Academic literature on the topic 'Aerosols Atmospheric radiation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerosols Atmospheric radiation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aerosols Atmospheric radiation"
Huang, J., Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao. "Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints." Atmospheric Chemistry and Physics 9, no. 12 (June 18, 2009): 4011–21. http://dx.doi.org/10.5194/acp-9-4011-2009.
Full textTian, Pengfei, Lei Zhang, Xianjie Cao, Naixiu Sun, Xinyue Mo, Jiening Liang, Xuetao Li, Xingai Gao, Beidou Zhang, and Hongbin Wang. "Enhanced Bottom-of-the-Atmosphere Cooling and Atmosphere Heating Efficiency by Mixed-Type Aerosols: A Classification Based on Aerosol Nonsphericity." Journal of the Atmospheric Sciences 75, no. 1 (January 2018): 113–24. http://dx.doi.org/10.1175/jas-d-17-0019.1.
Full textPersad, Geeta G., David J. Paynter, Yi Ming, and V. Ramaswamy. "Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summertime Climate." Journal of Climate 30, no. 22 (November 2017): 8929–49. http://dx.doi.org/10.1175/jcli-d-16-0860.1.
Full textHatzianastassiou, N., C. Matsoukas, A. Fotiadi, P. Koepke, K. G. Pavlakis, and I. Vardavas. "Modelling the direct effect of aerosols in the solar near-infrared on a planetary scale." Atmospheric Chemistry and Physics 7, no. 12 (June 25, 2007): 3211–29. http://dx.doi.org/10.5194/acp-7-3211-2007.
Full textRandles, C. A., S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, et al. "Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment." Atmospheric Chemistry and Physics 13, no. 5 (March 1, 2013): 2347–79. http://dx.doi.org/10.5194/acp-13-2347-2013.
Full textChung, Chul E., Jung-Eun Chu, Yunha Lee, Twan van Noije, Hwayoung Jeoung, Kyung-Ja Ha, and Marguerite Marks. "Global fine-mode aerosol radiative effect, as constrained by comprehensive observations." Atmospheric Chemistry and Physics 16, no. 13 (July 4, 2016): 8071–80. http://dx.doi.org/10.5194/acp-16-8071-2016.
Full textYuan, Yuan, Xing Huang, Yong Shuai, and Qian-Jun Mao. "Study on the Influence of Aerosol Radiation Balance in One-Dimensional Atmospheric Medium UsingPn-Approximation Method." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/767231.
Full textHuang, J., Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao. "Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints." Atmospheric Chemistry and Physics Discussions 9, no. 2 (March 5, 2009): 5967–6001. http://dx.doi.org/10.5194/acpd-9-5967-2009.
Full textRandles, C. A., S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, et al. "Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment." Atmospheric Chemistry and Physics Discussions 12, no. 12 (December 19, 2012): 32631–706. http://dx.doi.org/10.5194/acpd-12-32631-2012.
Full textWang, H., G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li. "Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region – Part 2: Aerosols' radiative feedback effects." Atmospheric Chemistry and Physics 15, no. 6 (March 23, 2015): 3277–87. http://dx.doi.org/10.5194/acp-15-3277-2015.
Full textDissertations / Theses on the topic "Aerosols Atmospheric radiation"
Gautam, Ritesh. "Aerosol-radiation-climate interactions over the Gangetic-Himalayan region." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3353.
Full textVita: p. 167. Thesis director: Menas Kafatos. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Systems an GeoInformation Sciences. Title from PDF t.p. (viewed Jan. 11, 2009). Includes bibliographical references (p. 156-166). Also issued in print.
Estupin, Jeral Garcia. "The Direct Influence of Aerosols on UV Irradiance and the Development of a Synthetic Current UV Index." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11602.
Full textCrahan, Kathleen Keara. "The thermodynamic and kinetic impacts of organics on marine aerosols /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/10095.
Full textConant, William Christopher. "Interactions between aerosol, water vapor, and solar radiation /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p3025938.
Full textXu, Jin. "Direct aerosol radiative forcing based on measurements of aerosol radiative, chemical and physical properties in China." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/20173.
Full textLathem, Terry Lee. "On the water uptake of atmospheric aerosol particles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50112.
Full textSanchez, Romero Alejandro. "Sunshine duration as a proxy of the atmospheric aerosol content." Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/394045.
