Academic literature on the topic 'Aerodynamic flutter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerodynamic flutter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aerodynamic flutter"
Berci, Marco. "On Aerodynamic Models for Flutter Analysis: A Systematic Overview and Comparative Assessment." Applied Mechanics 2, no. 3 (July 29, 2021): 516–41. http://dx.doi.org/10.3390/applmech2030029.
Full textSchäfer, Dominik. "T-tail flutter simulations with regard to quadratic mode shape components." CEAS Aeronautical Journal 12, no. 3 (June 18, 2021): 621–32. http://dx.doi.org/10.1007/s13272-021-00524-8.
Full textXie, Dan, Min Xu, Honghua Dai, and Tao Chen. "New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter." Mathematical Problems in Engineering 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/6707092.
Full textDai, Yuting, and Chao Yang. "Smolyak-Grid-Based Flutter Analysis with the Stochastic Aerodynamic Uncertainty." Discrete Dynamics in Nature and Society 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/174927.
Full textWang, Binwen, and Xueling Fan. "Ground Flutter Simulation Test Based on Reduced Order Modeling of Aerodynamics by CFD/CSD Coupling Method." International Journal of Applied Mechanics 11, no. 01 (January 2019): 1950008. http://dx.doi.org/10.1142/s175882511950008x.
Full textKobayashi, H. "Annular Cascade Study of Low Back-Pressure Supersonic Fan Blade Flutter." Journal of Turbomachinery 112, no. 4 (October 1, 1990): 768–77. http://dx.doi.org/10.1115/1.2927720.
Full textDowell, Earl H., Kenneth C. Hall, and Michael C. Romanowski. "Eigenmode Analysis in Unsteady Aerodynamics: Reduced Order Models." Applied Mechanics Reviews 50, no. 6 (June 1, 1997): 371–86. http://dx.doi.org/10.1115/1.3101718.
Full textYang, Lei, Fei Shao, Qian Xu, and Ke-bin Jiang. "Flutter Performance of the Emergency Bridge with New-Type Cable-Girder." Mathematical Problems in Engineering 2019 (March 17, 2019): 1–14. http://dx.doi.org/10.1155/2019/1013025.
Full textZhong, Jize, and Zili Xu. "An energy method for flutter analysis of wing using one-way fluid structure coupling." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, no. 14 (September 14, 2016): 2560–69. http://dx.doi.org/10.1177/0954410016667146.
Full textChen, Xingyu, Ruijie Hu, Haojun Tang, Yongle Li, Enbo Yu, and Lei Wang. "Flutter Stability of a Long-Span Suspension Bridge During Erection in Mountainous Areas." International Journal of Structural Stability and Dynamics 20, no. 09 (August 2020): 2050102. http://dx.doi.org/10.1142/s0219455420501023.
Full textDissertations / Theses on the topic "Aerodynamic flutter"
PENNACHIONI, M. "ROTATING AERODYNAMIC- EXCITERS for in-flight flutter testing." International Foundation for Telemetering, 1985. http://hdl.handle.net/10150/615759.
