Dissertations / Theses on the topic 'Aerodynamic calculation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Aerodynamic calculation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
McCracken, Andrew. "Methods for the calculation of aerodynamic models for flight simulation." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/19873/.
Full textMatouk, Rabea. "Calculation of Aerodynamic Noise of Wing Airfoils by Hybrid Methods." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/240641.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Faltýnek, Michal. "Aerodynamický výpočet spalinového traktu parního kotle." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417845.
Full textLópez, Pereira Ramón. "Validation of software for the calculation of aerodynamic coefficients : with a focus on the software package Tornado." Thesis, Linköping University, Fluid and Mechanical Engineering Systems, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57972.
Full textLopez, Pereira Ramon. "Validation of software for the calculation ofaerodynamic coefficients : with a focus on the software package Tornado." Thesis, Linköping University, Fluid and Mechanical Engineering Systems, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58316.
Full textSeveral programs exist today for calculating aerodynamic coefficients that with some simplificationsprovide fast approximations of the values for a real aircraft.Four different programs were analyzed for this report: Tornado, AVL, PANAIR and a handbook-typepreliminary method. In addition, ANSYS CFX was used for airfoil validation. For calculation of the zerolift drag, an approximation was computed in order to calculate the remaining values that were notcalculated by the software: drag contribution for fuselages, nacelles and some horizontal stabilizersand fins.Different types of aircraft were selected for trial: two commercial aircraft (Boeing 747-100 and 777-300), a TF-8A research airplane (with area rule application: some additions were made to the fuselageto prevent large variations in the cross-section when the contribution of the wing is added), a LockheedConstellation C-69 used as a military cargo airplane, a Boeing Stratocruiser used by the USAF withtwo configurations (basic and bomber), and an Aero Commander 680 Super, similar to a Cessna 162.Two airfoils (NACA2412, 0012) were also analyzed, to investigate the limitations of software designedfor three-dimensional calculations.The accuracy of the results showed that the validity of the software depends on the planform of theaircraft, as well as the simulation parameters Mach number and Reynolds number. The shape of thewing caused some of the methods to have serious difficulties in converging to valid results, orincreased the simulation time beyond acceptable limits.
Numera finns det olika program för beräkning av de aerodynamiska koefficienterna från en modellmed vissa förenklingar som ger en snabb approximation av värdena för ett verkligt flygplan.Fyra olika program har analyserats för denna rapport: Tornado, AVL, PANAIR och en handbokbaserad preliminär metod. Dessutom användes ANSYS CFX för validering av vingprofiler . Vidberäkningen av noll-lyft motståndet, en approximation användes för de återstående delarna som inteberäknas av de andra metoderna: motståndsbidraget från flygkroppar, gondoler och vissa horisontellastabilisatorer och fenor.Olika flygplaner har testats: två trafikflygplan (Boeing 747-100 och 777-300), ett TF-8Aforskningsflygplan (med area regel användning: några tillägg gjordes på flygkroppen för att tvärsnitteninte har stora variationer när bidraget från vingen läggas), ett Lockheed Constellation C-69, ett BoeingStratocruiser som används av USAF i två konfigurationer (den vanliga och bombplan), och ett AeroCommander 680 Super, som liknar ett Cessna 162. Två vingprofiler (NACA 2412, 0012) analyseradesockså, för att kontrollera begränsningarna av programmen avsedd för tredimensionella beräkningar.Riktigheten av resultaten visade att giltigheten av programmen beror på formen av flygplanernasvingar, samt de simulationernas parametrar: Mach nummer och Reynolds nummer. Formen på vingenorsakade några av de metoderna att ha stora svårigheter med konvergensen till giltiga resultat, ellerökat simulering tid över acceptabla gränser.
Kudela, Libor. "Aerodynamický výpocet vzduchové části parního kotle." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319279.
Full textJež, Dalibor. "Využití odpadního tepla kogenerační jednotky pro výrobu technologické páry a vytápění." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232150.
Full textKoňařík, Josef. "Analýza aerodynamiky vozidla Formule Student." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228797.
Full textSvoboda, Marek. "Horkovodní roštový kotel." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401493.
Full textAkay, Busra. "Unsteady Aerodynamic Calculations Of Flapping Wing Motion." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608773/index.pdf.
