advanced Materials Research 732-733 (August 2013): 495–500. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.495.
Full textFigat, Marcin, Tomasz Goetzendorf‐Grabowski, and Zdobysław Goraj. "Aerodynamic calculation of unmanned aircraft." Aircraft Engineering and Aerospace Technology 77, no. 6 (December 2005): 467–74. http://dx.doi.org/10.1108/00022660510628453.
Full textLuchkov, Andrey N., Evgeny V. Zhuravlev, and Egor Y. Cheban. "METHOD OF CALCULATING THE LIFT COEFFICIENT FOR A WIG’S COMPOUND WING FLYING CLOSE TO THE GROUND." Russian Journal of Water Transport, no. 62 (March 6, 2020): 51–61. http://dx.doi.org/10.37890/jwt.vi62.39.
Full textGuan, Xin, Hua Dong Wang, Zhi Li Sun, Xiao Guo Bi, and Xu Dong Liu. "Variation of Aerodynamic Load Engineering Analysis during Wind Turbine Run." Applied Mechanics and Materials 291-294 (February 2013): 501–6. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.501.
Full textAbuzov, Aleksandr, Igor' Grigor'ev, and Yaroslav Abuzov. "TO THE QUESTION OF AERODYNAMICS HULLS TRANSPORT AND CARGO AIRSHIPS DESIGNED FOR THE FOREST COMPLEX." Forestry Engineering Journal 12, no. 1 (April 15, 2022): 68–81. http://dx.doi.org/10.34220/issn.2222-7962/2022.1/6.
Full textDissertations / Theses on the topic "Aerodynamic calculation"
McCracken, Andrew. "Methods for the calculation of aerodynamic models for flight simulation." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/19873/.
Full textMatouk, Rabea. "Calculation of Aerodynamic Noise of Wing Airfoils by Hybrid Methods." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/240641.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Faltýnek, Michal. "Aerodynamický výpočet spalinového traktu parního kotle." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417845.
Full textLópez, Pereira Ramón. "Validation of software for the calculation of aerodynamic coefficients : with a focus on the software package Tornado." Thesis, Linköping University, Fluid and Mechanical Engineering Systems, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57972.
Full textLopez, Pereira Ramon. "Validation of software for the calculation ofaerodynamic coefficients : with a focus on the software package Tornado." Thesis, Linköping University, Fluid and Mechanical Engineering Systems, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58316.
Full textSeveral programs exist today for calculating aerodynamic coefficients that with some simplificationsprovide fast approximations of the values for a real aircraft.Four different programs were analyzed for this report: Tornado, AVL, PANAIR and a handbook-typepreliminary method. In addition, ANSYS CFX was used for airfoil validation. For calculation of the zerolift drag, an approximation was computed in order to calculate the remaining values that were notcalculated by the software: drag contribution for fuselages, nacelles and some horizontal stabilizersand fins.Different types of aircraft were selected for trial: two commercial aircraft (Boeing 747-100 and 777-300), a TF-8A research airplane (with area rule application: some additions were made to the fuselageto prevent large variations in the cross-section when the contribution of the wing is added), a LockheedConstellation C-69 used as a military cargo airplane, a Boeing Stratocruiser used by the USAF withtwo configurations (basic and bomber), and an Aero Commander 680 Super, similar to a Cessna 162.Two airfoils (NACA2412, 0012) were also analyzed, to investigate the limitations of software designedfor three-dimensional calculations.The accuracy of the results showed that the validity of the software depends on the planform of theaircraft, as well as the simulation parameters Mach number and Reynolds number. The shape of thewing caused some of the methods to have serious difficulties in converging to valid results, orincreased the simulation time beyond acceptable limits.