Full textTelemetering, as used in in-flight testing, has several advantages including that of allowing what is known as real-time utilization; and thereby, in certain specific cases, the continuation of the flight programme in terms of the results obtained therein. This feature is especially attractive during the opening of the aircraft’s flutter envelope. It then becomes a matter of experimentally determining the aircraft’s aeroelastic stability throughout its flight envelope, and specifically at high speeds. In this connection, it’s common knowledge that in excess of a certain so-called critical speed, two or more vibratory modes of the structure can become coupled via the aerodynamic forces they respectively generate; and can lead to diverging oscillation liable to cause vibration failure. It’s easy to see that such a critical speed must be well within the permitted aircraft operation envelope and that approaching it during in-flight testing should only be considered with a certain amount of prudence and subject to strict monitoring of the structure’s behaviour. The most widely used monitoring system is to measure the transfer function relating an alternating force applied to the aircraft structure in flight to the displacements it causes at different points of that structure (figure 1). Progress in the flight envelope is made in speed steps, any variations in this transfer function being monitored between steps, and usually being reflected in terms of vibration frequencies and damping. Using telemetering, as in conducting these tests, is beneficial in several respects (figure 2). First it allows instant visual monitoring of the structure’s behaviour at its most significant points (rudders, bearing surface ends) by a team conveniently arranged on the ground. Then, further to a preliminary processing operation occurring in real-time, the test can be validated by merely observing the spectrums and the coherence functions existing between the forces applied and the structure’s response; a poor quality test, either due to a mismatched excitation or to the unexpected effect of an atmospheric turbulence, can be rerun without waiting for the aircraft to land. Finally, if adequate computing facilities are available, a comprehensive utilization of the values measured and their identification with a theoretical model lets the structure’s general behaviour be compared with the estimated figures, and thereby lets the aircraft resume the same test sequence at a higher speed or Mach number. The accuracy of the result and the speed at which it is obtained, so essential to the safe resumption of the flight, primarily depend on the extent and on the adequacy of the available information on the artificially applied forces. The design of “exciters” capable of creating controlled and measurable forces of an adequate level is thus the most vital constraint of the flutter testing facility.
Saini, Manjinder. "Experimental and computational study of airfoil load alteration using oscillating fence actuator." Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1663059971&sid=3&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textAl-Assaf, Adel. "Flutter analysis of open-truss stiffened suspension bridges using synthesized aerodynamic derivatives." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/Fall2006/Al_Assaf_122306.pdf.
Full textWang, Zhida. "Experimental and CFD Investigations of the Megane Multi-box Bridge Deck Aerodynamic Characteristics." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32209.
Full textThake, Michael P. "Effect of mistuning on bending-torsion flutter using a compressible time-domain aerodynamic theory." Connect to resource, 2009. http://hdl.handle.net/1811/38781.
Full textKaradal, Fatih Mutlu. "Active Flutter Suppression Of A Smart Fin." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609830/index.pdf.
Full text/NASTRAN based on the analogy between thermal strains and piezoelectric strains was presented. The results obtained by the thermal analogy were compared with the reference results and very good agreement was observed. The unsteady aerodynamic loads acting on the structure were calculated by using a linear two-dimensional Doublet-Lattice Method available in MSC®
/NASTRAN. These aerodynamic loads were approximated as rational functions of the Laplace variable by using one of the aerodynamic approximation schemes, Roger&
#8217
s approximation, with least-squares method. These approximated aerodynamic loads together with the structural matrices obtained by the finite element method were used to develop the aeroelastic equations of motion of the smart fin in state-space form. The Hinf robust controllers were then designed for the state-space aeroelastic model of the smart fin by considering both SISO (Single-Input Single-Output) and MIMO (Multi-Input Multi-Output) system models. The verification studies of the controllers showed satisfactory flutter suppression performance around the flutter point and a significant improvement in the flutter speed of the smart fin was also observed.
Monaco, Lucio. "PARAMETRIC STUDY OF THE EFFECT OF BLADE SHAPE ON THE PERFORMANCE OF TURBOMACHINERY CASCADES : PART III A: AERODYNAMIC DAMPING BEHAVIOUR – COMPRESSOR PROFILES." Thesis, KTH, Kraft- och värmeteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131210.
Full textMcHugh, Garrett R. "An Experimental Investigation in the Mitigation of Flutter Oscillation Using Shape Memory Alloys." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1479119992818089.
Full textStasolla, Vincenzo. "Numerical analysis of aerodynamic damping in a transonic compressor." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264359.