Full text#956
AVs by investigating the hovering mode of flight by flapping motion. In this study, a detailed numerical investigation is performed to investigate the effect of some geometrical parameters, such as the airfoil profile shapes, thickness and camber distributions and as well as the flapping motion kinematics on the aerodynamic force coefficients and vortex formation mechanisms at low Reynolds number. The numerical analysis tool is a DNS code using the moving grid option. Laminar Navier-Stokes computations are done for flapping motion using the prescribed kinematics in the Reynolds number range of 101-103. The flow field for flapping hover flight is investigated for elliptic profiles having thicknesses of 12%, 9% and 1% of their chord lengths and compared with those of NACA 0009, NACA 0012 and SD 7003 airfoil profiles all having chord lengths of 0.01m for numerical computations. Computed aerodynamic force coefficients are compared for these profiles having different centers of rotation and angles of attack. NACA profiles have slightly higher lift coefficients than the ellipses of the same t/c ratio. And one of the most important conclusions is that the use of elliptic and NACA profiles with 9% and 12% thicknesses do not differ much as far as the aerodynamic force coefficients is concerned for this Re number regime. Also, two different sinusoidal flapping motions are analyzed. Force coefficients and vorticity contours obtained from the experiments in the literature and present study are compared. The validation of the present computational results with the experimental results available in the literature encourages us to conclude that present numerical method can be a reliable alternative to experimental techniques.
Karni, S. "Far - field boundaries and their numerical treatment." Thesis, Cranfield University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375917.
Full textTaylor, Dana J. "A method for the efficient calculation of elastic rotor blade dynamic response in forward flight." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12396.
Full textGrieshaber, Michele Marie. "Interactive calculation of cross-sectional areas for aircraft design and analysis." Thesis, This resource online, 1988. http://scholar.lib.vt.edu/theses/available/etd-04272010-020357/.
Full textGaydon, Justin Henry. "Improved panel methods for the calculation of low-speed flows around high-lift configurations." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319082.
Full textEleuterio, Daniel Patrick. "A comparison of bulk aerodynamic methods for calculating air-sea flux." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA359032.
Full text"December 1998." Thesis advisor(s): Qing Wang. Includes bibliographical references (p. 77-80). Also available online.
Chiu, Yih-wan Danny. "Convergence of discrete-vortex induced-flow calculations by optimum choice of mesh." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/12390.
Full textOk, Honam. "Development of an incomprehensible Navier-Stokes solver and its application to the calculation of separated flows /." Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/9969.
Full textDjayapertapa, Lesmana. "A computational method for coupled aerodynamic-structural calculations in unsteady transonic flow with active control study." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341506.
Full textLy, Eddie, and Eddie Ly@rmit edu au. "Numerical schemes for unsteady transonic flow calculation." RMIT University. Mathematics and Geospacial Sciences, 1999. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081212.163408.
Full textSchoř, Pavel. "Load State of an Aircraft with an Elastic Wing." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-383528.
Full textBrown, T. Gordon, Timothy Vong, and Ben Topper. "CALCULATING AERODYNAMIC COEFFICIENTS FOR A NASA APOLLO BODY USING TELEMETRY DATA FROM FREE FLIGHT RANGE TESTING." International Foundation for Telemetering, 2007. http://hdl.handle.net/10150/604263.
Full textThe U.S. Army Research Laboratory (ARL) was requested by the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to perform a free-flight experiment with a telemetry (TM) instrumented sub-scaled Apollo shaped reentry vehicle in order to determine its aerodynamic coefficients. ARL has developed a unique flight diagnostic capability for reconstructing flight trajectory and determining aerodynamic coefficients of projectiles by using sensor data telemetered from free flight experiments. A custom launch package was designed for this experiment that included the Apollo shaped projectile, which housed a modular telemetry unit, and a rapid prototyped sabot. The experiment was able to produce estimates for aerodynamic coefficients that were considered accurate and this technique is appealing to NASA for the development of their spacecraft in the future.
Ozhamam, Murat. "Accuracy And Efficiency Improvements In Finite Difference Sensitivity Calculations." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609128/index.pdf.