Full textUna de les propietats radiatives més importants dels aerosols atmosfèrics és el seu espessor òptic (AOD), que està molt vinculat a la càrrega total d’aerosols en l’atmosfera. Per altra banda, existeixen llargues series temporals d’insolació (SD), que es defineix com la suma de subperíodes en què la irradiància solar directa excedeix un cert llindar. En el passat, l’heliògraf Campbell-Stokes ha estat l’instrument més comú per la mesura de SD, obtinguda a partir de la longitud de la cremada produïda en una banda de cartolina. L’objectiu principal d’aquesta tesi ha estat investigar la idoneïtat de la utilització de mesures de SD, així com l’amplada de les cremades en les cartolines, per tal de detectar canvis en la càrrega d’aerosols atmosfèrics, tant en alta resolució temporal com en llargues escales temporals, partint de la hipòtesis de que un augment de l’AOD redueix tant la mesura de SD com l’ample de la cremada.
Boer, Gregory Jon. "Investigation of high spectral resolution signatures and radiative forcing of tropospheric aerosol in the thermal infrared." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34001.
Full textNascimento, Cristina Rodrigues. "Correção atmosferica de imagens do sensor AVHRR/NOAA utilizando produtos atmosfericos do sensor MODIS/TERRA." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257080.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola
Made available in DSpace on 2018-08-08T10:45:00Z (GMT). No. of bitstreams: 1 Nascimento_CristinaRodrigues_M.pdf: 15175487 bytes, checksum: d9905da2c3f9b6c5fa573693ce9e61a0 (MD5) Previous issue date: 2006
Resumo: O sensoriamento remoto nas regiões espectrais do visível e do infravermelho próximo constitui uma das ferramentas mais importantes para o entendimento da biosfera e de suas dinâmicas. Entretanto, estas duas regiões são afetadas pelos efeitos atmosféricos tais como, o espalhamento e a absorção,ocasionados por sua vez pelos aerossóis e gases atmosféricos. Na tentativa de obter o fator de reflectância bi-direcional da superfície terrestre, nos canais 1 e 2 do sensor AVHRR, foi realizada a correção atmosférica, baseada na entrada de dados, tais como espessura óptica dos aerossóis, coluna total de vapor d?água e carga total de ozônio, respectivamente fornecidos pelo sensor MODIS. O intuito da utilização deste sensor está diretamente relacionado à obtenção das informações, necessários para a correção atmosférica, considerando-se a variabilidade dos parâmetros no tempo e no espaço. Para tanto foi utilizado o aplicativo SCORADIS, fundamentado no modelo de transferência radiativa 5S, então adaptado, para possibilitar a correção atmosférica de toda a imagem do AVHRR a partir da entrada das imagens correspondentes aos planos atmosféricos, através da utilização de quatro metodologias distintas de correção atmosférica. As análises realizadas indicaram que as correções realizadas a partir dos dados atmosféricos do sensor MODIS apresentaram resultados coerentes com o esperado após a eliminação dos efeitos de espalhamento e de absorção atmosférica, nos canais 1 e 2 do NOAA-17, nas duas datas consideradas (14/07/2004 e 30/08/2005). Para o NDVI, a diferença percentual entre as imagens com e sem correção chegaram a ser de, aproximadamente, 60%, o que ressalta a importância da correção atmosférica destes canais, principalmente no acompanhamento da vegetação a partir de imagens multitemporais. Não se observou diferença significativa entre as metodologias utilizadas para a entrada dos dados atmosféricos no sistema de correção atmosférica, devido, possivelmente, à magnitude dos valores utilizados e à áreateste escolhida. Os produtos obtidos a partir das imagens do MODIS mostraram potencial para utilização na estimativa dos principais parâmetros atmosféricos necessários para a correção atmosférica (como a espessura óptica dos aerossóis e conteúdo de vapor d'água e ozônio) e que são de grande dificuldade para obtenção em campo
Abstract: Remote sensing in the spectral regions of visible and infrared is one of the most important techniques used for studying the biosphere. However these two spectral regions are affected by atmospheric effects as scattering and absorption, caused by aerosols and atmospheric gases. In the attempt to obtain the real reflectance of ground surface, in channels 1 and 2 of AVHRR sensor, was performed the atmospheric correction of two NOAA images acquired on July/14/2004 and August/30/2005, based on atmospheric data supplied by the MODIS sensor, considering the spatial and temporal variability of these parameters. The system SCORADIS, based on the radiative transfer model called 5S, was adapted to read images having values of aerosols optical thickness, water vapor content and ozone contents corresponding spatially to each pixel of a AVHRR/NOAA image. Four distinct methodologies were used to define the images of atmospheric parameters. Coherent results were obtained using atmospheric data from MODIS, indicating that the scattering and absorption effects were correctly eliminated from the NOAA images in the two dates considered. The difference between the NDVI calculated with corrected and noncorrected images was up to 60%, showing the importance of using corrected images in applications based on multitemporal images. There was not observed significant difference among the four methodologies applied to define the atmospheric data used in the atmospheric correction system due, maybe, to the magnitude of the values and to the atmospheric conditions of test-area. The atmospheric products from MODIS can be used to defining the input data (like aerosol optical thickness, water vapor contents and ozone contents) for the atmospheric correction systems of AVHRR/NOAA images
Mestrado
Planejamento e Desenvolvimento Rural Sustentável
Mestre em Engenharia Agrícola
Alston, Erica J. "Aerosol characterization in the Southeastern U. S. using satellite data for applications to air quality and climate." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43589.