Full textAeromekanik är en av huvudbegränsningarna för mer effektiva, lättare, billigare och mer pålitliga turbomaskiner, som ångturbiner, gasturbiner, samt kompressorer och fläktar. I själva verket har flygplansmotorer som designats under de senaste åren har fått tunnare och mer belastade skovlar, men denna trend ger upphov till ökad känslighet för aeromekaniska vibrationer och resulterar i ökande utmaningar när det gäller motorns strukturella integritet. Aerodynamiskt påtvingade vibrationer såväl som fladder måste predikteras noggrant för att kunna undvikas och en viktig parameter som förutsäger instabilitet i båda fallen är den aerodynamiska dämpningen. Syftet med det aktuella projektet är att numeriskt undersöka aerodynamisk dämpning i den första rotorn hos en transonisk kompressor (VINK6). Det transoniska flödesfältet leder till en bågformad stötvåg vid bladets främre kant, som sprider sig till sugsidan på det intilliggande bladet. I och med detta, tillsammans med det faktum att den roterande bladraden vibrerar i olika modformer och detta inducerar instationära tryckfluktuationer, syftar detta arbete på att utvärdera flödesfältslösningar för olika fal. I synnerhet fokuserar arbetet på prediktering av den instationära aerodynamiska dämpningen för de första sex modformen. Den aerodynamiska kopplingen mellan bladen hos denna rotor uppskattas genom att använda en transient bladradmodell uppsatt för fladderberäkningen. Den kommersiella CFD-koden som används för denna utredning är ANSYS CFX. Aerodynamisk dämpning utvärderas med hjälp av energimetoden, som gör det möjligt att beräkna den logaritmiska minskningen som används som en stabilitetsparameter i denna studie. De minsta logaritmiska dekrementvärdena för varje modform undersöks bättre genom att hitta den ostadiga tryckfördelningen på olika spannpositioner, som är en indikering av den lokala arbetsfördelningen, användbar för att få insikt i kopplingen mellan förskjutningar och därmed genererat ostabilt tryck. Två olika transienta metoder används som visar samma trend för de kvantiteter som beaktas med liknande beräkningsinsatser. Den första modformen är den enda med en fladderrisk, medan de högre modformerna har högre reducerade frekvenser, och ligger utanför det kritiska intervallet som finns i litteraturen. Instationärt tryck för alla moder är ganska jämförbart på de högre spannpositioner, där de största förskjutningarna föreskrivs, medan runt midspannet finns mindre jämförbara värden på grund av olika amplitud och riktning för modformen. SSTturbulensmodellen analyseras, som i detta fall inte påverkar predikteringen på ett betydande sätt. Det predikterade instationära trycket baserad på Fourier-transformationen valideras med MATLAB-koder som använder sig av Fast Fourier Transform för att säkerställa noggrannheten hos CFX-beräkningar. Konvergensnivå och skillnader i aerodämpningsvärden anges för varje resultat och detta gör det möjligt att uppskatta beräkningsinsatsen för varje simulering och uppskatta utbredningen av det numeriska felet.
Glodic, Nenad. "Sensitivity of Aeroelastic Properties of an Oscillating LPT Cascade." Licentiate thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123504.
Full textQC 20130610
Turbokraft
Books on the topic "Aerodynamic flutter"
James P. Smith - undifferentiated. X-38 vehicle 131 flutter assessment. [Houston, Tex.]: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1997.
Find full textJames P. Smith - undifferentiated. X-38 vehicle 131 flutter assessment. [Houston, Tex.]: Lyndon B. Johnson Space Center, 1997.
Find full textJames P. Smith - undifferentiated. X- 38 vehicle 131 flutter assessment. Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textJames P. Smith - undifferentiated. X-38 vehicle 131 flutter assessment. [Houston, Tex.]: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1997.
Find full textNissim, E. Design of control laws for flutter suppression based on the aerodynamic energy concept and comparisons with other design methods. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textNissim, E. Effect of control surface mass unbalance on the stability of a closed-loop active control system. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textNissim, E. Control surface spanwise placement in active flutter suppression systems. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Find full textScott, Robert C. A method of predicting quasi-steady aerodynamics for flutter analysis of high speed vehicles using steady CFD calculations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textThompson, Scott A. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. Notre Dame, Ind: Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, 1990.
Find full textKehoe, M. W. Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1988.
Find full textBook chapters on the topic "Aerodynamic flutter"
Kurniawan, Riccy. "Flutter Analysis of an Aerofoil Using State-Space Unsteady Aerodynamic Modeling." In Transactions on Engineering Technologies, 141–48. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8832-8_11.