Full textRosolen, Célia Vanda Alves de Godoy. "Desenvolvimento analítico e numérico de perfis e cascatas Joukowski e NACA pela técnica de distribuição de vórtices." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263330.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-19T02:00:06Z (GMT). No. of bitstreams: 1 Rosolen_CeliaVandaAlvesdeGodoy_D.pdf: 6132404 bytes, checksum: 6af57a0cb75e4c1476dd73ce697ed5a5 (MD5) Previous issue date: 2011
Resumo: O presente trabalho tem como objetivos principais a elaboração de uma metodologia de cálculo de perfis e de cascatas em escoamento potencial baseado na distribuição de vórtices na superfície, o desenvolvimento de um código computacional próprio e a convalidação dos resultados obtidos. A metodologia baseia-se nos trabalhos de Martensen (1959), de Murugesan e Railly (1969) e de Lewis (1991). O comportamento aerodinâmico e os parâmetros característicos de um perfil isolado são totalmente conhecidos e existem várias técnicas analíticas e numéricas para avaliar e determinar o comportamento desses perfis. Essas técnicas analíticas podem ser estendidas para tratar os perfis experimentais como os perfis NACA com bons resultados. Neste trabalho o cálculo de perfis isolados compreende o uso do método de vórtices na superfície numa aproximação inversa. Inicialmente uma distribuição de velocidade é especificada a partir do ponto de estagnação do bordo de ataque. A distribuição de velocidade calculada sobre a superfície de um perfil inicial arbitrário é comparada com aquela requerida. A diferença entre elas é utilizada como sendo o valor de uma distribuição de vórtices que é imposta sobre o contorno. Devido ao campo desta distribuição de vórtices adicional, aparece uma distribuição de velocidades normais à superfície o que viola o conceito de linha de corrente. O contorno volta a ser uma linha de corrente quando sua inclinação local é ajustada de acordo com a razão entre os valores das velocidades normal e requerida. O perfil obtido é submetido a uma nova análise direta e a distribuição de velocidade obtida é comparada com a distribuição requerida. Os cálculos são repetidos até alcançar a convergência. O algoritmo numérico resultante foi aplicado a dois tipos de perfis, analítico (Joukowski) e experimental (NACA), para os casos de aerofólios simétrico e assimétrico. Os perfis NACA utilizados são NACA 65-010 e NACA 65-1210. Em todos os casos os perfis foram gerados usando a metodologia de distribuição de vórtices e os resultados foram comparados com os respectivos perfis originais, mostrando boa concordância. Tendo verificado que a técnica proposta e o código elaborado são válidos e produzem bons resultados, eles são aplicados à análise de cascatas de aerofólios NACA 65-1210 e de uma cascata de aerofólios de Gostelow
Abstract: This work presents a method to calculate airfoils and cascades in potential flow based upon the distribution of vortices on the profile surface, develop a computational code and validate the predictions with available well accepted results. The technique is based upon Martensen (1959), Murugesan and Railly (1969) and Lewis (1991). Cascades are usually specified according to the application and they can be stationary or moving. The aerodynamic behavior and the aerodynamic characteristics of isolated foil are known and many techniques to calculate these foils are available. These analytic techniques can be extended to handle nicely experimental foils such as the NACA's. In the present work, the method of distributing the vortices over the surface of the foil is used in the reverse sense. Initially a velocity profile is specified starting from the leading edge stagnation point. It is calculated the velocity distribution over the surface of an initial arbitrary foil and it is compared with that required. The difference between them is used as an additional distribution of vortices imposed over the surface. A distribution results in a velocity component normal to the surface and this violates the concept of the stream line. The contour turns to be a streamline when its local inclination is adopted according to the ratio of the normal velocity and the required velocity. The resultant foil is reanalyzed and the velocity distribution obtained is compared with the required distribution. The calculations are repeated until convergence is achieved. The numerical code was applied to two types of foils, analytical (Joukowski) and experimental (NACA) for the cases of symmetrical and asymmetrical foils. NACA foils used are the NACA 65-010 and NACA 65-1210. In all the cases the foils were generated using the vortex distribution technique and the resulting profiles were compared with the original profiles indicating a good agreement. These comparisons validate the proposed technique and the developed code. They were applied to analyse cascades of NACA 65-1210 foils and a cascade of the Gostelow foils
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
Zuliani, Gary L. "Aerodynamic flow calculations using finite-differences and multigrid." 2004. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=94618&T=F.
Full textDignan, Jay. "Simulation of flexible aircraft using real time aerodynamic calculations." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370045&T=F.
Full textСавін, Олексій Сергійович. "Аналіз роботи котла-утилізатора тунельної печі." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/2190.
Full textUA : Робота викладена на 86 сторінок друкованого тексту, містить 7 таблиць, 8 рисунків. Перелік посилань включає 28 джерел з них на іноземній мові 5. В магістерській роботі вирішено актуальну науково - технічну задачу підвищення енергетичної ефективності промислового обладнання – тунельної печі шляхом використання теплових вторинних енергетичних ресурсів
EN : The work is presented on 86 pages of printed text, contains 7 tables, 8 figures. The list of references includes 28 sources, 5 of them in foreign language. The master 's work solved the actual scientific and technical problem of increasing the energy efficiency of industrial equipment - tunnel kiln by using thermal secondary energy resources
Тимчук, Ірина Сергіївна. "Проект системи очистки газів, що утворюються при конвертерному виробництві конструкційних сталей." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/5050.
Full textUA : Виконаний аналіз існуючих технологій очищення газів киснево-конвертерного виробництва. Проведено розрахунки, за результатом яких було підібрано технологічне обладнання – апарати для очищення технологічного газу. Виконано розрахунок аеродинамічного тракту,було підібрано тягодуттєвий пристрій. Обрано апарати для утилізації газу та вловленого пилу.
EN : The analysis of existing technologies for cleaning gases by BOF production has been carried out.Сalculations for selection of process equipment for gas process cleaning has been implemented. Aerodynamic route calculation has been made, draft consummation has been selected. Equipment for gas recovery and captured dust has been selected.