Full textBooks on the topic "Aerosols Atmospheric radiation"
Zuev, V. E., A. A. Zemlyanov, Yu D. Kopytin, and A. V. Kuzikovskii. High-Power Laser Radiation in Atmospheric Aerosols. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5219-5.
Full textInternational Radiation Symposium. (1992 Tallinn, Estonia). IRS '92: Abstracts : International Radiation Symposium, Tallinn, Estonia, 3-8 August, 1992. [S.l: s.n., 1993.
Find full textKondratʹev, K. I͡A. Remote sensing of the earth from space: Atmospheric correction. Berlin: Springer-Verlag, 1992.
Find full textGushchin, Gennadiĭ Petrovich. Metody, pribory i rezulʹtaty izmerenii͡a︡ spektralʹnoĭ prozrachnosti atmosfery. Moskva: Gidrometeoizdat, 1988.
Find full textSurkova, Galina. Atmospheric chemistry. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1079840.
Full textZhao, Jingxia. A model simulation of Pinatubo volcanic aerosols in the stratosphere. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textGei︣nt︠s︡, I︠U︡ Ė. Nelinei︣nai︠a︡ optika atmosfernogo aėrozoli︠a︡. Novosibirsk: Izd-vo SO RAN, 1999.
Find full textPeter, Koepke, and Shettle Eric P, eds. Atmospheric aerosols: Global climatology and radiative characteristics. Hampton, Va., USA: A. Deepak Pub., 1991.
Find full textModelirovanie poleĭ izluchenii͡a︡ v zadachakh kosmicheskoĭ spektrofotometrii. Leningrad: Izd-vo "Nauka," Leningradskoe otd-nie, 1986.
Find full textGordon, Howard R. Ocean observations with EOS/MODIS: Algorithm development and post launch studies. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "Aerosols Atmospheric radiation"
Boucher, Olivier. "Aerosol–Radiation Interactions." In Atmospheric Aerosols, 173–92. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9649-1_8.
Full textBoucher, Olivier. "Interactions of Radiation with Matter and Atmospheric Radiative Transfer." In Atmospheric Aerosols, 83–127. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9649-1_5.
Full textHong, Yin, and Han Zhigang. "The Effect of Atmospheric Aerosols on Absorption of Solar Radiation." In Atmospheric Radiation, 623–28. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_91.
Full textNakajima, Teruyuki, Masayuki Tanaka, Tadahiro Hayasaka, Yukiharu Miyake, Yuji Nakanishi, and Kazutoshi Sasamoto. "Airborne Measurements of the Optical Stratification of Aerosols in Turbid Atmospheres." In Atmospheric Radiation, 619–22. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_90.
Full textBolin, Zhao, and Yu Xiaoding. "Investigation of the Asian Dust Storm and Atmospheric Aerosols from Satellite Observations." In Atmospheric Radiation, 291–99. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_44.
Full textSchotland, R. M., and T. K. Lea. "Bias in a Solar Constant Determination by the Langley Method Due to Aerosols." In Atmospheric Radiation, 655–62. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_95.