Full textPiscitelle, Louis J. "Dynamical Systems Analysis of an Aerodynamic Decelerator: Bifurcation to Divergence and Flutter." In NATO ASI Series, 161–64. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1609-9_27.
Full textArena, Andrew S., and Kajal K. Gupta. "Expediting time-marching supersonic flutter prediction through a combination of CFD and aerodynamic modeling techniques." In Fifteenth International Conference on Numerical Methods in Fluid Dynamics, 268–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0107113.
Full textMerrett, Craig G., and Harry H. Hilton. "Linear Aero-Thermo-Servo-Viscoelasticity, Part II: Dynamic Considerations: Lifting Surface and Panel Flutter and Aerodynamic Noise." In Encyclopedia of Thermal Stresses, 2737–44. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_909.
Full textSmati, L., S. Aubert, P. Ferrand, and F. Massão. "Comparison of Numerical Schemes to Investigate Blade Flutter." In Unsteady Aerodynamics and Aeroelasticity of Turbomachines, 749–63. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5040-8_49.
Full textClarkson, J. D., J. A. Ekaterinaris, and M. F. Platzer. "Computational Investigation of Airfoil Stall Flutter." In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 415–32. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_21.
Full textShibata, Takanori, and Shojiro Kaji. "Role of Shock Structures in Transonic Fan Rotor Flutter." In Unsteady Aerodynamics and Aeroelasticity of Turbomachines, 733–47. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5040-8_48.
Full textKaji, Shojiro. "Transonic Cascade Flutter in Combined Bending-Chordwise Translational Mode." In Unsteady Aerodynamics and Aeroelasticity of Turbomachines, 783–95. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5040-8_51.
Full textChiang, Hsiao-Wei D., and Sanford Fleeter. "Splitter Blades for Passive Turbomachine Flutter Control." In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 807–28. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_41.
Full textSayma, A. I., M. Vahdati, J. S. Green, and M. Imregun. "Whole-Assembly Flutter Analysis of a Low Pressure Turbine Blade." In Unsteady Aerodynamics and Aeroelasticity of Turbomachines, 347–59. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5040-8_23.
Full textConference papers on the topic "Aerodynamic flutter"
Borgueta, Samuel J., Nicholas R. Bach, Jared J. Correia, Brendan G. J. Egan, Joshua S. Horton, James E. Lipsett, and Raymond N. Laoulache. "Aerodynamic Flutter of Turbine Brush Seals." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-73500.
Full textGadsden, S. A., and S. Habibi. "Aerodynamic Flutter and Flight Surface Actuation." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41897.
Full textLarsen, Allan. "Horizontal Aerodynamic Derivatives in Bridge Flutter Analysis." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28251.
Full textDai, Yuting, Zhang Zhang, Chao Yang, Zhigang Wu, and Anping Hou. "Unsteady Aerodynamic Uncertainty Estimation and Robust Flutter Analysis." In 29th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3517.
Full textHe, Sicheng, Eirikur Jonsson, Charles A. Mader, and Joaquim R. R. A. Martins. "Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0697.
Full textSPARA, KAREN, and SANFORD FLEETER. "Supersonic turbomachine rotor flutter control by aerodynamic detuning." In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2685.
Full textEkici, Kivanc, Robert Kielb, and Kenneth Hall. "The Effect of Aerodynamic Asymmetries on Turbomachinery Flutter." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-893.
Full textJi, Chen, Ziqiang Liu, Nong Chen, and Li Feng. "Development of a Hypersonic Flutter Test Capability." In 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3820.
Full textGoldman, Benjamin D., and Earl Dowell. "Flutter Analysis of the Thermal Protection Layer on the NASA HIAD." In AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1254.
Full textABBAS, JEHAD, R. IBRAHIM, and RONALD GIBSON. "Nonlinear flutter of orthotropic composite panel under aerodynamic heating." In Dynamics Specialists Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2132.
Full textReports on the topic "Aerodynamic flutter"
Striz, Alfred G. Influence of Structural and Aerodynamic Modeling on Flutter Analysis and Structural Optimization. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada248487.
Full text