Numera finns det olika program för beräkning av de aerodynamiska koefficienterna från en modellmed vissa förenklingar som ger en snabb approximation av värdena för ett verkligt flygplan.Fyra olika program har analyserats för denna rapport: Tornado, AVL, PANAIR och en handbokbaserad preliminär metod. Dessutom användes ANSYS CFX för validering av vingprofiler . Vidberäkningen av noll-lyft motståndet, en approximation användes för de återstående delarna som inteberäknas av de andra metoderna: motståndsbidraget från flygkroppar, gondoler och vissa horisontellastabilisatorer och fenor.Olika flygplaner har testats: två trafikflygplan (Boeing 747-100 och 777-300), ett TF-8Aforskningsflygplan (med area regel användning: några tillägg gjordes på flygkroppen för att tvärsnitteninte har stora variationer när bidraget från vingen läggas), ett Lockheed Constellation C-69, ett BoeingStratocruiser som används av USAF i två konfigurationer (den vanliga och bombplan), och ett AeroCommander 680 Super, som liknar ett Cessna 162. Två vingprofiler (NACA 2412, 0012) analyseradesockså, för att kontrollera begränsningarna av programmen avsedd för tredimensionella beräkningar.Riktigheten av resultaten visade att giltigheten av programmen beror på formen av flygplanernasvingar, samt de simulationernas parametrar: Mach nummer och Reynolds nummer. Formen på vingenorsakade några av de metoderna att ha stora svårigheter med konvergensen till giltiga resultat, ellerökat simulering tid över acceptabla gränser.
Kudela, Libor. "Aerodynamický výpocet vzduchové části parního kotle." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319279.
Full textJež, Dalibor. "Využití odpadního tepla kogenerační jednotky pro výrobu technologické páry a vytápění." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232150.
Full textKoňařík, Josef. "Analýza aerodynamiky vozidla Formule Student." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228797.
Full textSvoboda, Marek. "Horkovodní roštový kotel." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401493.
Full textAkay, Busra. "Unsteady Aerodynamic Calculations Of Flapping Wing Motion." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608773/index.pdf.
Full text#956
AVs by investigating the hovering mode of flight by flapping motion. In this study, a detailed numerical investigation is performed to investigate the effect of some geometrical parameters, such as the airfoil profile shapes, thickness and camber distributions and as well as the flapping motion kinematics on the aerodynamic force coefficients and vortex formation mechanisms at low Reynolds number. The numerical analysis tool is a DNS code using the moving grid option. Laminar Navier-Stokes computations are done for flapping motion using the prescribed kinematics in the Reynolds number range of 101-103. The flow field for flapping hover flight is investigated for elliptic profiles having thicknesses of 12%, 9% and 1% of their chord lengths and compared with those of NACA 0009, NACA 0012 and SD 7003 airfoil profiles all having chord lengths of 0.01m for numerical computations. Computed aerodynamic force coefficients are compared for these profiles having different centers of rotation and angles of attack. NACA profiles have slightly higher lift coefficients than the ellipses of the same t/c ratio. And one of the most important conclusions is that the use of elliptic and NACA profiles with 9% and 12% thicknesses do not differ much as far as the aerodynamic force coefficients is concerned for this Re number regime. Also, two different sinusoidal flapping motions are analyzed. Force coefficients and vorticity contours obtained from the experiments in the literature and present study are compared. The validation of the present computational results with the experimental results available in the literature encourages us to conclude that present numerical method can be a reliable alternative to experimental techniques.
Books on the topic "Aerodynamic calculation"
Raithby, G. D. Calculation of subsonic aerodynamic flows, the de Havilland Aircraft of Canada, Limited, Downsview, Ont., September 2-4, 1986. Downsview, Ont: De Havilland Aircraft of Canada, Ltd, 1986.
Find full textMavriplis, Dimitri J. Unstructured mesh algorithms for aerodynamic calculations. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1992.
Find full textLan, C. Edward. Calculation of aerodynamic characteristics at high angles of attack for airplane configurations: Semi-annual status report on NASA grant NAG 1-635, August 1, 1986 - January 31, 1987. Lawrence, Kan: Flight Research Laboratory, the University of Kansas Center for Research, Inc., 1987.
Find full textBarger, Raymond L. On minimizing the number of calculations in design-by-analysis codes. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1987.
Find full textUeda, Tetsuhiko. Unsteady aerodynamic calculations for general configurations by the doublet-point method. Tokyo, Japan: National Aerospace Laboratory, 1991.
Find full textBaysal, Oktay. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields. Norfolk, Va: Dept. of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University Research Foundation, 1991.
Find full textBaysal, Oktay. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields. Norfolk, Va: Dept. of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University Research Foundation, 1991.
Find full textQuinn, Robert D. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textQuinn, Robert D. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textQuinn, Robert D. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation. Moffett Field, Calif: Ames Research Center, 1990.