Full textLenoble, J. "Radiative Properties of Aerosols as Deduced from Satellite, Ground-Based and in Situ Observations." In Atmospheric Radiation, 527–35. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_77.
Full textZuev, V. E., A. A. Zemlyanov, Yu D. Kopytin, and A. V. Kuzikovskii. "Microphysical and Optical Characteristics of Atmospheric Aerosols." In High-Power Laser Radiation in Atmospheric Aerosols, 1–20. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5219-5_1.
Full textZuev, V. E., A. A. Zemlyanov, Yu D. Kopytin, and A. V. Kuzikovskii. "Propagation of High-Power Laser Radiation through Hazes." In High-Power Laser Radiation in Atmospheric Aerosols, 165–215. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5219-5_6.
Full textZuev, V. E., A. A. Zemlyanov, Yu D. Kopytin, and A. V. Kuzikovskii. "Low Energy (Subexplosive) Effects of Radiation on Individual Particles." In High-Power Laser Radiation in Atmospheric Aerosols, 21–54. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5219-5_2.
Full textConference papers on the topic "Aerosols Atmospheric radiation"
Sengupta, Manajit, and Michael Wagner. "Estimating Atmospheric Attenuation in Central Receiver Systems." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91229.
Full textKoepke, P. "Aerosol effects on UV radiation." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361934.
Full textZhang, Wei, Fenglei Niu, Houbo Qi, and Zhangpeng Guo. "Numerical Simulation of Radiation Aerosol Collection in Mesoscopic Impactor Filters." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66598.
Full textXie, Shaocheng, Xiaohong Liu, Chuanfeng Zhao, and Yuying Zhang. "Impact of ice nucleation parameterizations on CAM5 simulated arctic clouds and radiation: A sensitivity study." In NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference. AIP, 2013. http://dx.doi.org/10.1063/1.4803378.
Full textOrlov, Aleksey O., Alexander A. Gurulev, and Georgy S. Bordonskiy. "Attenuation of microwave radiation at millimeter waves in supercooled water of atmospheric aerosols." In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2504458.
Full textSingh, D. K., V. K. Ponnulakshami, V. Mukund, G. Subramanian, and K. R. Sreenivas. "Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). AIP, 2013. http://dx.doi.org/10.1063/1.4804840.
Full textDammann, Knut W. "Aerosol impact on the earth radiation budget with satellite data." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361933.
Full textAmiranashvili, A. "Aerosol pollution of the atmosphere and its influence on the direct solar radiation in some regions of Georgia." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361940.
Full textMishchenko, Michael I. "Polarimetric remote sensing of aerosols and clouds: effects of particle shape and morphology." In CURRENT PROBLEMS IN ATMOSPHERIC RADIATION (IRS 2008): Proceedings of the International Radiation Symposium (IRC/IAMAS). American Institute of Physics, 2009. http://dx.doi.org/10.1063/1.3116975.
Full textVarghese, Saji, Robert Flanagan, and Colin D. O’Dowd. "Influence of Marine Aerosols on Cloud Droplet Number Concentration over the North‐East Atlantic." In CURRENT PROBLEMS IN ATMOSPHERIC RADIATION (IRS 2008): Proceedings of the International Radiation Symposium (IRC/IAMAS). American Institute of Physics, 2009. http://dx.doi.org/10.1063/1.3117071.
Full textReports on the topic "Aerosols Atmospheric radiation"
Penner, J. E. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10118242.
Full textFerrare, Richard A. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799175.
Full textSeinfeld, John H. Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada611945.
Full textSeinfeld, John H. Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532930.
Full textSeinfeld, John H. Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541254.
Full textSeinfeld, John H. Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada602941.
Full textKeene, William C., and Michael S. Long. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1079841.
Full textTsay, Si-Chee, Q. J. Ji, Santiago Gasso, and Jeffrey S. Reid. Characterization of Dust Aerosols and Atmospheric Parameters from Space-borne and Surface-based Remote Sensing: Application of Community Radiative Transfer Algorithms to Navy Electro-Optical Models. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada628826.
Full textTsay, Si-Chee, Q. J. Ji, Santiago Gasso, and Jeffrey S. Reid. Characterization of Dust Aerosols and Atmospheric Parameters from Space-borne and Surface-based Remote Sensing: Application of Community Radiative Transfer Algorithms to Navy Electro-Optical Models. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada633993.
Full text