Find full textBook chapters on the topic "Aerodynamic calculation"
Cebeci, Tuncer, and J. H. Whitelaw. "Calculation Methods for Aerodynamic Flows—a Review." In Numerical and Physical Aspects of Aerodynamic Flows III, 1–19. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4926-9_1.
Full textShao, Qing, Fu-ting Bao, and Chao-feng Liu. "Aerodynamic heating calculation by lattice Boltzmann equation." In Advances in Energy Science and Equipment Engineering II, 1915–22. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116174-203.
Full textŠafařík, P., and V. Vlček. "Using Interferometric Measurements in Calculation of Aerodynamic Forces." In Optical Methods in Dynamics of Fluids and Solids, 301–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82459-3_38.
Full textGanguli, Ranjan. "Aerodynamic Derivative Calculation Using Radial Basis Function Neural Networks." In Advanced UAV Aerodynamics, Flight Stability and Control, 283–307. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118928691.ch8.
Full textShmilovich, Arvin, and N. Douglas Halsey. "Calculation of Transonic Flows for Novel Engine-Airframe Installations." In Numerical and Physical Aspects of Aerodynamic Flows IV, 163–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02643-4_10.
Full textAupoix, B., S. Bonnet, C. Gleyzes, and J. Cousteix. "Calculation of Three-Dimensional Boundary Layers Including Hypersonic Flows." In Numerical and Physical Aspects of Aerodynamic Flows IV, 175–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02643-4_11.
Full textZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, et al. "Micrometeorological Methods for Greenhouse Gas Measurement." In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 141–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_4.
Full textMöhlenkamp, K., and E. Fegel. "Real Time for the Calculation of the Aerodynamic of Aircrafts with Delta Wings." In Orbital Transport, 357–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-45720-3_27.
Full textYates, E. Carson, and Robert N. Desmarais. "Calculation of Aerodynamic Sensitivities by Boundary-Integral Methods and Application to Lifting-Surface Theory." In Boundary Element Methods in Engineering, 391–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2_48.
Full textJazarević, Vladimir, and Boško Rašuo. "Numerical Calculation of Aerodynamic Noise Generated from an Aircraft in Low Mach Number Flight." In Lecture Notes in Computational Science and Engineering, 113–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67202-1_9.
Full textConference papers on the topic "Aerodynamic calculation"
Ishchejkin, G. YU. "Calculation of aerodynamic forces." In SCIENCE OF RUSSIA: TARGETS AND GOALS. ЦНК МОАН, 2020. http://dx.doi.org/10.18411/sr-10-04-2020-24.
Full textZielinski, Kurt A., and Jonathan Eccles. "Application of Emergent Aerodynamic Calculation Tools." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-0096.
Full textWAN, T., and H. SARAVIA. "Aerodynamic calculation of an elliptic ring wing." In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-68.
Full textHuang, S., and C. Béguier. "Aerodynamic Noise Calculation of a Detaching Flow." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0080.
Full textZeng, Xiangming, and Yihuai Hu. "Design and Aerodynamic Calculation of a Novel Sail." In 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5749065.
Full textIwase, Taku, Hideshi Obara, Hiroyasu Yoneyama, Yoshinobu Yamade, and Chisachi Kato. "Calculation of Aerodynamic Noise for Centrifugal Fan of Air-Conditioner." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16071.
Full textBhatia, Manav, and Philip S. Beran. "Adjoint-Based h-adaptive Calculation of Generalized Aerodynamic Forces." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0172.
Full textPARK, CHUL, and SEOKKWAN YOON. "Calculation of real-gas effects on airfoil aerodynamic characteristics." In 5th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1712.
Full textYang, Bin, Maosong Wan, and Qinghong Sun. "Numerical calculation of aerodynamic characteristics of metro train head." In 2010 2nd International Conference on Future Computer and Communication. IEEE, 2010. http://dx.doi.org/10.1109/icfcc.2010.5497757.
Full textGodfrey, Andrew, and Eugene Cliff. "Direct calculation of aerodynamic force derivatives - A sensitivity-equation approach." In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-393.
Full textReports on the topic "Aerodynamic calculation"
MacCormack, Robert W. Magneto-Fluid Dynamics Calculations for Aerodynamics. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada474960.
Full textWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg, and Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40883.
Full textMcInville, Roy M., and Frank G. Moore. A New Method for Calculating Wing Along Aerodynamics to Angle of Attack 180 deg. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada277965.
Full text